(整理)求极值与最值的方法
- 格式:doc
- 大小:633.50 KB
- 文档页数:14
求极值与最值的方法1 引言在当前的数学教育中,求初等函数的极值与最值占有比较重要的位置,由于其解法灵活,综合性强,能力要求高,故而解决这类问题,要掌握各数学分支知识,能综合运用各种数学技能,灵活选择合理的解题方法。
下面我们将要介绍多种求初等函数的极值和最值的方法。
2 求函数极值的方法极值定义:设函数在的某邻域内有定义,且对此邻域内任一点()f x 0x x,均有,则称是函数的一个极大值;同样如果0()x x ≠0()()f x f x <0()f x ()f x 对此邻域内任一点,均有,则称是函数的一个x 0()x x ≠0()()f x f x >0()f x ()f x 极小值。
函数的极大值与极小值统称为函数的极值。
使函数取得极值的点,0x 称为极值点。
2.1 求导法判别方法一:设在点连续,在点的某一空心邻域内可导。
当 x 由小增大经过()f x 0x 0x 时,如果:0x (1)由正变负,那么是极大值点;'()f x 0x (2)由负变正,那么是极小值点;'()f x 0x (3)不变号,那么不是极值点。
'()f x 0x 判别方法二:设在点处具有二阶导数,且,。
()f x 0x '()0f x =''()0f x =(1)如果,则在点取得极大值;''()0f x <()f x 0x(2)如果,则在点取得极小值。
''()0f x >()f x 0x 判别方法三:设在点有n 阶导数,且()f x 0x 0)()()(0)1(00===''='-x f x f x f n ,则:0)(0)(≠x f n (1)当为偶数时,在取极值,有时,在取)(x f 0x 0)(0)(<x f n )(x f 0x 极大值,若时,在取极小值。
0)(0)(>x f n )(x f 0x (2)当为奇数时,在不取极值。
函数的极值与最值的求解函数的极值与最值是数学中非常重要的概念,它们在解决实际问题和优化函数方面起着关键作用。
在本文中,我们将探讨函数的极值与最值的求解方法和相关概念。
一、函数的极值与最值在开始详细讨论如何求解函数的极值与最值之前,我们先了解一下函数的极值与最值的定义。
函数的极值分为极大值和极小值。
如果在某个区间上,函数在一个点处的函数值大于其他任意点处的函数值,则称该点为这个区间的极大值点。
同样地,如果在某个区间上,函数在一个点处的函数值小于其他任意点处的函数值,则称该点为这个区间的极小值点。
而函数在整个定义域上的最大值和最小值就是函数的最大值和最小值。
二、求解函数的极值与最值下面,我们将介绍一些经典的方法和定理来求解函数的极值与最值。
1. 导数法导数法是函数求解极值与最值最常用的方法之一。
我们可以通过对函数求导,并将导数为零的解作为潜在的极值点进行分析。
当函数的导数在某个点的左侧变号为正,右侧变号为负时,该点为函数的极大值点;当函数的导数在某个点的左侧变号为负,右侧变号为正时,该点为函数的极小值点。
2. 集合论方法集合论方法是另一种常用的求解函数极值与最值的方法。
通过对函数定义域的划分,可以将函数值的范围进一步限定。
例如,对于定义在闭区间上的函数,我们可以通过计算函数在区间端点处的函数值,再加上函数的极值点,从而得到函数在整个区间上的极值与最值。
3. 极限方法极限法是一种基于函数极限概念的求解函数极值与最值的方法。
通过分别求解函数在定义域的左右极限,可以得到函数在定义域边界处的极值与最值。
4. 辅助线法辅助线法是一种直观、简单的方法。
通过画出函数图像,并对图像进行分析,可以快速确定函数的极值与最值。
在图像上找出函数的极大值和极小值点,然后计算对应的函数值,便可得到函数的极值和最值。
综上所述,函数的极值与最值的求解可以通过导数法、集合论方法、极限方法和辅助线法等进行。
不同的方法在不同的场景中具有不同的优势和适用性。
第22讲利用导数研究函数的极值和最值【基础知识回顾】1、函数的极值(1)函数的极小值:函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x =a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x =b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极小值点、极大值点统称为极值点,极大值和极小值统称为极值.2、函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.3、常用结论1.若函数f(x)的图象连续不断,则f(x)在[a,b]上一定有最值.2.若函数f(x)在[a,b]上是单调函数,则f(x)一定在区间端点处取得最值.3.若函数f(x)在区间(a,b)内只有一个极值点,则相应的极值点一定是函数的最值点.1、已知函数f(x)的定义域为(a,b),导函数f′(x)在(a,b)上的图象如图所示,则函数f(x)在(a,b)上的极大值点的个数为()A.1B.2C.3D.4【答案】B【解析】由函数极值的定义和导函数的图象可知,f′(x)在(a,b)上与x轴的交点个数为4,但是在原点附近的导数值恒大于零,故x=0不是函数f(x)的极值点.其余的3个交点都是极值点,其中有2个点满足其附近的导数值左正右负,故极大值点有2个.2、已知a为函数f(x)=x3-12x的极小值点,则a等于()A.-4B.-2C.4D.2【答案】D【解析】由题意得f′(x)=3x2-12,由f′(x)=0得x=±2,当x∈(-∞,-2)时,f′(x)>0,函数f(x)单调递增,当x ∈(-2,2)时,f ′(x )<0,函数f (x )单调递减,当x ∈(2,+∞)时,f ′(x )>0,函数f (x )单调递增,所以a =2.3、.函数f (x )=e xx 2-3在[2,+∞)上的最小值为( )A.e 36B.e2C.e 34D.2e【答案】 A【解析】 依题意f ′(x )=e x(x 2-3)2(x 2-2x -3) =e x(x 2-3)2(x -3)(x +1),故函数在区间(2,3)上单调递减,在区间(3,+∞)上单调递增,故函数在x =3处取得极小值也即是最小值,且最小值为f (3)=e 332-3=e 36.4、函数f (x )的定义域为R ,导函数f ′(x )的图象如图所示,则函数f (x )( )A .无极大值点、有四个极小值点B .有三个极大值点、一个极小值点C .有两个极大值点、两个极小值点D .有四个极大值点、无极小值点 【答案】C【解析】 设f ′(x )的图象与x 轴的4个交点的横坐标从左至右依次为x 1,x 2,x 3,x 4. 当x <x 1时,f ′(x )>0,f (x )为增函数,当x 1<x <x 2时,f ′(x )<0,f (x )为减函数, 则x =x 1为极大值点,同理,x =x 3为极大值点,x =x 2,x =x 4为极小值点,故选C. 5、设函数f (x )=2x +ln x ,则( )A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点 【答案】D【解析】 因为f (x )=2x +ln x ,所以f ′(x )=-2x 2+1x =x -2x2,x >0.当x >2时,f ′(x )>0,f (x )为增函数;当0<x <2时,f ′(x )<0,f (x )为减函数,所以x =2为f (x )的极小值点,故选D.考向一 利用导数研究函数的极值例1、已知函数()32331(R,0)f x ax x a a a=-+-∈≠,求函数()f x 的极大值与极小值.【解析】:由题设知a ≠0,f ′(x )=3ax 2-6x =3ax 2x a ⎛⎫- ⎪⎝⎭. 令f ′(x )=0得x =0或2a.当a >0时,随着x 的变化,f ′(x )与f (x )的变化情况如下:↗↗↗↗f (x )极大值=f (0)=1-3a,f (x )极小值=2f a ⎛⎫⎪⎝⎭=-4a 2-3a +1.当a <0时,随着x 的变化,f ′(x )与f (x )的变化情况如下:↗↗↗↗f (x )极大值=f (0)=1-3a,f (x )极小值=f a ⎛⎫⎪⎝⎭=-4a 2-3a +1. 综上,f (x )极大值=f (0)=1-3a,f (x )极小值=2f a ⎛⎫⎪⎝⎭=-4a 2-3a +1. 变式1、已知函数f (x )=x -1+ae x (a ∈R ,e 为自然对数的底数).(1)若曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,求a 的值; (2)求函数f (x )的极值.【解析】(1)因为f (x )=x -1+ae x ,所以f ′(x )=1-aex ,又因为曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,所以f ′(1)=0, 即1-ae1=0,所以a =e.(2)由(1)知f ′(x )=1-ae x ,当a ≤0时,f ′(x )>0,所以f (x )在(-∞,+∞)上单调递增, 因此f (x )无极大值与极小值; 当a >0时,令f ′(x )>0,则x >ln a , 所以f (x )在(ln a ,+∞)上单调递增, 令f ′(x )<0,则x <ln a ,所以f (x )在(-∞,ln a )上单调递减, 故f (x )在x =ln a 处取得极小值, 且f (ln a )=ln a ,但是无极大值,综上,当a ≤0时,f (x )无极大值与极小值;当a >0时,f (x )在x =ln a 处取得极小值ln a ,但是无极大值.变式2、 (1)若函数f (x )=(x 2-ax -1)e x 的极小值点是x =1,则f (x )的极大值为( ) A .-e B .-2e 2 C .5e -2 D .-2【答案】 C【解析】 由题意,函数f (x )=(x 2-ax -1)e x , 可得f ′(x )=e x [x 2+(2-a )x -1-a ], 所以f ′(1)=(2-2a )e =0, 解得a =1,故f (x )=(x 2-x -1)e x , 可得f ′(x )=e x (x +2)(x -1),则f (x )在(-∞,-2)上单调递增,在(-2,1)上单调递减,在(1,+∞)上单调递增, 所以f (x )的极大值为f (-2)=5e -2.(2)函数f (x )=ln x +12x 2-ax (x >0)在⎣⎡⎦⎤12,3上有且仅有一个极值点,则实数a 的取值范围是( ) A.⎝⎛⎭⎫52,103 B.⎣⎡⎭⎫52,103 C.⎝⎛⎦⎤52,103 D.⎣⎡⎦⎤2,103 【答案】 B【解析】 ∵f (x )=ln x +12x 2-ax (x >0),∴f ′(x )=1x+x -a ,∴y =f ′(x )在⎣⎡⎦⎤12,3上只有一个变号零点.令f ′(x )=1x +x -a =0,得a =1x +x .设g (x )=1x+x ,则g (x )在⎣⎡⎦⎤12,1上单调递减,在[1,3]上单调递增, ∴g (x )min =g (1)=2, 又g ⎝⎛⎭⎫12=52,g (3)=103, ∴当52≤a <103时,y =f ′(x )在⎣⎡⎦⎤12,3上只有一个变号零点. ∴实数a 的取值范围为⎣⎡⎭⎫52,103.方法总结:(1)求函数()f x 极值的步骤: ①确定函数的定义域; ②求导数()f x ';③解方程()0f x '=,求出函数定义域内的所有根;④列表检验在()0f x '=的根0x 左右两侧值的符号,如果左正右负,那么()f x 在0x 处取极大值,如果左负右正,那么()f x 在0x 处取极小值.(2)若函数()y f x =在区间内有极值,那么()y f x =在(),a b 内绝不是单调函数,即在某区间上单调函数没有极值.考向二 利用导数研究函数的最值例2、(2020届山东省潍坊市高三上期中)已知函数. (1)当时,求曲线在点处的切线方程;(2)若函数处有极小值,求函数在区间上的最大值.【答案】(1);(2). 【解析】(1)当时,,, 所以,又,所以曲线在点处切线方程为,即.(2)因为,因为函数处有极小值,所以,()32112f x x x ax =-++2a =()y f x =()()0,0f ()1f x x =在()f x 32,2⎡⎤-⎢⎥⎣⎦210x y -+=49272a =321()212f x x x x =-++2()32f x x x '=-+(0)2f '=(0)1f =()y f x =()()0,0f 12y x -=210x y -+=2()3f x x x a '=-+()1f x x =在(1)202f a a '=+=⇒=-所以 由,得或, 当或时,, 当时,, 所以在,上是增函数,在上是减函数, 因为,, 所以的最大值为. 变式1、已知函数f (x )=3-2xx 2+a.(1)若a =0,求y =f (x )在(1,f (1))处的切线方程;(2)若函数f (x )在x =-1处取得极值,求f (x )的单调区间,以及最大值和最小值. 【解析】(1)当a =0时,f (x )=3-2xx 2,则f ′(x )=x 2·(-2)-(3-2x )·2xx 4=2x -6x 3. 当x =1时,f (1)=1,f ′(1)=-4, 故y =f (x )在(1,f (1))处的切线方程为 y -1=-4(x -1), 整理得4x +y -5=0. (2)已知函数f (x )=3-2xx 2+a,则f ′(x )=(x 2+a )·(-2)-(3-2x )·2x(x 2+a )2=2(x 2-3x -a )(x 2+a )2.若函数f (x )在x =-1处取得极值, 则f ′(-1)=0,即2(4-a )(a +1)2=0,解得a =4.经检验,当a =4时,x =-1为函数f (x )的极大值,符合题意.2()32f x x x '=--()0f x '=23x =-1x =23x <-1x >()0f x '>213x -<<()0f x '<()f x 22,3⎛⎫--⎪⎝⎭31,2⎛⎫ ⎪⎝⎭2,13⎛⎫- ⎪⎝⎭249327f ⎛⎫-= ⎪⎝⎭3124f ⎛⎫= ⎪⎝⎭()f x 249327f ⎛⎫-=⎪⎝⎭此时f (x )=3-2x x 2+4,其定义域为R ,f ′(x )=2(x -4)(x +1)(x 2+4)2,令f ′(x )=0,解得x 1=-1,x 2=4. f (x ),f ′(x )随x 的变化趋势如下表:故函数f (x )极大值为f (-1)=1,极小值为f (4)=-14.又因为x <32时,f (x )>0;x >32时,f (x )<0,所以函数f (x )的最大值为f (-1)=1, 最小值为f (4)=-14.变式2、 已知函数f (x )=ax +ln x ,其中a 为常数. (1)当a =-1时,求f (x )的最大值;(2)若f (x )在区间(0,e]上的最大值为-3,求a 的值. 【解析】 (1)易知f (x )的定义域为(0,+∞), 当a =-1时,f (x )=-x +ln x , f ′(x )=-1+1x =1-xx ,令f ′(x )=0,得x =1. 当0<x <1时,f ′(x )>0; 当x >1时,f ′(x )<0.∴f (x )在(0,1)上单调递增,在(1,+∞)上单调递减. ∴f (x )max =f (1)=-1.∴当a =-1时,函数f (x )在(0,+∞)上的最大值为-1. (2)f ′(x )=a +1x ,x ∈(0,e],1x∈⎣⎡⎭⎫1e ,+∞. ①若a ≥-1e ,则f ′(x )≥0,从而f (x )在(0,e]上单调递增,∴f (x )max =f (e)=a e +1≥0,不符合题意.②若a <-1e ,令f ′(x )>0得a +1x >0,结合x ∈(0,e],解得0<x <-1a ;令f ′(x )<0得a +1x <0,结合x ∈(0,e],解得-1a<x ≤e.从而f (x )在⎝⎛⎭⎫0,-1a 上单调递增, 在⎝⎛⎦⎤-1a ,e 上单调递减, ∴f (x )max =f ⎝⎛⎭⎫-1a =-1+ln ⎝⎛⎭⎫-1a . 令-1+ln ⎝⎛⎭⎫-1a =-3,得ln ⎝⎛⎭⎫-1a =-2, 即a =-e 2.∵-e 2<-1e ,∴a =-e 2为所求.故实数a 的值为-e 2.方法总结:1.利用导数求函数f(x)在[a ,b]上的最值的一般步骤: (1)求函数在(a ,b)内的极值.(2)求函数在区间端点处的函数值f(a),f(b).(3)将函数f(x)的各极值与f(a),f(b)比较,其中最大的一个为最大值,最小的一个为最小值. 2.求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值.考向三 极值(最值)的综合性问题例3、已知函数()323(,)f x ax bx x a b R =+-∈在1x =-处取得极大值为2. (1) 求函数()f x 的解析式;(2) 若对于区间[]2,2-上任意两个自变量的值12,x x 都有()()12f x f x c -≤,求实数c 的最小值. 【解析】 :(1)f′(x)=3ax 2+2bx -3.由题意得()12(1)0f f ⎧-=⎪⎨'-=⎪⎩,即⎩⎪⎨⎪⎧-a +b +3=23a -2b -3=0), 解得⎩⎪⎨⎪⎧a =1b =0),经检验成立,所以f(x)=x 3-3x.(2) 令f′(x)=0,即3x 2-3=0.得x =±1. 列表如下:因为max min 间[-2,2]上任意两个自变量的值x 1,x 2,都有|f(x 1)-f(x 2)|≤|f(x)max -f(x)min |=4,所以c≥4.所以c 的最小值为4.变式1、设函数f (x )=x cos x 的一个极值点为m ,则tan ⎝⎛⎭⎫m +π4等于( ) A.m -1m +1 B.m +1m -1 C.1-m m +1 D.m +11-m【答案】 B 【解析】由f ′(x )=cos x -x sin x =0, 得tan x =1x ,所以tan m =1m,故tan ⎝⎛⎭⎫m +π4=1+tan m 1-tan m =m +1m -1. 变式2、已知a ,b ∈R ,若x =a 不是函数f (x )=(x -a )2(x -b )·(e x -1-1)的极小值点,则下列选项符合的是( ) A .1≤b <a B .b <a ≤1 C .a <1≤b D .a <b ≤1【答案】 B 【解析】令f (x )=(x -a )2(x -b )(e x -1-1)=0, 得x 1=a ,x 2=b ,x 3=1.下面利用数轴标根法画出f (x )的草图,借助图象对选项A ,B ,C ,D 逐一分析. 对选项A ,若1≤b <a ,由图可知x =a 是f (x )的极小值点,不符合题意; 对选项B ,若b <a ≤1,由图可知x =a 不是f (x )的极小值点,符合题意; 对选项C ,若a <1≤b ,由图可知x =a 是f (x )的极小值点,不符合题意; 对选项D ,若a <b ≤1,由图可知x =a 是f (x )的极小值点,不符合题意.方法总结: 1. 当面对不等式恒成立(有解)问题时,往往是转化成函数利用导数求最值;2. 当面对多次求导时,一定要清楚每次求导的目的是什么.1、若2x =-是函数21()(1)ex f x x ax -=+-的极值点,则()f x 的极小值为A .1-B .32e -- C .35e - D .1【答案】A【解析】由题可得12121()(2)e (1)e [(2)1]e x x x f x x a x ax x a x a ---'=+++-=+++-,因为(2)0f '-=,所以1a =-,21()(1)e x f x x x -=--,故21()(2)ex f x x x -'=+-,令()0f x '>,解得2x <-或1x >,所以()f x 在(,2),(1,)-∞-+∞上单调递增,在(2,1)-上单调递减, 所以()f x 的极小值为11()(111)e 11f -=--=-.故选A .2、已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________. 【答案】−3√32【解析】f′(x)=2cosx +2cos2x =4cos 2x +2cosx −2=4(cosx +1)(cosx −12),所以当cosx <12时函数单调递减,当cosx >12时函数单调递增,从而得到函数的递减区间为()5ππ2π,2π33k k k ⎡⎤--∈⎢⎥⎣⎦Z , 函数的递增区间为()ππ2π,2π33k k k ⎡⎤-+∈⎢⎥⎣⎦Z , 所以当π2π,3x k k =-∈Z 时,函数f (x )取得最小值, 此时sinx =−√32,sin2x =−√32, 所以f (x )min =2×(−√32)−√32=−3√32, 故答案是−3√32. 3、(2021·广东高三月考)已知函数()322f x x ax b =-+,若()f x 区间[]0,1的最小值为1-且最大值为1,则a 的值可以是( )A .0B .4C .D .【答案】AB【解析】()26263a f x x ax x x ⎛⎫'=-=- ⎪⎝⎭,令()603a f x x x '⎛⎫=-= ⎪⎝⎭,解得0x =或3a .①当0a ≤时,可知()f x 在[]0,1上单调递增,所以()f x 在区间[]0,1的最小值为()0f b =,最大值为()12f a b =-+. 此时a ,b 满足题设条件当且仅当1x =-,21a b -+=, 即0a =,1b =-.故A 正确.②当3a ≥时,可知()f x 在[]0,1上单调递减,所以()f x 在区间[]0,1的最大值为()0f b =,最小值为()12f a b =-+.此时a ,b 满足题设条件当且仅当21a b -+=-,1b =,即4a =,1b =.故B 正确.③当0<<3a 时,可知()f x 在[]0,1的最小值为3327a a f b ⎛⎫=-+ ⎪⎝⎭, 最大值为b 或2a b -+或3127a b -+=-,1b =,则a =,与0<<3a 矛盾. 若3127a b -+=-,21a b -+=,则a =a =-0a =,与0<<3a 矛盾.故C 、D 错误.故选:AB4、(2021·广东宝安·高三月考)(多选题)已知函数()e e x x f x -=-,()e e x x g x -=+,则以下结论错误的是( )A .任意的1x ,2x ∈R 且12x x ≠,都有()()12120f x f x x x -<- B .任意的1x ,2x ∈R 且12x x ≠,都有()()12120g x g x x x -<- C .()f x 有最小值,无最大值D .()g x 有最小值,无最大值【答案】ABC【解析】对A, ()e e x x f x -=-中e x y =为增函数,e x y -=为减函数.故()e e x x f x -=-为增函数.故任意的1x ,2x ∈R 且12x x ≠,都有()()12120f x f x x x ->-.故A 错误.对B,易得反例11(1)e e g -=+,11(1)(1)e e g g --=+=.故()()12120g x g x x x -<-不成立.故B 错误. 对C, 当因为()e e x x f x -=-为增函数,且当x →-∞时()f x →-∞,当x →+∞时()f x →+∞.故()f x 无最小值,无最大值.故C 错误.对D, ()e e 2x x g x -=+≥=,当且仅当e e =x x -即0x =时等号成立. 当x →+∞时()g x →+∞.故()g x 有最小值,无最大值.故选:ABC5、(2020全国Ⅰ理21)已知函数()2e xf x ax x =+-. (1)当1a =时,讨论()f x 的单调性;(2)当0x ≥时,()3112f x x ≥+,求a 的取值范围.【解析】(1)当1a =时,()2x x x e f x =+-,()'21x f x e x =+-,由于()''20x f x e =+>,故()'f x 单调递增,注意到()'00f =,故:当(),0x ∈-∞时,()()'0,f x f x <单调递减;当()0,x ∈+∞时,()()'0,f x f x >单调递增.(2)由()3112f x x ≥+得,23112x e ax x x +-+,其中0x ≥, ①.当x=0时,不等式为:11≥,显然成立,符合题意;②.当0x >时,分离参数a 得,32112x e x x a x ----, 记()32112xe x x g x x ---=-,()()231212'x x e x x g x x ⎛⎫---- ⎪⎝⎭=-, 令()()21102x e x x h x x ---≥=,则()'1x h x e x =--,()''10x h x e =-≥, 故()'h x 单调递增,()()''00h x h ≥=,故函数()h x 单调递增,()()00h x h ≥=,由()0h x ≥可得:21102x e x x ---恒成立,故当()0,2x ∈时,()'0g x >,()g x 单调递增; 当()2,x ∈+∞时,()'0g x <,()g x 单调递减;因此,()()2max 724e g x g -⎡⎤==⎣⎦.综上可得,实数a 的取值范围是27,4e ⎡⎫-+∞⎪⎢⎣⎭. 6、(2020全国Ⅱ文21)已知函数()2ln 1f x x =+.(1)若()2f x x c ≤+,求c 的取值范围;(2)设0a >,讨论函数()()()f x f ag x x a -=-的单调性.【解析】(1)函数()f x 的定义域为:(0,)+∞,()2()202ln 120()f x x c f x x c x x c ≤+⇒--≤⇒+--≤*,设()2ln 12(0)h x x x c x =+-->,则有22(1)()2x h x x x -'=-=, 当1x >时,()0,()h x h x '<单调递减;当01x <<时,()0,()h x h x '>单调递增,∴当1x =时,函数()h x 有最大值,即max ()(1)2ln11211h x h c c ==+-⨯-=--,要想不等式()*在(0,)+∞上恒成立,只需max ()0101h x c c ≤⇒--≤⇒≥-.(2)2ln 1(2ln 1)2(ln ln )()(0x a x a g x x x a x a+---==>--且)x a ≠,因此22(ln ln )()()x a x x x a g x x x a --+'=-,设()2(ln ln )m x x a x x x a =--+,则有()2(ln ln )m x a x '=-,当x a >时,ln ln x a >,∴()0m x '<,()m x 单调递减,因此有()()0m x m a <=,即 ()0g x '<,∴()g x 单调递减;当0x a <<时,ln ln x a <,∴()0m x '>,()m x 单调递增,因此有()()0m x m a <=,即()0g x '<,∴()g x 单调递减,∴函数()g x 在区间(0,)a 和(,)a +∞上单调递减,没有递增区间.。
函数的极值与最值问题函数的极值与最值问题是微积分中的重要概念,涉及到求解函数在某一区间内的最大值或最小值的问题。
本文将介绍极值与最值的定义、求解方法以及相关应用。
一、极值的定义在数学中,给定一个函数f(x),如果存在一个实数a,使得对于a点的某一邻域内的任意x值,都有f(x) ≤ f(a),则称f(x)在点a处取得极大值。
同理,如果存在一个实数a,使得对于a点的某一邻域内的任意x 值,都有f(x) ≥ f(a),则称f(x)在点a处取得极小值。
二、求解极值的方法1. 寻找函数的极值需要先求出函数的导数。
对于给定的函数f(x),可以通过求导的方法得到其导函数f'(x)。
2. 将导函数f'(x)等于零,解方程求出所有满足条件的x值,即为函数的临界点。
3. 确定临界点是否为极值点,可以通过二阶导数来判断。
如果二阶导数f''(x)在该点处大于零,则该点为极小值点;如果二阶导数小于零,则该点为极大值点。
4. 对于临界点以及区间的边界点,将其代入原函数f(x),求出对应的y值,即为函数在各个极值点处的极值。
三、最值的定义函数的最大值是指函数f(x)在给定区间内取得的最大的y值,而函数的最小值则是在给定区间内取得的最小的y值。
四、求解最值的方法1. 给定一个函数f(x),可以通过求解极值的方法来求得函数在给定区间内的最大值或最小值。
2. 首先,根据前述方法求得函数的极值点。
3. 然后,将求得的极值点对应的x值代入原函数f(x),求出对应的y值。
4. 比较各个极值点及区间的边界点处的y值,即可得到函数在给定区间内的最大值和最小值。
五、应用举例函数的极值与最值问题在实际应用中有着广泛的应用,以下举例介绍其中两个常见的应用场景。
1. 最大利润问题假设有一家公司的成本函数为C(x),收入函数为R(x),利润函数为P(x) = R(x) - C(x)。
公司的目标是在一定生产规模内,求得利润最大值。
求极值的三种方法一、直接法。
先判断函数的单调性,若函数在定义域内为单调函数,则最大值为极大值,最小值为极小值二、导数法(1)、求导数f'(x);(2)、求方程f'(x)=0的根;(3)、检查f'(x)在方程的左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正那么f(x)在这个根处取得极小值。
举例如下图:该函数在f'(x)大于0,f'(x)小于0,在f'(x)=0时,取极大值。
同理f'(x)小于0,f'(x)大于0时,在f'(x)=0时取极小值。
扩展资料:寻求函数整个定义域上的最大值和最小值是数学优化的目标。
如果函数在闭合区间上是连续的,则通过极值定理存在整个定义域上的最大值和最小值。
此外,整个定义域上最大值(或最小值)必须是域内部的局部最大值(或最小值),或必须位于域的边界上。
因此,寻找整个定义域上最大值(或最小值)的方法是查看内部的所有局部最大值(或最小值),并且还查看边界上的点的最大值(或最小值),并且取最大值或最小的)一个。
1、求极大极小值步骤:求导数f'(x);求方程f'(x)=0的根;检查f'(x)在方程的左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正那么f(x)在这个根处取得极小值。
f'(x)无意义的点也要讨论。
即可先求出f'(x)=0的根和f'(x)无意义的点,再按定义去判别。
2、求极值点步骤:求出f'(x)=0,f"(x)≠0的x值;用极值的定义(半径无限小的邻域f(x)值比该点都小或都大的点为极值点),讨论f(x)的间断点。
上述所有点的集合即为极值点集合。
扩展资料:定义:若函数f(x)在x₀的一个邻域D有定义,且对D中除x₀的所有点,都有f(x)<f(x₀),则称f(x₀)是函数f(x)的一个极大值。
求极值的方法与技巧求极值(即最大值或最小值)是数学中的一个重要问题,对于实际问题的解决非常有帮助。
在解决求极值问题时,有几种方法和技巧可以帮助我们找到最优解。
一、导数法导数法是求取函数极值的一种重要方法。
它的基本思想是通过求取函数的导数来研究函数的增减性,从而得到函数的最值。
1.确定函数的定义域:首先需要确定函数的自变量范围,即函数是定义在哪个区间上的。
2.求导数:对于给定的函数,求取其导函数。
3.找到导数为零的点:求解导函数等于零的方程,在这些点处函数的导数为零,也就是函数的极值点。
4.检查极值:计算极值点的函数值,比较得出最大值或最小值。
例如,对于函数f(x)=x^2-4x+3,我们可以通过求导数的方法来求取极值。
首先求导函数f'(x)=2x-4,然后将导函数等于零,得到方程2x-4=0,解出x=2接下来,将x=2代入原函数中,得到f(2)=(2)^2-4(2)+3=-1所以,函数f(x)的极小值为-1,当且仅当x=2时。
二、二次型矩阵法对于二次型矩阵,我们可以通过计算其特征值和特征向量来求取极值。
1.构造二次型矩阵:将函数转化为一个二次型矩阵,即通过展开函数,并将其写成矩阵的形式。
2.求取特征值和特征向量:计算二次型矩阵的特征值和特征向量。
3.判断极值:根据特征值的正负情况来判断函数的极值。
如果特征值都大于零,那么函数有一个极小值。
如果特征值都小于零,那么函数有一个极大值。
如果特征值既有正数又有负数,那么函数没有极值。
三、拉格朗日乘数法拉格朗日乘数法是一种求解约束问题的极值方法,可用于求解带有约束条件的极值问题。
1.确定函数和约束条件:首先需要将函数和约束条件写出来。
2.构造拉格朗日函数:将约束条件乘以一个拉格朗日乘子,并与原函数相加,形成一个新的函数。
3.求取梯度:对构造的拉格朗日函数求取梯度,得到等于零的方程组。
4.解方程组:求解方程组,得到自变量的值。
5.检查极值:将求得的自变量代入原函数中,求取函数的极值。
微讲座(四)——求极值的六种方法从近几年高考物理试题来看,考查极值问题的频率越来越高,由于这类试题既能考查考生对知识的理解能力、推理能力,又能考查应用数学知识解决问题的能力,因此必将受到高考命题者的青睐.下面介绍极值问题的六种求解方法.一、临界条件法对物理情景和物理过程进行分析,利用临界条件和关系建立方程组求解,这是高中物理中最常用的方法.某高速公路同一直线车道上有同向匀速行驶的轿车和货车,其速度大小分别为v 1=30 m/s ,v 2=10 m/s ,轿车在与货车距离x 0=25 m 时才发现前方有货车,此时轿车只是立即刹车,两车可视为质点.试通过计算分析回答下列问题:(1)若轿车刹车时货车以v 2匀速行驶,要使两车不相撞,轿车刹车的加速度大小至少为多少?(2)若该轿车刹车的最大加速度为a 1=6 m/s 2,轿车在刹车的同时给货车发信号,货车司机经t 0=2 s 收到信号并立即以加速度大小a 2=2 m/s 2加速前进,两车会不会相撞?[解析] (1)两车恰好不相撞的条件是轿车追上货车时两车速度相等,即 v 1-at 1=v 2①v 1t 1-12at 21=v 2t 1+x 0②联立①②代入数据解得:a =8 m/s 2. (2)假设经过时间t 后,两车的速度相等 即v 1-a 1t =v 2+a 2(t -t 0)此时轿车前进的距离x 1=v 1t -12a 1t 2货车前进的距离x 2=v 2t 0+v 2(t -t 0)+12a 2(t -t 0)2代入数据解得:x 1=63 m ,x 2=31 m 因为:x 1-x 2=32 m>x 0,两车会相撞. [答案] (1)8 m/s 2 (2)会相撞 二、二次函数极值法 对于二次函数y =ax 2+bx +c ,当a >0时,y 有最小值y min =4ac -b 24a,当a <0时,y 有最大值y max =4ac -b 24a.也可以采取配方法求解.一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以a =3 m/s 2的加速度开始行驶,恰在这一时刻一辆自行车以v 自=6 m/s 的速度匀速驶来,从旁边超过汽车.试求:汽车从路口开动后,在追上自行车之前经过多长时间两车相距最远?此时距离是多少?[解析] 设汽车在追上自行车之前经过时间t 两车相距最远,则 自行车的位移:x 自=v 自t汽车的位移:x 汽=12at 2则t 时刻两车的距离Δx =v 自t -12at 2代入数据得:Δx =-32t 2+6t当t =-62×⎝⎛⎭⎫-32 s =2 s 时,Δx 有最大值Δx max =0-624×⎝⎛⎭⎫-32 m =6 m对Δx =-32t 2+6t 也可以用配方法求解:Δx =6-32(t -2)2显然,当t =2 s 时,Δx 最大为6 m. (说明:此题也可用临界法求解) [答案] 见解析 三、三角函数法某些物理量之间存在着三角函数关系,可根据三角函数知识求解极值.如图所示,一质量m =0.4 kg 的小物块,以v 0=2 m/s 的初速度,在与斜面成某一夹角的拉力F 作用下,沿斜面向上做匀加速运动,经t =2 s 的时间物块由A 点运动到B 点,A 、B 之间的距离L =10 m .已知斜面倾角θ=30°,物块与斜面之间的动摩擦因数μ=33.重力加速度g 取10 m/s 2.(1)求物块加速度的大小及到达B 点时速度的大小;(2)拉力F 与斜面的夹角多大时,拉力F 最小?拉力F 的最小值是多少?[解析] (1)设物块加速度的大小为a ,到达B 点时速度的大小为v ,由运动学公式得:L =v 0t +12at 2①v =v 0+at ②联立①②式,代入数据解得:a =3 m/s 2,v =8 m/s.(2)设物块所受支持力为F N ,所受摩擦力为F f ,拉力与斜面之间的夹角为α,受力分析如图所示,由牛顿第二定律得:F cos α-mg sin θ-F f =ma ③F sin α+F N -mg cos θ=0④ 又F f =μF N ⑤联立③④⑤解得:F =mg (sin θ+μcos θ)+macos α+μsin α⑥由数学知识得:cos α+33sin α=233sin(60°+α)⑦ 由⑥⑦式可知对应的F 最小值与斜面的夹角α=30°⑧ 联立⑥⑧式,代入数据得F 的最小值为:F min =1335N. [答案] (1)3 m/s 2 8 m/s(2)夹角为30°时,拉力最小,为1335N四、图解法此种方法一般适用于求矢量极值问题,如动态平衡问题,运动的合成问题,都是应用点到直线的距离最短求最小值.质量为m 的物体与水平地面间的动摩擦因数为μ,用图解法求维持物体做匀速运动的最小拉力.[解析] 由F fF N =μ知,不论F f 、F N 为何值,其比值恒定由图知F fF N=μ=tan α,即F ′的方向是确定的.由平衡条件推论可知:mg 、F ′、F 构成闭合三角形.显然,当F ⊥F ′时,F 最小.F min =mg sin α=mg tan α1+tan 2 α=μmg1+μ2.(说明:此题也可用三角函数法求解.) 物体受力分析如图. 由平衡条件得:F ·cos θ=F f ①F ·sin θ+F N =mg ② 又F f =μF N ③联立①②③得:F =μmgcos θ+μsin θ令sin α=11+μ2,cos α=μ1+μ2 则F =μmg1+μ2 sin (α+θ)当sin(α+θ)=1时,F min =μmg1+μ2.[答案] μmg1+μ2五、均值不等式法任意两个正整数a 、b ,若a +b =恒量,当a =b 时,其乘积a ·b 最大;若a ·b =恒量,当a =b 时,其和a +b 最小.在一次国际城市运动会中,要求运动员从高为H 的平台上A 点由静止出发,沿着动摩擦因数为μ的滑道向下运动到B 点后水平滑出,最后落在水池中.设滑道的水平距离为L ,B 点的高度h 可由运动员自由调节(取g =10 m/s 2).(1)求运动员到达B 点的速度与高度h 的关系.(2)运动员要达到最大水平运动距离,B 点的高度h 应调为多大?对应的最大水平距离x max 为多少?(3)若图中H =4 m ,L =5 m ,动摩擦因数μ=0.2,则水平运动距离要达到7 m ,h 值应为多少?[解析] (1)设斜面长度为L 1,斜面倾角为α,根据动能定理得mg (H -h )-μmgL 1cos α=12m v 20①即mg (H -h )=μmgL +12m v 20②v 0=2g (H -h -μL ).③ (2)根据平抛运动公式 x =v 0t ④ h =12gt 2⑤ 由③④⑤式得x =2(H -μL -h )h ⑥由⑥式可得,当h =12(H -μL )时水平距离最大x max =L +H -μL .(3)在⑥式中令x =2 m ,H =4 m ,L =5 m ,μ=0.2 则可得到-h 2+3 h -1=0 求得h 1=3+52m =2.62 m ;h 2=3-52m =0.38 m.[答案] 见解析 六、判别式法一元二次方程的判别式Δ=b 2-4ac ≥0时有实数根,取等号时为极值,在列出的方程数少于未知量个数时,求解极值问题常用这种方法.(原创题)如图所示,顶角为2θ的光滑绝缘圆锥,置于竖直向上的匀强磁场中,磁感应强度为B ,现有质量为m ,带电量为-q 的小球,沿圆锥面在水平面内做圆周运动,求小球做圆周运动的最小半径.[解析] 小球受力如图,设小球做圆周运动的速率为v ,轨道半径为R . 由牛顿第二定律得:水平方向:q v B -F N cos θ=m v 2R竖直方向:F N sin θ-mg =0 两式联立得:m v 2R-q v B +mg cot θ=0 因为速率v 为实数,故Δ≥0 即(qB )2-4⎝⎛⎭⎫m R mg cot θ≥0 解得:R ≥4m 2g cot θq 2B 2故最小半径为:R min =4m 2g cot θq 2B 2.[答案] 4m 2g cot θq 2B 21.(单选)(2016·广州模拟)如图所示,船在A 处开出后沿直线AB 到达对岸,若AB 与河岸成37°角,水流速度为4 m/s ,则船从A 点开出的最小速度为( )A .2 m/sB .2.4 m/sC .3 m/sD .3.5 m/s 解析:选B.AB 方向为合速度方向,由图可知,当v 船⊥AB 时最小,即v 船=v 水·sin 37°=2.4 m/s ,B 正确.2.(单选)如图所示,在倾角为θ的斜面上方的A 点处放置一光滑的木板AB ,B 端刚好在斜面上.木板与竖直方向AC 所成角度为α,一小物块自A 端沿木板由静止滑下,要使物块滑到斜面的时间最短,则α与θ角的大小关系应为( )A .α=θB .α=θ2C .α=θ3D .α=2θ解析:选B.如图所示,在竖直线AC 上选取一点O ,以适当的长度为半径画圆,使该圆过A 点,且与斜面相切于D 点.由等时圆知识可知,由A 沿木板滑到D 所用时间比由A 到达斜面上其他各点所用时间都短.将木板下端与D 点重合即可,而∠COD =θ,则α=θ2.3.(2016·宝鸡检测)如图所示,质量为m 的物体,放在一固定斜面上,当斜面倾角为30°时恰能沿斜面匀速下滑.对物体施加一大小为F 的水平向右的恒力,物体可沿斜面匀速向上滑行.设最大静摩擦力等于滑动摩擦力,当斜面倾角增大并超过某一临界角θ0时,不论水平恒力F 多大,都不能使物体沿斜面向上滑行,试求:(1)物体与斜面间的动摩擦因数; (2)这一临界角θ0的大小.解析:(1)斜面倾角为30°时,物体恰能匀速下滑,满足 mg sin 30°=μmg cos 30° 解得μ=33.(2)设斜面倾角为α,受力情况如图,由匀速直线运动的条件: F cos α=mg sin α+F f F N =mg cos α+F sin α F f =μF N解得:F =mg sin α+μmg cos αcos α-μsin α当cos α-μsin α=0,即cot α=μ时,F →∞ 即“不论水平恒力F 多大”,都不能使物体沿斜面向上滑行,此时,临界角θ0=α=60°. 答案:(1)33(2)60°4.如图所示,质量为m =0.1 kg 的小球C 和两根细绳相连,两绳分别固定在细杆的A 、B 两点,其中AC 绳长l A =2 m ,当两绳都拉直时,AC 、BC 两绳和细杆的夹角分别为θ1=30°、θ2=45°,g =10 m/s 2.问:细杆转动的角速度大小在什么范围内,AC 、BC 两绳始终张紧?解析:设两细绳都拉直时,AC 、BC 绳的拉力分别为F TA 、F TB ,由牛顿第二定律可知: 当BC 绳中恰无拉力时,F T A sin θ1=mω21l A sin θ1① F TA cos θ1=mg ②由①②解得ω1=1033rad/s. 当AC 绳中恰无拉力时,F TB sin θ2=mω22l A sin θ1③ F TB cos θ2=mg ④ 由③④解得ω2=10 rad/s.所以,两绳始终有张力时细杆转动的角速度的范围是 1033rad/s <ω<10 rad/s. 答案: 1033rad/s <ω<10 rad/s 5.(原创题)一人在距公路垂直距离为h 的B 点(垂足为A ),公路上有一辆以速度v 1匀速行驶的汽车向A 点行驶,当汽车距A 点距离为L 时,人立即匀速跑向公路拦截汽车,求人能拦截住汽车的最小速度.解析:法一:设人以速度v 2沿图示方向恰好在C 点拦住汽车,用时为t .则L +h tan α=v 1t ① hcos α=v 2t ② 联立①②两式得:v 2=h v 1L cos α+h sin α=h v 1L 2+h 2⎝ ⎛⎭⎪⎫L L 2+h 2cos α+h L 2+h 2sin α由数学知识知:v 2min =h v 1L 2+h 2 .法二:选取汽车为参照物.人正对汽车运动即可拦住汽车,即人的合速度方向指向汽车.其中一分速度大小为v 1,另一分速度为v 2,当v 2与合速度v 垂直时,v 2最小,由相似三角形知识可得:v 2v 1=h L 2+h2 v 2=h v 1L 2+h 2 .答案:h v 1L 2+h 26.小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m 的小球,甩动手腕,使球在竖直平面内做圆周运动.当球某次运动到最低点时,绳突然断掉,球飞行水平距离d 后落地,如图所示.已知握绳的手离地面高度为d ,手与球之间的绳长为34d ,重力加速度为g .忽略手的运动半径和空气阻力.(1)求绳断时球的速度大小v 1和球落地时的速度大小v 2. (2)问绳能承受的最大拉力多大?(3)改变绳长,使球重复上述运动,若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应为多少?最大水平距离为多少?解析:(1)设绳断后球飞行时间为t ,由平抛运动规律,有竖直方向14d =12gt 2,水平方向d =v 1t解得v 1=2gd .由机械能守恒定律有12m v 22=12m v 21+mg ⎝⎛⎭⎫d -34d 得v 2=52gd . (2)设绳能承受的最大拉力大小为F T ,这也是球受到绳的最大拉力大小,即球运动到最低点时球所受到的拉力.球做圆周运动的半径为R =34d由圆周运动向心力公式,有F T -mg =m v 21R得F T =113mg .(3)设绳长为l ,绳断时球的速度大小为v 3,绳承受的最大拉力不变,有F T -mg =m v 23l 得v 3=83gl 绳断后球做平抛运动,竖直位移为d -l ,水平位移为x ,时间为t 1,竖直方向有d -l =12gt 21,水平方向x =v 3t 1 得x =4l (d -l )3当l =d 2时,x 有最大值,x max =233d .答案:见解析 7.(原创题)如图所示,电动势为E 、内阻为r 的电源给一可变电阻供电,已知可变电阻变化范围为0~R m ,且R m >r .当R 为何值时功率最大,最大功率为多少?解析:设可变电阻为R ,则I =ER +rP =I 2R =E 2(R +r )2·R ①法一:(配方法)P =E 2(R -r )2R +4r显然,当R =r 时,功率最大,P max =E 24r.法二:(判别式法)将①式整理成关于R 的二次方程 PR 2+(2Pr -E 2)R +Pr 2=0 由于R 为实数,故Δ≥0 即(2Pr -E 2)2-4P 2r 2≥0 解得:P ≤E 24r最大值为P max =E 24r ,代入①式得R =r .答案:见解析 8.质量分别为M 、m 的斜面体A 、B 叠放在光滑水平面上,斜面体倾角为α,两者之间的动摩擦因数为μ(μ<tan α),今用水平外力F 推B ,使两者不发生滑动,假设最大静摩擦力等于滑动摩擦力,求F 的取值范围.(已知:m =3 kg ,M =8 kg ,μ=0.5,α=37°.)解析:B 恰好不向下滑动时,所需F 最小,此时B 受到最大静摩擦力沿斜面向上.如图甲所示.设两者共同的加速度为a 1,对整体有: F min =(M +m )a 1 对B 有:F min +F f1cos α-F N1sin α=ma 1 F f1sin α+F N1cos α=mg F f1=μ·F N1联立以上各式解得:F min =m (M +m )(sin α-μcos α)M (cos α+μsin α)g =7.5 N甲乙B恰好不上滑时所需F最大,此时B受最大静摩擦力沿斜面向下.如图乙所示.设共同加速度为a2,对整体有:F max=(M+m)a2对B有:F max-F f2cos α-F N2sin α=ma2F N2cos α=mg+F f2sin αF f2=μF N2联立以上各式解得:F max=m(M+m)(sin α+μcos α)M(cos α-μsin α)g=82.5 N故取值范围为7.5 N≤F≤82.5 N.答案:7.5 N≤F≤82.5 N。
函数的极值与最值的求解(导数法)函数的极值与最值是数学中重要的概念,它们在数学建模、优化问题等方面具有广泛的应用。
在本文中,我们将介绍如何使用导数法求解函数的极值与最值问题。
一、函数的极值与最值在介绍如何求解函数的极值与最值之前,我们首先需要明确这两个概念的定义。
对于函数f(x),如果存在一个区间I,对于区间内的任意x,都有f(x)≤f(x0)(或f(x)≥f(x0)),那么f(x0)就是函数在区间I内的极小值(或极大值)。
而函数f(x)在整个定义域内的最小值和最大值则被称为函数的最小值和最大值。
二、导数法求解极值与最值导数法是求解函数极值与最值常用的方法之一。
通过求解函数的导数和判断导数的正负,可以找到函数的极值点及其对应的极值。
1. 求解函数的极值点首先,我们需要求解函数f(x)的导数,并令导数等于零,即f'(x)=0。
解这个方程可以得到函数的临界点(即导函数为零的点),也就是可能的极值点。
2. 判断极值类型在求得了函数的临界点之后,我们需要判断每个临界点对应的极值类型,即是极小值还是极大值。
我们可以通过求解导数的二阶导数来判断,即求解f''(x),其中f''(x)表示函数f(x)的二阶导数。
若f''(x) > 0,则说明该临界点对应的极小值;若f''(x) < 0,则说明该临界点对应的极大值;若f''(x) = 0,则需要进行其他方法进一步判断。
3. 比较端点值除了求解临界点之外,我们还需要比较函数在区间的端点值,并找出其中的最大值和最小值。
三、实例分析为了更好地理解导数法求解极值与最值的过程,我们举一个实例来进行说明。
假设我们要求解函数f(x)=x^3-3x^2+2x在区间[-1, 3]的极值和最值。
1. 求解导数和临界点首先,求解函数f(x)的导数,得到f'(x)=3x^2-6x+2。
函数的极值与最值的求解在数学中,函数的极值与最值是常见的概念。
极值指的是函数在某个特定区间内的最大值或最小值,而最值则是函数在整个定义域内的最大值或最小值。
求解函数的极值与最值是数学分析的重要内容之一,本文将介绍函数求解极值与最值的方法和技巧。
一、确定区间要求解函数的极值与最值,首先需要确定函数的定义域或者要求解的区间范围。
根据函数的特点或问题的要求,确定区间是取整个定义域还是某个特定的局部区间。
二、求解极值在确定了求解的区间后,接下来的任务就是求解函数在该区间内的极值。
函数的极值主要分为两种:极大值和极小值。
求解极值的方法一般有以下几种:1. 导数法对于可导函数,极值通常出现在导数为零的点或者导数不存在的点。
因此,可以通过求解函数的导数来确定函数的极值。
具体步骤如下:a. 求解函数的导数;b. 解方程f'(x)=0,求得导数为零的点;c. 判断导数不存在的点是否为极值点。
2. 边界法对于闭区间上的函数,除了导数为零或不存在的点外,还需要考虑区间的边界点。
因此,可以通过求解边界点的函数值来确定函数的极值。
3. 二阶导数法(Hessian矩阵法)对于多元函数,可以通过计算其Hessian矩阵的特征值来确定函数的极值。
当Hessian矩阵的特征值全为正数时,函数取得极小值;当Hessian矩阵的特征值全为负数时,函数取得极大值。
4. Lagrange乘子法(约束条件法)对于多元函数在一定的条件下求取最值,可以使用Lagrange乘子法。
该方法通过引入等式约束条件,将求解极值的问题转化为求解方程组的问题。
三、求解最值对于求解函数在整个定义域内的最值,可以采用以下方法:1. 导数法求解函数的导数,找出导数的零点,再将这些零点与定义域的边界点比较,从中选取最大值或最小值。
2. 二阶导数法对于多元函数,可以通过计算其Hessian矩阵的特征值来确定函数的最值。
当Hessian矩阵的特征值全为正数时,函数取得最小值;当Hessian矩阵的特征值全为负数时,函数取得最大值。
第四节函数的极值与最值复习目标学法指导了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间;理解极大值、极小值的概念,能利用单调性探究极值与导数间的关系.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数不超过三次);掌握求函数在闭区间上的最大值、最小值的一般方法(其中多项式函数不超过三次). 1.熟练掌握极值、最值的概念是求极值、最值的基础.2.求函数极值时,尽可能列出自变量x变化时,导数f′(x)与函数f(x)的变化情况表,这样求解直观、不易出错.一、函数的极值与导数1.函数极小值的概念(1)函数y=f(x)在点x=a处的函数值f(a)比它在点x=a附近其他点的函数值都小;(2)f′(a)=0;(3)在点x=a附近的左侧f′(x)<0,右侧f′(x)>0;则点x=a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.2.函数极大值的概念(1)函数y=f(x)在点x=b处的函数值f(b)比它在点x=b附近其他点的函数值都大;(2)f′(b)=0;(3)在点x=b附近的左侧f′(x)>0,右侧f′(x)<0;则点x=b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值;极小值点与极大值点统称为极值点,极小值与极大值统称为极值.二、函数的最值与导数求函数y=f(x)在闭区间[a,b]上的最大值与最小值的步骤:(1)求y=f(x)在(a,b)内的极值;(2)将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个为最大值,最小的一个为最小值.1.概念理解(1)极值是一个局部性概念,反映的是函数在某个点附近的大小情况,并不意味它在函数的整个定义域内最大或最小;最值是一个整体性的概念,函数的最值是比较某个区间内的所有函数值得出的.(2)函数的极值点一定出现在区间内部,区间的端点不能成为极值点;连续函数在某一个闭区间上的最值必在极值点或区间端点处取得.(3)函数的极值个数不确定,而函数在某一闭区间上,最大值和最小值是唯一的.2.与极值、最值有关的结论(1)可导函数极值点处的导数值为0(变号零点),而导数值为0的点不一定是极值点;(2)若函数f(x)有多个极值点,则极大值点和极小值点是交替出现的; (3)函数的极大值与极小值无确定大小关系; (4)极值点是函数单调增区间与单调减区间的分界点;(5)若函数f(x)在定义域内只有一个极值点,则极值点是函数的最值点;(6)三次函数有两个极值点的充要条件是其导函数有两个零点; (7)奇(偶)函数在x=x 0处取得极大值或最大值f(x 0),则在x=-x 0处取得极小值或最小值-f(x 0)(相同的极大值或最大值).1.函数y=2x-21x 的极大值为( A )(A)-1 (B)-2 (C)-3 (D)1 2.设函数f(x)=xe x ,则( D ) (A)x=1为f(x)的极大值点 (B)x=1为f(x)的极小值点 (C)x=-1为f(x)的极大值点 (D)x=-1为f(x)的极小值点解析:f ′(x)=e x +xe x =(1+x)e x ,令f ′(x)=0,解得x=-1,且当x<-1时,f ′(x)<0;当x>-1时,f ′(x)>0;函数f(x)=xe x 在x=-1处取得极小值,即x=-1是f(x)的极小值点.故选D.3.(2018·安徽六安月考)已知函数f(x)=-13x 3+bx 2+cx+bc 在x=1处有极值-43,则b 等于( A )(A)-1 (B)1 (C)1或-1 (D)-1或3解析:f ′(x)=-x 2+2bx+c,若f(x)在x=1处有极值-43,故()()1120,141,33'⎧=-++=⎪⎨=-+++=-⎪⎩f b c f b c bc 解得b=-1且c=3,符合题意;或b=1且c=-1, 此时f ′(x)=-x 2+2bx+c=-(x-1)2≤0,f(x)=-13x 3+bx 2+cx+bc 单调递减,f(x)在x=1处不存在极值,故b=1且c=-1,不合题意,所以b=-1.故选A.4.如果函数y=f(x)的导函数的图象如图所示,给出下列判断:①函数y=f(x)在区间(-3,-12)内单调递增; ②函数y=f(x)在区间(-12,3)内单调递减; ③函数y=f(x)在区间(4,5)内单调递增; ④当x=2时,函数y=f(x)有极小值; ⑤当x=-12时,函数y=f(x)有极大值. 则上述判断中正确的是( D ) (A)①② (B)②③ (C)③④⑤ (D)③解析:对于①,函数y=f(x)在区间(-3,-12)内有增有减,故①不正确; 对于②,函数y=f(x)在区间(-12,3)有增有减,故②不正确;对于③,函数y=f(x)当x∈(4,5)时,恒有f′(x)>0,故③正确;对于④,当x=2时,函数y=f(x)有极大值,故④不正确;时,f′(x)≠0,故⑤不正确.故选D.对于⑤,当x=-125.(2019·镇海中学高三模拟考试)已知函数f(x)=xln x-x+2a,若函数y=f(x)与y=f(f(x))有相同的值域,则a的取值范围是( A ) ,1] (B) (-∞,1](A)(12(C) [1,3) (D) [1,+∞)2解析:令g(x)=xln x-x,则g′(x)=ln x,g(1)=-1,由g(x)的单调性可知,g(x)≥-1,所以f(x)≥2a-1,所以要使f(x)与f(f(x))的值域相同,则只需0<2a-1≤1,<a≤1,故选A.解得12考点一利用导数求函数的极值x2-(a+1)x+a(1+ln x).[例1] 设a>0,函数f(x)=12(1)求曲线y=f(x)在(2,f(2))处与直线y=-x+1垂直的切线方程;(2)求函数f(x)的极值.,解:(1)由已知,得x>0,f′(x)=x-(a+1)+axy=f(x)在(2,f(2))处切线的斜率为1,a=1,所以f′(2)=1,即2-(a+1)+2所以a=0,此时f(2)=2-2=0,故所求的切线方程为y=x-2.(2)f ′(x)=x-(a+1)+a x=()21x a x ax-++=()()1x x a x--. ①当0<a<1时,若x ∈(0,a),f ′(x)>0,函数f(x)单调递增; 若x ∈(a,1),f ′(x)<0,函数f(x)单调递减; 若x ∈(1,+∞),f ′(x)>0,函数f(x)单调递增. 此时x=a 是f(x)的极大值点,x=1是f(x)的极小值点,函数f(x)的极大值是f(a)=-12a 2+aln a, 极小值是f(1)=- 12. ②当a=1时,f ′(x)=()21x x->0,所以函数f(x)在定义域(0,+∞)内单调递增, 此时f(x)没有极值点,故无极值.③当a>1时,若x ∈(0,1),f ′(x)>0,函数f(x)单调递增; 若x ∈(1,a),f ′(x)<0,函数f(x)单调递减; 若x ∈(a,+∞),f ′(x)>0,函数f(x)单调递增. 此时x=1是f(x)的极大值点,x=a 是f(x)的极小值点, 函数f(x)的极大值是f(1)=-12, 极小值是f(a)=-12a 2+aln a. 综上,当0<a<1时,f(x)的极大值是-12a 2+aln a, 极小值是-12; 当a=1时,f(x)没有极值;当a>1时,f(x)的极大值是-12,极小值是-12a 2+aln a.运用导数求可导函数y=f(x)的极值的步骤(1)先求函数的定义域,再求函数y=f(x)的导数f′(x);(2)求方程f′(x)=0的根;(3)检查f′(x)在方程根的左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值,如果左负右正,那么f(x)在这个根处取得极小值.如果左右符号相同,则此根处不是极值点.提醒:若函数y=f(x)在区间(a,b)内有极值,那么y=f(x)在(a,b)内不是单调函数,即在某区间上单调函数没有极值.1.设函数f(x)=(x3-1)2,下列结论中正确的是( C )(A)x=1是函数f(x)的极小值点,x=0是极大值点(B)x=1及x=0均是f(x)的极大值点(C)x=1是函数f(x)的极小值点,函数f(x)无极大值(D)函数f(x)无极值解析:f′(x)=2(x3-1)·3x2=6x2(x-1)(x2+x+1);x2+x+1=(x+12)2+34>0,令f′(x)=0得x1=0,x2=1;即f′(0)=0,f′(1)=0,x<0时,f′(x)<0;0<x<1时,f′(x)<0;x>1时,f′(x)>0.故x=1是函数f(x)的极小值点,函数f(x)无极大值.故选C.2.已知函数f(x)=1ln xx.(1)若函数f(x)在区间(a,a+12)上存在极值,求正实数a的取值范围;(2)若当x ≥1时,不等式f(x)≥1+k x 恒成立,求实数k 的取值范围. 解:(1)函数f(x)的定义域为(0,+∞),f ′(x)=211ln --x x =-2ln x x. 令f ′(x)=0,得x=1.当x ∈(0,1)时,f ′(x)>0,f(x)在(0,1)上单调递增; 当x ∈(1,+∞)时,f ′(x)<0,f(x)在(1,+∞)上单调递减. 所以x=1为f(x)的极大值点,无极小值点, 所以a<1<a+12, 故12<a<1,即正实数a 的取值范围为(12,1). (2)当x ≥1时,k ≤()()11ln ++x x x 恒成立, 令g(x)=()()11ln ++x x x则g ′(x)=()()211+ln 111ln ⎛⎫++-++ ⎪⎝⎭x x x x x x=2ln -x x x .令h(x)=x-ln x,则h ′(x)=1-1x ≥0, 所以h(x)≥h(1)=1,所以g ′(x)>0, 所以g(x)为[1,+∞)上的增函数, 所以g(x)≥g(1)=2,故k ≤2. 故实数k 的取值范围为(-∞,2]. 考点二 利用导数求函数的最值[例2] 设函数f(x)=ae x (x+1)(其中e=2.718 28…),g(x)=x 2+bx+2,已知它们图象在x=0处有相同的切线. (1)求函数f(x),g(x)的解析式;(2)求函数f(x)在[t,t+1](t>-3)上的最小值. 解:(1)f′(x)=ae x(x+2),g′(x)=2x+b,由题意,两函数图象在x=0处有相同的切线, 又因为f′(0)=2a,g′(0)=b,所以2a=b,f(0)=a=g(0)=2,所以a=2,b=4,所以f(x)=2e x(x+1),g(x)=x2+4x+2.(2)由(1)得f′(x)=2e x(x+2).当x>-2时,则f′(x)>0,所以f(x)在(-2,+∞)上单调递增,当x<-2时,则f′(x)<0,所以f(x)在(-∞,-2)上单调递减,因为t>-3,所以t+1>-2,①当-3<t<-2时,f(x)在[t,-2]上单调递减, 在[-2,t+1]上单调递增,所以f(x)min=f(-2)=-2e-2.②当t≥-2时,f(x)在[t,t+1]上单调递增,所以f(x)min=f(t)=2e t(t+1).综上,当-3<t<-2时,f(x)min=-2e-2;当t≥-2时,f(x)min=2e t(t+1).求函数f(x)在闭区间[a,b]上的最值时,可判断函数在[a,b]上的单调性,若函数在[a,b]上单调递增或单调递减,则f(a),f(b)一个为最大值,一个为最小值.若函数在[a,b]上不单调,一般先求[a,b]上f(x)的极值,再与f(a),f(b)比较,最大的即为最大值,最小的即为最小值.函数y=2x3-12x在区间[-1,3]上的最大值和最小值分别为( A ) 2(B)54,-12222解析:y′=6x222令y′=0,则22)当x=-1时22当x=3时,y=18,故选A.考点三由函数的极值或最值求参数(范围)[例3] (1)函数f(x)=ln x-12ax2+x有极值且极值大于0,则a的取值范围是( )(A)(0,1) (B)(1,2) (C)(0,2) (D)(3,4)(2)已知函数f(x)=e2x-e-2x-cx(c∈R),若f(x)有极值,求c的取值范围.(1)解析:f′(x)= 1x -ax+1=21ax xx-++(x>0),当a≤0时,f′(x)>0,f(x)在(0,+∞)上单调递增,无极值. 当a>0时,对于t=-ax2+x+1.因为Δ=1+4a>0,x1·x2=-1a<0,所以f ′(x)=0有且仅有一正根x 0=1142a a++,且f(x)在x 0处取极大值.要使极大值大于0,即f(x 0)>0. 因为-a 20x +x 0+1=0,所以a 20x =x 0+1,f(x 0)=ln x 0-12a 20x +x 0=ln x 0+02x -12,令g(x)=ln x+2x -12,(x>0)g(x)在(0,+∞)上单调递增且g(1)=0, 所以x>1.所以x 0>1, 所以1142a a++>1,解得0<a<2.故选C.(2)解:f ′(x)=2e 2x +2e -2x -c, 而2e 2x +2e -2x ≥2222e 2e x x-⋅=4,当x=0时等号成立.下面分三种情况进行讨论.当c<4时,对任意x ∈R,f ′(x)=2e 2x +2e -2x -c>0,此时f(x)无极值; 当c=4时,对任意x ≠0,f ′(x)=2e 2x +2e -2x -4>0,此时f(x)无极值; 当c>4时,令e 2x=t,注意到方程2t+2t-c=0有两根t 1,2=2164c c ±->0,即f ′(x)=0有两个根x 1=12ln t 1,x 2=12ln t 2. 当x 1<x<x 2时,f ′(x)<0,f(x)单调递减; 又当x>x 2时,f ′(x)>0,f(x)单调递增, 从而f(x)在x=x 2处取得极小值.综上,若f(x)有极值,则c 的取值范围为(4,+∞).(1)可导函数的极值点与其导函数的零点之间的关系是导函数的变号零点是函数的极值点,而不变号零点不是函数的极值点.(2)已知函数的极值、最值求参数,利用待定系数法列方程(组)求解.已知函数f(x)=x 2-2ax+1在区间[2,3]上最小值为1.函数g(x)=()33x xf -k ·3x .(1)求a 的值;(2)若存在x 0使得g(x)在x ∈[-1,1]上为负数,求实数k 的取值范围. 解:(1)f(x)=(x-a)2+1-a 2,当a<2时,f(x)min =f(2)=5-4a=1,解得a=1; 当2≤a ≤3时,f(x)min =f(a)=1-a 2=1, 解得a=0,不符合题意;当a>3时,f(x)min =f(3)=10-6a=1, 解得a=32,不符合题意. 综上,a=1.(2)由已知可得g(x)=(1-k)3x +13x-2,根据题意,存在x 0使得g(x)<0, 所以不等式(1-k)3x +13x-2<0,可化为1+(13x)2-2·13x<k,令t=13x,则 k>t 2-2t+1.因 x ∈[-1,1],故 t ∈[13,3]. 故k>t 2-2t+1在t ∈[13,3]上有解. 记h(t)=t 2-2t+1=(t-1)2,t ∈[13,3], 故h(t)min =h(1)=0,所以k 的取值范围是(0,+∞).利用导数研究函数的极值(点)问题[例题] (2019·天津卷)设函数f(x)=ln x-a(x-1)e x ,其中a ∈R. (1)若a ≤0,讨论f(x)的单调性; (2)若0<a<1e,①证明f(x)恰有两个零点;②设x 0为f(x)的极值点,x 1为f(x)的零点,且x 1>x 0,证明3x 0-x 1>2. (1)解:由已知,f(x)的定义域为(0,+∞), 且f ′(x)=1x-[ae x+a(x-1)ex]=21e -xax x.因此当a ≤0时,1-ax 2e x >0,从而f ′(x)>0, 所以f(x)在(0,+∞)内单调递增.(2)证明:①由(1)知,f ′(x)=21e -xax x.令g(x)=1-ax 2e x ,由0<a<1e ,可知g(x)在(0,+∞)内单调递减. 又g(1)=1-ae>0,且g(ln 1a )=1-a(ln 1a )2·1a =1-(ln 1a)2<0, 故g(x)=0在(0,+∞)内有唯一解, 从而f ′(x)=0在(0,+∞)内有唯一解, 不妨设为x 0,则1<x 0<ln 1a, 当x ∈(0,x 0)时,f ′(x)=()g x x >()0g x x =0,所以f(x)在(0,x 0)内单调递增;当x ∈(x 0,+∞)时,f ′(x)=()g x x <()0g x x =0,所以f(x)在(x 0,+∞)内单调递减, 因此x 0是f(x)的唯一极值点. 令h(x)=ln x-x+1, 则当x>1时,h ′(x)=1x-1<0,故h(x)在(1,+∞)内单调递减, 从而当x>1时,h(x)<h(1)=0, 所以ln x<x-1,从而f(ln 1a )=ln(ln 1a )-a(ln 1a-1)1ln e a=ln(ln 1a )-ln 1a +1=h(ln 1a)<0. 又因为f(x 0)>f(1)=0,所以f(x)在(x 0,+∞)内有唯一零点. 又f(x)在(0,x 0)内有唯一零点1, 从而f(x)在(0,+∞)内恰有两个零点.②由题意,()()010,0,'⎧=⎪⎨=⎪⎩f x f x 即()012011e 1,ln 1e⎧=⎪⎨=-⎪⎩x x ax x a x从而ln x 1=10121e--x x x x ,即10e-x x =2011ln 1-x x x .因为当x>1时,ln x<x-1, 又x 1>x 0>1, 故10e-x x <()201111--x x x =20x ,两边取对数,得ln 10e-x x <ln 20x ,于是x 1-x 0<2ln x 0<2(x 0-1), 整理得3x 0-x 1>2.[规范训练] (2018·全国Ⅲ卷)已知函数f(x)=(2+x+ax 2)ln(1+x)-2x. (1)若a=0,证明:当-1<x<0时,f(x)<0;当x>0时,f(x)>0; (2)若x=0是f(x)的极大值点,求a. (1)证明:当a=0时,f(x)=(2+x)ln(1+x)-2x,f ′(x)=ln(1+x)-1x x+. 设函数g(x)=f ′(x)=ln(1+x)-1x x+, 则g ′(x)=()21xx +.当-1<x<0时,g ′(x)<0;当x>0时,g ′(x)>0, 故当x>-1时,g(x)≥g(0)=0, 当且仅当x=0时,g(x)=0,从而f ′(x)≥0,当且仅当x=0时,f ′(x)=0. 所以f(x)在(-1,+∞)上单调递增. 又f(0)=0,故当-1<x<0时,f(x)<0; 当x>0时,f(x)>0. (2)解:①若a ≥0,由(1)知,当x>0时,f(x)≥(2+x)ln(1+x)-2x>0=f(0), 这与x=0是f(x)的极大值点矛盾. ②若a<0,设函数h(x)=()22f x x ax ++=ln(1+x)-222x x ax++.由于当|x|<min{1,1||a }时,2+x+ax 2>0,故h(x)与f(x)符号相同.又h(0)=f(0)=0,故x=0是f(x)的极大值点, 当且仅当x=0是h(x)的极大值点.h ′(x)=11x +-()()()222222122x ax x ax x ax ++-+++=()()()2222246112x a x ax a x axx ++++++.若6a+1>0,则当0<x<-614a a+,且|x|<min{1,1||a }时,h ′(x)>0,故x=0不是h(x)的极大值点.若6a+1<0,则a 2x 2+4ax+6a+1=0存在根x 1<0, 故当x ∈(x 1,0),且|x|<min{1,1||a }时,h ′(x)<0,所以x=0不是h(x)的极大值点. 若6a+1=0,则h ′(x)=()()()322241612x x x x x -+--,则当x ∈(-1,0)时,h ′(x)>0;当x ∈(0,1)时,h ′(x)<0. 所以x=0是h(x)的极大值点,从而x=0是f(x)的极大值点. 综上,a=-16.类型一 极值或极值点的应用1.若函数f(x)=x 3-2cx 2+x 有极值点,则实数c 的取值范围为( C ) 3∞) 3∞)(C)(-∞,-32]∪[32,+∞)(D)(-∞,-32)∪(32,+∞)解析:若函数f(x)=x3-2cx2+x有极值点,则f′(x)=3x2-4cx+1=0有根,故Δ=(-4c)2-12≥0,从而c≥32或c≤-32.故选C.2.已知函数f(x)=x3+bx2+cx的图象如图所示,则21x+22x等于( C )(A)23(B)43(C)83(D)163解析:由图象可知f(x)的图象过点(1,0)与(2,0),x1,x2是函数f(x)的极值点,因此1+b+c=0,8+4b+2c=0,解得b=-3,c=2,所以f(x)=x3-3x2+2x,所以f′(x)=3x2-6x+2,x1,x2是方程f′(x)=3x2-6x+2=0的两根,因此x1+x2=2,x1·x2=23,所以21x+22x=(x1+x2)2-2x1·x2=4-43=83,故选C.3.已知函数f(x)=13x3+ax2-2x在区间(1,+∞)上有极小值无极大值,则实数a的取值范围为( A )(A)a<12(B)a>12(C)a≤12(D)a≥12解析:因为函数f(x)=13x3+ax2-2x,所以f ′(x)=x 2+2ax-2,因为函数f(x)=13x 3+ax 2-2x 在区间(1,+∞)上有极小值无极大值,所以f ′(x)=x 2+2ax-2=0在区间(1,+∞)上有1个实根,(-∞,1]上有1个根.2480,(1)210,⎧∆=+>⎪⎨'=-<⎪⎩a f a 解得a<12.故选A.类型二 求最值或范围 4.已知奇函数f(x)=()e 1,0,,0,xx xh x x ⎧->⎪⎨⎪<⎩则函数h(x)的最大值为 .解析:先求出x>0时,f(x)= e xx-1的最小值.当x>0时,f ′(x)=()2e 1x x x -,所以x ∈(0,1)时,f ′(x)<0,函数单调递减,x ∈(1,+∞)时,f ′(x)>0,函数单调递增,所以x=1时,函数取得极小值即最小值,为e-1,所以由已知条件得h(x)的最大值为1-e. 答案:1-e5.函数f(x)=xln x+ax 2(a ≠0)存在唯一极值点. (1)求a 的取值范围;(2)证明:函数y=f[f(x)]与y=f(x)的值域相同. (1)解:f ′(x)=ln x+1+2ax,f ″(x)=1x +2a, 当a>0时,f ″(x)>0,故f ′(x)在(0,+∞)上单调递增, 又x →0时,f ′(x)<0,f ′(1)=2a+1>0, 故f ′(x)=0在(0,+∞)内有唯一实根, 即f(x)在(0,+∞)内有唯一极值点;当a<0时,由f″(x)>0得0<x<-12a,故f′(x)在(0,-12a )上单增,在(-12a,+∞)上单减,若f′(-12a)≤0,则f′(x)≤0恒成立,此时f(x)无极值点,若f′(-12a)>0,又x→0时f′(x)<0,x→+∞时,f′(x)<0,此时f(x)有两个极值点;综上,a>0.(2)证明:由(1)知,a>0,设f′(x0)=0即ln x0+1+2ax0=0, 则f(x)在(0,x0)上单减,在(x0,+∞)上单增,所以f(x)的值域为[f(x0),+∞),要使y=f[f(x)]与y=f(x)的值域相同,只需f(x0)≤x0,即x0ln x0+a2x≤x0,即ln x0+ax0≤1,又ax0=-12(ln x0+1),故12ln x0-12≤1即x0≤e3,故只需证x0≤e3,又f′(x)单增, 所以要证x0≤e3,即证f′(e3)≥0, 而f′(e3)=3+1+2ae3>0,故得证.。
函数的极值与最大(小)值(解析版)函数的极值与最大(小)值(解析版)函数的极值与最大(小)值是数学分析中一个重要的概念和研究内容,它在很多领域具有广泛的应用,如经济学、物理学、工程学等。
本文将介绍函数的极值与最大(小)值的定义、求解方法以及一些实际问题中的应用。
一、函数的极值与最大(小)值的概念函数的极值是指在一个特定的区间内,函数取得的最大值或最小值。
定义域中的极值点可以是局部极大值或局部极小值,也可是全局的最大值或最小值。
二、求解函数的极值与最大(小)值求解函数的极值与最大(小)值通常有以下方法:1. 导数法:根据函数的导数(或导函数),可以找到函数的驻点和拐点,并通过一阶和二阶导数的符号来判断极值点的类型,即极大值或极小值。
其中,一阶导数为零的点即为函数的驻点,二阶导数为零的点即为函数的拐点。
2. 边界法:在给定的区间内,如果函数在区间的端点处取得最大或最小值,则该值也是函数的极值。
通过比较函数在边界点和内部点的取值,可以确定函数的最大(小)值。
3. 高阶导数法:对于一些特殊的函数,可以通过多阶导数的方法求解极值。
通过计算函数的高阶导数,可以得到函数的极值点。
4. 参数方程法:对于参数方程给出的函数,可以通过求解参数方程中的参数值,得到函数的极值。
这种方法在实际问题中应用较多。
三、实际问题中的应用函数的极值与最大(小)值在各个领域中都有广泛的应用,例如:1. 经济学中,通过对供需函数的极值分析,可以确定市场的均衡价格和数量,从而指导市场调节和政策制定。
2. 物理学中,通过对物体运动轨迹方程的极值分析,可以确定物体在运动过程中最大(小)值速度、加速度等相关参数。
3. 工程学中,通过对成本、效益、材料使用等函数的极值分析,可以优化设计方案,提高工程效率和经济性。
4. 生物学中,通过对生态系统中的种群数量变化函数的极值分析,可以研究种群的稳定性和生态系统的平衡状态。
总之,函数的极值与最大(小)值是数学分析中的重要内容,它不仅具有理论意义,还在实际应用中发挥着重要的作用。
最值与极值求函数(或参数)的最值或极值是高中数学中常见的数学问题,最值是指函数(或参数)在自变量指定范围内或隐含定义域内的最大值和最小值,最值最多只有一个;极值通常是指连续函数在定义域或特定局部范围内的较大(小)值,极值不只一个,求最值或极值的手段通常有五种:①转化为函数问题,利用函数的性质或函数的图象 ②利用不等式定理 ③三角换元 ④导数法 ⑤直观与解析法(一)利用函数性质和函数图象 例1 求函数x x y 21--=的最值解:(方法一)设tx =-21,则212t x -=,且0≥t 211)10(211)1(2121222=++-≤++-=--=∴t t t y21max =∴y ,此时,21=x ,无最小值。
(利用二次函数在区间),0[+∞上的最值求法) (方法二)021≥-x 21≤∴x ,易知函数]21,(21-∞--=是x x y 上的增函数212121max=--=∴x y ,此时,21=x 例2 已知偶函数θθθθsin sin )2(tan )sin(sin cos )(-⋅-+--⋅=x x x x f 的最小值是0,求)(x f 的最大值及此时x 的集合 解:θθθθθsin sin )2(tan )sin cos cos (sin sin cos )(-⋅-+⋅-⋅-⋅=x x x x x fθθθs i n c o s s i n s i n )2(t a n -⋅+⋅-=x x 恒成立是偶函数)()()(x f x f x f =-∴θθθsin cos sin sin )2(tan -⋅+⋅--∴x x θθθsin cos sin sin )2(tan -⋅+⋅-=x x 恒成立,整理得:0sin )2(tan =⋅-x θ 2tan =∴θ)1(cos sin )(-⋅=∴x x f θ )2(tan =θ 易知:52sin ±=θ若52sin =θ,则)1(cos 52)(-⋅=x x f ,0)(54)(min min =-=∴x f x f 与不符,舍去52sin -=∴θ )1(cos 52)(-⋅-=x x f 此时有0)(min =∴x f )1(cos 时=x当1cos -=x 时,54)(max =x f ,此时x 的集合为:{}Z ∈+=k k x x ,2ππ例3 设a 为实数,函数1)(2+-+=a x x x f ,求)(x f 的最小值解:易知⎪⎪⎩⎪⎪⎨⎧-++++-=)43()21()43()21()(22a x a x x f ax ax ≥≤若21>a ,则],()(a x f -∞在上的最小值为43)21(+=a f ),[)(+∞a x f 在上的最小值为)21()(f a f > 43)(min +=∴a x f若2121≤≤-a ,则],()(a x f -∞在上的最小值为1)(2+=a a f),[)(+∞a x f 在上的最小值为)(a f 1)(2min +=∴a x f若21-<a ,则],()(a x f -∞在上的最小值为1)(2+=a a f),[)(+∞a x f 在上的最小值为)(43)21(a f a f <-=- a x f -=∴43)(min综上所述,⎪⎪⎪⎩⎪⎪⎪⎨⎧++-=a a a x f 43143)(2min21212121>≤≤--<a a a例4 已知函数3)12()(2-⋅-+=x a ax x f )3(≠a ,在区间]2,23[-上的最大值为1,求a 的值分析:若正面求解需讨论的因素有:01开口方向 02对称轴与区间 ]2,23[-的关系,其中开口向上需分两类(对称轴与2223+-的大小),开口向下需分三类,过程非常复杂,考虑到二次函数在闭区间上的最值只能在端点或顶点处取到,可采用逆向检验求解。
求极值与最值的方法1 引言在当前的数学教育中,求初等函数的极值与最值占有比较重要的位置,由于其解法灵活,综合性强,能力要求高,故而解决这类问题,要掌握各数学分支知识,能综合运用各种数学技能,灵活选择合理的解题方法。
下面我们将要介绍多种求初等函数的极值和最值的方法。
2 求函数极值的方法极值定义:设函数()f x 在0x 的某邻域内有定义,且对此邻域内任一点x 0()x x ≠,均有0()()f x f x <,则称0()f x 是函数()f x 的一个极大值;同样如果对此邻域内任一点x 0()x x ≠,均有0()()f x f x >,则称0()f x 是函数()f x 的一个极小值。
函数的极大值与极小值统称为函数的极值。
使函数取得极值的点0x ,称为极值点。
2.1 求导法判别方法一:设()f x 在点0x 连续,在点0x 的某一空心邻域内可导。
当 x 由小增大经过0x 时,如果:(1)'()f x 由正变负,那么0x 是极大值点; (2)'()f x 由负变正,那么0x 是极小值点; (3)'()f x 不变号,那么0x 不是极值点。
判别方法二:设()f x 在点0x 处具有二阶导数,且'()0f x =,''()0f x =。
(1)如果''()0f x <,则()f x 在点0x 取得极大值;(2)如果''()0f x >,则()f x 在点0x 取得极小值。
判别方法三:设()f x 在点0x 有n 阶导数,且0)()()(0)1(00===''='-x f x f x f n0)(0)(≠x fn ,则:(1)当为偶数时,)(x f 在0x 取极值,有0)(0)(<x f n 时,)(x f 在0x 取极大值,若0)(0)(>x fn 时,)(x f 在0x 取极小值。
(2)当为奇数时,)(x f 在0x 不取极值。
求极值方法:(1)求一阶导数,找出导数值为0的点(驻点),导数值不存在的点,及端点;(2)判断上述各点是否极值点例 1 求函数32()69f x x x x =-+的极值。
解法一 : 因为32()69f x x x x =-+的定义域为(,)-∞+∞, 且'2()31293(1)(3)f x x x x x =-+=--, 令'()0f x =,得驻点11x =, 23x =;在(,1)-∞内,'()0f x >,在(1,3)内,'()0f x <,(1)4f =为函数()f x 的极大值。
解法二: 因为32()69f x x x x =-+的定义域为(,)-∞+∞, 且2()3129f x x x '=-+,()612f x x ''=-。
令'()0f x =,得驻点11x =,23x =。
又因为''(1)60f =-<,所以,(1)4f =为)(x f 极大值。
''(3)60f =>,所以(3)0f =为)(x f 极小值.例 2 求函数23()2(1)f x x =--的极值.解 因为23()2(1)f x x =--的定义域为(,)-∞+∞,且()f x 在(,)-∞+∞上连续,所以1'31322()(1)(1)33(1)f x x x x --=--=≠-,当1x =时, '()f x 不存在,所以1x =为()f x 的可能极值点.在(,1)-∞内,'()0f x >;在(1,)+∞内, '()0f x <, ()f x 在1x =处取得极大值(1)2f =。
例3 求函数45)(x x f =的极值。
解 令0)(='x f ,得驻点0=x ,且0)0()0()0(='''=''='f f f ,但120)0(4=f >0 所以有极小值0.2.2 利用拉格朗日乘数法求条件极值“乘数法”所得到的点只是可能是极值点,到底是否是极值点要依据拉格朗日函数F 的二阶微分符号来判断。
例4 求函数m n p u x y z =在条件x y z a ++=(0,0,0)m n a >>>下的极值。
解 先求ln ln ln ln ()v u m x n y p z x y z a λ==+++++=令'''000x y y mF x nF y nF y λλλ⎧=+=⎪⎪⎪=+=⎨⎪⎪=+=⎪⎩得驻点为(,,)ma na pa p m n p m n p m n p ++++++ 又由2x m F XX-='',2y m F yy -='',2zm F ZZ -='',''''''0xy xz yz F F F ===,),,(2z y x F d p =⎥⎦⎤⎢⎣⎡++-)()()(22222z y x d z md y m d x m 0<P故p 为v 即u 的极大值点,此时()m n p m n pp m n pm n p a u m n p ++++∣=++ 2.3 不等式求极值应用n 个正数的算术平均数大于等于n 个正数的几何平均数这个基本不等式来处理,基本不等式是222a b ab +>,222a b ab +<。
例5 当x为何值,函数y = 分析:函数解析式中被开方数含自变量的两项与倒数相联系,尝试用算术平均数和几何平均数的关系来处理。
解 649)49(212222=•≥+xx x x224912x x∴+≥ 2249618x x++≥式子两边都是非负数,分别去算术平均根,得y =≥=∴23min =y 此时36±=x 2.4 利用二次方程判别式的符号来求初等函数的极值例6 若2221x y z ++=,试求函数22u x y z =-+的极值。
解1(2)2y x z u =+-,带入2221x y z ++=得2221(2)14x x z u z ++-+=即22225(42)(844)0x z u x z u zu +-++--=这个关于x 的二次方程要有实根,则要222(42)20(844)0z u z u zu ∆=--+--≥即224950u zu z -+-≤ (2) 解关于u 的二次不等式得:2211z u z z ≤≤-≤≤ 显然,求函数u 的极值,相当于求211u z z ≤-≤≤或211u z z ≥-≤≤ (3) 的极值。
由(2)得 224950u zu z -+-= (4) 这个关于z 的二次方程要有实数根,必须221636(5)0,u u ∆=--≥即290u -≥解此关于u 的二次不等式,得33u -≤≤。
所以u 的极大值是3,极小值为3-。
2.5 利用标准量代换法求函数极值求某些有多个变量的条件极值时,我们可以选取某个与这些变量有关的量做标准量,称其余为比较量,然后将比较量用标准量与另外选取的辅助量表示出来,这样就将其变为研究标准量与辅助量间的关系了。
如果给定条件是几个变量之和的形式,一般设这几个量的算术平均数为标准量。
例7 设x y z a ++=,求222u x y z =++的极小值。
解 取33x y z a ++=为标准量,令3a x α=-,3ay β=-, 则3az αβ=++(α、β为任意实数),从而有 222222()()()2223333a a a a u αβαβαβαβ=-+-+++=+++22222()33a a αβαβ=++++≥(等号当且仅当α=β=0即13x y z ===时成立)。
所以u 的极小值为23a 。
2.6 配方法对于解析式中主体部分为二次三项式的函数,一般都可以用此方法,中学大部分求极值的问题都是采用这用方法。
例8 求函数21cos cos 3y x x =-+的极值。
分析:不难看出函数y 的解析式中分母是以cos x 为主元的二次三项式,则可以用配方法来解决这道题。
解 令2cos cos 3u x x =-+,则22211111cos cos 3cos cos 3(cos )4424u x x x x x =-+=-+-+=-+,1y u =取极大值的条件是u 取最小值,1y u=取极小值的条件是u 取最大值;2max 1(cos )2u x ⇔-取最大值cos 1x ⇒=- 则y 的极小值为15;2min 1(cos )02u x ⇔-= 1cos 2x ⇒= 则y 的极大值为411。
2.7 柯西不等式求初等函数的极值柯西不等式的一般形式为: 对任意的实数12,,,n a a a 及12,,,n b b b 有222111n n n i i i i i i i a b a b ===⎛⎫⎛⎫⎛⎫≤ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭∑∑∑ 或22211nni iii i a bb==≤∑∑,其中等号当且仅当1212nna a ab b b ===时成立。
例9 已知,a b 为正常数,且02x π<<,求xb x a y cos sin +=的极小值。
解 利用柯西不等式,得()22sin cos x x =+)2x x ≥+=时;即 x =时,于是x x ≥+再由柯西不等式,sin cos ab x x ⎫+⎪⎭)sin cos ab x x x x ⎛⎫≥++ ⎪⎝⎭222233a b ⎛⎫≥=+ ⎪⎝⎭ 等号成立也是当且仅当3baarctg x =时。
从而x bx a y cos sin +=322233a b ⎛⎫≥+ ⎪⎝⎭, 于是x bx a y cos sin +=的极小值是322233a b ⎛⎫+ ⎪⎝⎭。
3 求初等函数最值的方法3.1 判别式法若函数()y f x =可化成一个系数含有y 的关于x 的二次方程:2()()a y x b y x +()0c y +=。
在()0a y ≠时,由于,x y 为实数,则有2()4()()0b y a y c y ∆=-≥,由此可以求出y 所在的范围,确定函数的最值。
例10 实数,x y 满足224545x xy y -+=,设22s x y =+,则maxmin11s s +的值为_______。
解 由题意知, 415xy s =-,故224()(1)5xy s =- 又22x y s += ∴22,x y 是方程224(1)05t st s -+-=的两个实根.222439324(1)405255s s s s ∴∆=--=-+-≥解得1010133s ≤≤,即min max 101013,3s s == maxmin1185s s ∴+= 3.2 函数的单调性法当自变量的取值范围为一区间时,常用单调性法来求函数的最值。