吸收塔溢流原因及预防措施
- 格式:doc
- 大小:21.00 KB
- 文档页数:2
脱硫吸收塔溢流、虹吸现象分析及预控在石灰石-石膏湿法脱硫工艺中,经常会出现吸收塔溢流管冒浆、冒泡等现象。
通常溢流出来的浆液进入吸收塔区排水地坑后,再经由地坑泵打回吸收塔重复使用,不会造成其它后果。
但当吸收塔浆液溢流量较大,溢流管来不及排放时,就会引发浆液倒灌、喷淋效率下降等各种事故,影响脱硫系统正常达标运行,严重时会通过吸收塔入口烟道进入增压风机或引风机本体,造成事故扩大,严重影响设备安全、污染厂区环境。
一、脱硫吸收塔溢流原因分析1、吸收塔溢流产生机理要想减少或避免吸收塔溢流、虹吸,就需要了解泡沫产生的机理和吸收塔内介质的工作状态与环境。
在吸收塔内,介质状态并不是单纯以液体形式存在,是液体和气体的混合体。
这就为泡沫形成提供了条件(在石灰石-石膏湿法脱硫工艺中,为了强制氧化生成石膏,氧化风管需深深的埋入浆液内部)。
泡沫正是由于混合体而生成,泡沫是气体分散在液体中的分散体系,其中液体所占体积分数很小,泡沫占很大体积,气体被连续的液膜分开,形成大小不等的气泡。
泡沫的产生是由于气体分散于液体中形成气液的分散体,在泡沫形成的过程中,气液界面会急剧增加,其增加值为液体表面张力与体系增加后气液界面的面积乘积,应等于外界对体系所做的功。
若液体的表面张力越小,则气液界面的面积就越大,泡沫的体积也就越大,这说明此液体很容易起泡。
当不溶性气体被液体包围时,形成一种极薄的吸附膜,由于表面张力的作用,膜收缩为球状形成泡沫,在液体的浮力作用下汽泡上升到液面,当大量的气泡聚集在表面时,就形成了泡沫层。
吸收塔浆液中的气体与浆液连续充分地接触(氧化风的作用),由于气体是分散相(不连续相),浆液是分散介质(连续相),气体与浆液的密度相差很大,所以在浆液中泡沫很快上升到浆液表面,此时如浆液的表面张力小,浆液中的气体就冲破浆液面聚集成泡沫。
泡沫密度、比重都明显低于塔内浆液。
富集后的泡沫会在浆液表面形成泡沫层。
由于泡沫层非常轻,极易受烟气流向和风压的影响而运动。
关于吸收塔浆液起泡溢流的情况汇报吸收塔浆液因起泡而溢流是石灰石-石膏法脱硫中常见的问题之一,对系统的稳定运行有很大危害,必须加以重视,一旦出现起泡溢流现象要及时采取妥善处理办法,保证系统安全、稳定运行。
下面针对吸收塔起泡溢流的机理、原因、危害、预防及处理分析如下:一、浆液起泡的机理1、泡沫由于表面作用而生成,是气体分散在液体中的分散体系,其中液体所占体积分数很小,泡沫占很大体积,气体被连续的液膜分开,形成大小不等的气泡。
泡沫的产生是由于气体分散于液体中形成气-液的分散体,在泡沫形成的过程中,气-液界面会急剧地增加,因而体系的能量增加,其增加值为液体表面张力γ与体系增加后的气-液界面的面积A 的乘积为γ×A,应等于外界对体系所作的功。
若液体的表面张力γ越低则气-液界面的面积A 就越大,泡沫的体积也就越大,这说明此液体很容易起泡。
当不溶性气体被液体所包围时,形成一种极薄的吸附膜,由于表面张力的作用,膜收缩为球状形成泡沫,在液体的浮力作用下气泡上升到液面,当大量的气泡聚集在表面时,就形成了泡沫层。
吸收塔浆液中的气体与浆液连续充分地接触,由于气体是分散相(不连续相),浆液是分散介质(连续相),气体与浆液的密度相差很大,所以在浆液中;泡沫很快上升到浆液表面,此时如浆液的表面张力小,浆液中的气体就冲破液面聚集成泡沫。
由此可见,泡沫的产生必须具备3个条件:只有气体与液体连续又充分地接触时,才能产生泡沫;当气体与液体的密度相差非常大时,才能使液体中的泡沫能很快上升到液面,久而久之就形成泡沫;表面张力愈小的液体愈易起泡;2、泡沫中的起泡呈多面体形,在多面体的液膜交界处,液膜是弯曲的,弯曲液面压力差的存在加速了气泡间平液膜向边界处的排液作用,使液膜变薄,当液膜厚度低于临界值时破裂。
但当溶液中具有表面活性物质或起泡物质时,泡沫体系不稳定性减弱,液膜修复能力增强,阻止了液膜进一步变薄,使液膜保持一定的厚度。
纯净的液体起泡性只与其表面张力有关,但是由于纯净液体起泡后,液膜之间能相互连接,使形成的气泡不断扩大,最终破裂。
吸收塔溢流原因及预防措施一、吸收塔溢流原因1、液位计显示错误(不准确)。
2、由于管道设计问题,产生虹吸,这个时候只要塔内液位高于溢流液的终点液位,就会连续的溢流。
3、浆液CL含量高。
如果浆液中含的有机物质过多,起泡现象较严重。
4、燃煤燃烧的不充分。
5、石灰石粉中有机物,CL离子含量高。
石灰石含MgO过量,MgO过量不仅影响脱硫效率而且会与硫酸根离子发生反应导致浆液起泡6、锅炉投油。
7、入口粉尘是否超标。
8、工艺水中腐殖酸、泥沙含量高。
9、吸收塔浆液里重金属离子增多引起浆液表面张力增加,从而使浆液表面起泡。
10、浆液循环泵频繁起停操作。
11、氧化风量过大。
二、吸收塔溢流预防措施吸收塔溢流原因很多,应根据不同原因采取相应的措施。
1、加强液位计校验。
是否考虑增加浮球式液位计(浆液和泡沫密度不同),避免泡沫照成虚假液位而形成液位显示错误。
2、加强废水处理。
3、加强锅炉燃烧调整,尽量避免燃煤燃烧的不充分。
4、保障静电除尘各电场正常投入。
5、锅炉投油运行时及时停止FGD系统运行。
6、加强石灰石粉化验及验收,避免石灰石粉中含有有机物,CL离子含量过高。
7、在二至三台循环泵运行情况下停运一台循环泵(要保证脱硫率)。
8、避免浆液循环泵频繁往复起停操作。
9、在浆液泡沫含量大时及时加入消泡剂。
10、在高硫分、高负荷等不利情况下禁止随意开启增压风机挡板,保证浆液品质。
11、及时对溢流管上部排空口进行检查,避免堵塞。
12、减少氧化风量。
13、保证吸收塔集水坑泵和液位计可靠运行。
14、必要时降低吸收塔液位运行(临时措施)。
15、进行吸收塔浆液置换。
吸收塔溢流的预防措施
1、目的:
为了防止吸收塔浆液大量溢流,污染吸收塔周围的环境,确保脱硫系统正常运行。
2、应急处理的程序:
2.1脱硫系统突发吸收塔溢流时,应立即汇报值长,脱硫大班长、专工。
2.2运行当值应按值长、大班长、专工要求果断采取措施,按规程进行。
2.3大班长、专工以及相关人员、立即赶赴现场进行应急处理。
3、现场应急处理措施:
3.1吸收塔在3台或4台循环浆液泵运行有溢流时,且脱硫效率下降时,净烟气SO2超标立即采取以下措施:
3.1.1及时汇报值长停运一台循环浆液泵;
3.1.2根据现场情况向吸收塔内加消泡剂;并启动吸收塔的地坑泵打循环;
3.1.3在三台循环浆液泵运行中,继续有溢流,吸收塔液位继续下降,无法控制的情况下,汇报值长,再停一台循环浆液泵,直到吸收塔不溢流。
3.2当溢流停止后,浆液污染地的环境卫生和设备卫生,
运行当班人员应积极主动冲洗干净。
确应工作量较大时,立即通知保洁人员到场共同清扫地面卫生和设备卫生;
3.3运行班组应及时的调整运行方式,尽快恢复吸收塔的液位和控制脱硫各项环保参数。
4、异常情况分析报告的流程:
4.1当班运行值在下班后,立即将异常情况分析报告发给运行大班长和专工整理后,经运行主管审核后转发给安全专工;
4.2班组异常情况分析报告不直接发往外单位。
5、注意事项:
5.1必须加强个人的防护,不要被过高温度的浆液烫伤;
5.2尽量提高吸收塔浆液品质,控制好吸收塔浆液密度(1.075-1.110t/m³);
5.3调整废水的排放量,控制氯离子在规定范围之内。
脱硫运行 2011.01.06。
吸收塔溢流的原因及处理方法吸收塔为啥会溢流呢?嘿,原因有不少呢!比如吸收塔液位过高,就像水杯装太满会溢出来一样,吸收塔液位高了也会溢流。
还有可能是起泡严重,就像煮泡面的时候泡沫太多会溢锅。
再就是浆液循环量过大,那家伙,就跟水龙头开太大水流得到处都是似的。
那遇到溢流可咋办呢?首先得赶紧降低吸收塔液位呀!这就好比赶紧把水杯里多余的水倒掉。
调整石灰石供浆量,别让浆液太多。
要是起泡严重,就得加消泡剂,就像给泡面锅里加点凉水让泡沫消下去。
减少浆液循环量,别让它像脱缰的野马一样控制不住。
在处理过程中,安全性和稳定性那可太重要啦!要是不小心处理,那可就糟糕啦!可能会导致设备损坏,那不是亏大了嘛!所以一定要小心谨慎,按照步骤来。
吸收塔溢流的处理方法在很多场景都能用得上呢!比如在电厂的脱硫系统中,那可是关键环节。
优势也很明显呀,能保证系统正常运行,减少故障发生,提高生产效率。
我给你讲个实际案例哈。
有个电厂之前吸收塔老是溢流,后来按照正确的方法处理,嘿,问题解决啦!设备运行得稳稳当当,生产效率也提高
了不少呢!
吸收塔溢流必须及时处理,不然会带来很多麻烦。
只要按照正确的方法处理,就能保证系统安全稳定运行。
脱硫吸收塔起泡溢流现象分析在石灰石—石膏法脱硫时,吸收塔浆液溢流是较为常见现象,吸收塔起泡溢流不仅污染环境,同时吸收塔液位的异常会使脱硫运行人员产生误判断而采取不适当的预防和处理措施,导致溢流浆液进入原烟道腐蚀设备危及脱硫设施的安全运行和石膏品质下降等一系列问题。
通过分析在石灰石—石膏法脱硫时起泡溢流的各种原因,提出防止和解决起泡溢流的方法,以保证脱硫系统的正常运行。
标签:石灰石—石膏法脱硫浆液起泡对策引言随着国家节能减排和环境保护制度的的健全和规范,严格控制PM2指标,火力发电厂烟气脱硫系统能否正常投入稳定运行已成为火电企业非常关注的问题,在现有脱硫方法中,石灰石—石膏法因为其技术成熟、效率高等优点而被广泛采用。
吸收塔浆液起泡导致溢流是石灰石—石膏法脱硫运行中常见问题之一。
由于起泡或泡沫导致“虚假液位”,远高于显示液位,再加上氧化空气鼓入、浆液喷淋等因素的综合影响引起液位波动,从而导致吸收塔浆液溢流。
一、吸收塔浆液起泡机理浆液起泡是由于浆液表面作用而生成。
泡沫形成时,气-液界面会随体系能量的增加使液体表面张力增加。
当不溶的气体被液体包围后,就形成一种吸附薄膜,薄膜在表面张力的作用下生成气泡并上升至液面,大量的气泡聚集在一起,就形成了泡沫层。
所以泡沫产生需要三个条件:气体与液体连续、充分的接触促使气泡生成;气体与液体的密度相差非常大,使液体中的气泡上升至液面聚集成泡沫;表面张力小的液体容易起泡。
纯净的浆液起泡后,液膜之间相互连接,形成的气泡不断扩大,最后破裂。
吸收塔浆液起泡,浆液成分复杂,增加了气泡液膜机械强度和厚度,增强了泡沫的稳定性,从而导致浆液起泡溢流现象的产生。
二、吸收塔起泡溢流危害1.浆液起泡严重时,导致石膏排出泵出口压力降低,增加石膏排出难度使吸收塔液位更加难以控制。
吸收塔起泡溢流后其运行液位被迫降低,造成脱硫氧化反应不充分,浆液中亚硫酸盐含量逐渐增高,使浆液品质恶化。
2.吸收塔起泡溢流的浆液如果进入吸收塔区排水坑,再经由地坑泵打到滤液箱经过滤后再进入吸收塔重复使用,就不会造成危害。
吸收塔溢流现象产生的原因及其控制措施摘要:在湿式石灰石-石膏法脱硫的运行实践中,吸收塔溢流现象是许多火电厂经常出现的情况,浆液溢流不但易造成环境污染,还会对运行方式的控制产生不利的影响。
为此结合天津国华盘山发电有限责任公司(简称国华盘电) FGD系统吸收塔浆液溢流的情况,分析其溢流原因及其控制措施。
关键词:吸收塔;浆液溢流;原因;控制0 引言国华盘山发电厂一期工程装有2台俄制容量500MW的超临界机组,为了减少电力行业排污的负担,同时也为火电厂的可持续发展,国华盘电公司采用脱硫效率高的石灰石-石膏湿法烟气脱硫装置来减少二氧化硫的排放。
由于其工艺技术成熟,湿法烟气脱硫装置已成为国内外火电厂烟气脱硫的主导装置。
在脱硫系统运行过程中,吸收塔浆液溢流现象是影响脱硫系统能否安全稳定运行的常见问题之一,并造成污染。
当吸收塔浆液溢流严重时,可能溢入原烟气烟道中,造成浆液倒灌增压风机,造成增压风机严重损毁的恶性事件;溢流浆液也可能进入到GGH换热元件表面,造成换热元件结垢堵塞,加大增压风机出力,严重影响脱硫系统主体设备的正常运行,甚至会影响到锅炉的正常运行。
本文结合国华盘电公司脱硫系统吸收塔溢流的情况,分析了在湿法脱硫系统运行中吸收塔浆液溢流的各种原因,并提出相应的控制方法。
1 吸收塔系统概况国华盘电公司两台500 MW机组各安装一座吸收塔,单塔处理烟气量为2 011 212 m3/h,吸收塔直径为15 m,高度为40·52 m,钢结构圆柱体,内衬玻璃鳞片衬里;上部为吸收塔和除雾器两部分,底部为循环浆池。
每座吸收塔采用4台浆液循环泵、4层喷淋层(每层喷淋层由一台浆液循环泵单独供浆)、2台罗茨氧化风机、2台扰动泵、三层除雾器。
正常情况下,在保证脱硫效率的前提下,通过维持吸收塔液位在一定的稳定范围调整吸收塔进水量和出水量平衡。
按照设计,吸收塔正常液位为14·8 m,液位控制在14·3~15·3 m。
降膜汲取塔显现浆液溢流现象不会处理降膜汲取塔是一种常用的化学工艺设备,广泛应用于石油化工、制药和食德行业等领域。
它通过将气体与液体接触,利用汲取剂对气体中的有害物质进行汲取,达到净化空气的目的。
但是,在使用降膜汲取塔的过程中,有时会发生浆液溢流的现象,假如没有适时处理,将对设备的正常运行和安全生产带来极大的危害。
本文将介绍降膜汲取塔浆液溢流现象的原因以及处理方法。
一、浆液溢流现象的原因1、塔顶进出口压力失衡在降膜汲取塔正常工作过程中,由于进出口管道连接不当或管道内部积存大量杂物等原因,可能会导致塔顶进出口压力失衡,使得液位高度过高,从而导致浆液溢流现象发生。
2、压力波动过大降膜汲取塔的工作原理是利用气体在液面上的冲击力来使得液体流动。
假如气体流量、压力等参数没有依照设计要求设置好,就会使得气体在液体表面产生过大的冲击力,使液位上升过高,从而产生浆液溢流现象。
3、汲取剂流量异常降膜汲取塔中的汲取剂对气体中的污染物进行汲取的过程中,汲取剂的流量要保持稳定。
假如在使用过程中显现汲取剂流量异常的情况,就会导致汲取剂无法适时汲取气体中的污染物,从而导致浆液溢流现象的发生。
二、浆液溢流现象的处理方法1、适时调整进出口压力假如是由于进出口管道连接不当或管道内部积存大量杂物等原因导致塔顶进出口压力失衡,就需要适时查找、清理管道及调整连接方式,以保障塔内的压力平衡。
2、调整气体流量与压力针对气体流量、压力等参数没有依照设计要求设置好的情况,需要重新调整气体流量与压力,确保在合理范围内,并保持相对稳定,以避开过大的冲击力导致液位上升过高。
3、清洗塔内残留物假如发觉塔内存在较多的残留物,就需要适时清洗,以保持汲取剂畅通,避开汲取剂流量异常。
4、检修塔内设备假如以上处理措施无法解决浆液溢流现象,就需要对降膜汲取塔内部设备进行检修,包括塔盘、喷淋器等等,以确保设备的正常运行。
总之,降膜汲取塔的浆液溢流现象对设备的正常运行和安全生产都会带来较大的危害,因此需要实行适时有效的处理措施。
燃煤电厂脱硫吸收塔浆液起泡溢流原因分析与预防摘要:燃煤电厂脱硫吸收塔浆液起泡溢流问题会对燃煤电厂生产系统的脱硫效率和石膏品质产生一定影响,也不利于燃煤电厂的安全生产。
基于此,本文分析燃煤电厂的脱硫吸收塔浆液起泡溢流情况,对其原因进行分析,从而找出预防措施,为保持燃煤电厂脱硫系统的安全稳定运行提供参考。
关键词:脱硫吸收塔;浆液起泡;原因与预防引言在采用石灰石—石膏湿法烟气脱硫工艺的燃煤电厂中,吸收塔浆液起泡溢流是一种较为常见的异常现象,对脱硫系统的稳定性及安全性都有一定不良影响。
不仅会造成脱硫效率下降,还会造成烟道入口结构被腐蚀。
找到浆液起泡的原因并加以预防,有利于燃煤电厂文明生产,提高脱硫效率,提升石膏品质,对促进燃煤电厂的安全生产具有一定的积极意义。
一、燃煤电厂脱硫吸收塔工艺燃煤电厂一般采用石灰石—石膏湿法烟气脱硫工艺,该工艺通常以石灰石浆液作为脱硫吸收剂。
原烟气进入脱硫系统后,通过GGH烟气换热器进行热交换后进入吸收塔。
在吸收塔内,烟气中的SO2与浆液中的CaCO3以及鼓入的氧化空气进行化学反应生成二水石膏,SO2被脱除。
脱硫后的烟气经除雾器去除所携带液滴后排出吸收塔进入GGH,经GGH换热升温后从烟囱排出,其脱硫副产品石膏可用于生产建材产品和水泥缓凝剂等。
二、燃煤电厂脱硫浆液起泡的影响1.当吸收塔内泡沫过多造成溢流时,吸收塔前后设备及管道均会受到一定程度的腐蚀,若长时间存在于腐蚀环境中,会导致管道破损引起烟气泄露,并造成吸收塔前后连接设备的损坏,使脱硫系统无法正常运行。
如溢流浆液通过烟气入口倒灌进入GGH,会导致GGH无法进行正常的烟气换热,严重时会堵塞GGH,增加引风机的工作负荷,导致锅炉无法维持炉膛负压。
2.随着吸收塔内泡沫的不断积累,泡沫层的厚度越来越高,形成“虚假液位”使浆液溢流,造成吸收塔实际液位过低,脱硫氧化反应不足,亚硫酸盐浓度升高的现象,使吸收塔浆液质量大大下降,影响石膏品质。
防止#2吸收塔渗漏的临时措施针对近期#2吸收塔喷淋层区域塔壁及支撑梁出现多次漏浆情况,为保证脱硫系统长周期安全稳定运行特制定本措施:一、造成塔壁渗漏的原因分析:1、#2吸收塔处于长周期运行状态,检修时修补过的玻璃鳞片可能已经有脱落的现象,喷淋浆液对鳞片脱落处的塔壁腐蚀、冲刷磨损造成吸收塔塔壁渗漏。
2、检修时未将各喷淋层的喷嘴内垢物彻底清理(尤其是#24层),喷嘴堵塞后造成喷雾偏斜,对塔壁及支撑梁冲刷增大,长期运行造成吸收塔塔壁及支撑梁渗漏。
3、吸收塔塔壁上的结晶体跌落到吸收塔浆液池内,部分结晶体及其他进入吸收塔的杂物(如:管道衬胶、鳞片等杂物)通过浆液循环泵入口滤网进入到喷淋层,导致喷嘴堵塞;喷嘴堵塞后造成喷雾偏斜,对塔壁及支撑梁冲刷增大,长期运行造成吸收塔塔壁及支撑梁渗漏。
4、吸收塔喷嘴工艺设计存在问题,角度安装存在问题,造成浆液长期冲刷喷淋层支撑梁、塔壁,同时在2011年检修时曾经将每层喷淋层部分喷嘴角度从垂直方向变为有一定角度(约20多个),可能加剧冲刷,喷淋层支撑梁及塔壁局部鳞片冲刷破损而出现渗漏。
5、机组长期运行且入炉煤硫分长期高于设计值,造成吸收塔浆液pH值偏低,对吸收塔塔壁腐蚀增大,造成塔壁渗漏。
6、由于临修、调修时间较短,对#24喷淋层喷嘴、喷淋区域塔壁及支撑梁不能进行全面的检查,存在喷嘴堵塞、塔壁鳞片脱落或起包未处理等情况,机组启动后由于浆液冲刷造成吸收塔塔壁渗漏。
17、由于废水排放量较小,吸收塔浆液氯离子浓度偏高(#2吸收塔氯离子浓度均在10000ppm以上),吸收塔浆液腐蚀性增大,造成塔壁渗漏。
二、防止渗漏的临时措施:1、停运#24浆液循环泵作为紧急备用,#21、#22、#23浆液循环泵两用一备,定期切换运行(尽量避免#22、#23浆液循环泵长期同时运行)。
2、在浆液循环泵因吸收塔塔壁、喷淋层渗漏停运期间,热工人员做好停运设备的运行信号及烟气排放参数的修正工作(需经环保主管人员同意),保证环保检查时的顺利通过。
吸收塔溢流原因及预防措施
一、吸收塔溢流原因
1、液位计显示错误(不准确)。
2、由于管道设计问题,产生虹吸,这个时候只要塔内液位高于溢流液的终点液位,就会连续的溢流。
3、浆液CL含量高。
如果浆液中含的有机物质过多,起泡现象较严重。
4、燃煤燃烧的不充分。
5、石灰石粉中有机物,CL离子含量高。
石灰石含MgO过量,MgO过量不仅影响脱硫效率而且会与硫酸根离子发生反应导致浆液起泡
6、锅炉投油。
7、入口粉尘是否超标。
8、工艺水中腐殖酸、泥沙含量高。
9、吸收塔浆液里重金属离子增多引起浆液表面张力增加,从而使浆液表面起泡。
10、浆液循环泵频繁起停操作。
11、氧化风量过大。
二、吸收塔溢流预防措施
吸收塔溢流原因很多,应根据不同原因采取相应的措施。
1、加强液位计校验。
是否考虑增加浮球式液位计(浆液和泡沫密度不同),避免泡沫照成虚假液位而形成液位显示错误。
2、加强废水处理。
3、加强锅炉燃烧调整,尽量避免燃煤燃烧的不充分。
4、保障静电除尘各电场正常投入。
5、锅炉投油运行时及时停止FGD系统运行。
6、加强石灰石粉化验及验收,避免石灰石粉中含有有机物,CL离子含量过高。
7、在二至三台循环泵运行情况下停运一台循环泵(要保证脱硫率)。
8、避免浆液循环泵频繁往复起停操作。
9、在浆液泡沫含量大时及时加入消泡剂。
10、在高硫分、高负荷等不利情况下禁止随意开启增压风机挡板,保证浆液品质。
11、及时对溢流管上部排空口进行检查,避免堵塞。
12、减少氧化风量。
13、保证吸收塔集水坑泵和液位计可靠运行。
14、必要时降低吸收塔液位运行(临时措施)。
15、进行吸收塔浆液置换。