几何计算之线段最值
- 格式:pptx
- 大小:497.10 KB
- 文档页数:27
例谈求线段最值的方法几何最值问题属于中考题中的热点问题,也是难点问题,其中,求线段的最值问题是近年常见的题型.下面结合一些实例谈谈解决此类问题的方法.一、轨迹法对于线段最小值问题,若线段的一个端点是定点,另一个端点是动点,可以考虑轨迹法,即考虑动点的轨迹.若动点的轨迹是一条直线,可以用“垂线段最短”原理解决;若动点的轨迹是圆(或一段圆弧),可以用“圆最值模型”解决.圆最值模型如图1, P是⊙O外的一点,直线PO分别交⊙O于点,A B,则PA是点P到⊙O上的点的最短距离, PB是点P到⊙O上的点的最长距离.PC OC.证明如图1,在⊙O是任取一点C(不为,A B),连结,Q,<+=+=+,P O P C O C P O P A O A P A O C∴<,P A P C即PA是点P到⊙?O上的点的最短距离.PD OD.如图2,在⊙O是任取一点D(不为,A B) ,连接,Q,+>=+=+,PO OD PD PB PO OB PO OD∴>,PB PD即PB是点P到⊙O上的点的最长距离.例1 (2016年无锡市中考题)如图3,已知平行四边形OABC的顶点,A C分别在直线x=上,O是坐标原点,则对角线OB长的最小值为.x=和41解析 如图3,设直线1x =和x 轴交于点E .作BF ⊥直线4x =点F ,因为平行四边形OABC ,所以OA 和BC 平行且相等,可得AOE ∆和CBF ∆全等,所以OE BF =,可得点B 的轨迹是直线5x =.当点B 在x 轴上时,OB ⊥直线5x =,此时OB 最小,最小值为5.例2 (2016年安徽省中考题)如图4,Rt ABC ∆中,,6,4,AB BC AB BC P ⊥==是ABC ∆内部的一个动点,且满足PAB PBC ∠=∠,则线段CP 长的最小值为( )(A) 32 (B) 2 (c)解析 根据PAB PBC ∠=∠,可得90APB ∠=︒,故点P 在以AB 为直径的圆上(如图4).取AB 的中点,O OC 交⊙O 于点P ,根据圆最值模型知此时CP 最小.13,52OP AB OC ===Q , 所以CP 的最小值为532OC OP -=-=, 选B.二、构造法对于线段最大值问题,若线段的一个端点是定点,另一个端点是动点,但动点轨迹难确定,可以考虑构造法,即找一个定点,当这三点共线时,线段最大.例3 如图5,平面直角坐标系中,已知矩形,2,1ABCD AB BC ==,点A 和B 分别在x 轴正半轴和第一象限角平分线上滑动,点C 在第一象限,求OC 的最大值.解析 如图5,取AOB ∆外接圆的圆心I ,因为2AB =是确定的,且45AOB ∠=︒也是确定的,所以AOB ∆外接圆是确定的.那么线段OIBIC ∆是确定的,135,1IBC BI BC ∠=︒=,可解三角形得CI =所以当,,O I C三点共线时,线段OC 取得最大值,即为OI CI + 三、转化法对于线段最值问题,若线段的两个端点都是动点,可以考虑运用转化法,将它转化为求与之有关的另一条线段的最值.例4 (2016年三明市中考题)如图6,在等边ABC ∆中,4AB =,点P 是BC 边上的动点,点P 关于直线,AB AC 的对称点分别为,M N ,则线段MN 长的取值范围是 .解析 如图6,连结,,AP AM AN ,由对称可得,AP AM AN BAP MAB ==∠=∠,CAP NAC ∠=∠,所以2120MAN BAC ∠=∠=︒,所以AMN ∆是顶角为120°的等腰三角形,可得MN ==.于是求线段MN 长的取值范围,就转化为求线段AP 长的取值范围.AP 最小为AP 垂直BC 时,最大为AB ,所以AP 的取值范围是4AP ≤≤,所以MN 的取值范围是6AP ≤≤ 四、函数法当线段最值问题从几何角度很难求解的时候,可以考虑引入参数,建立函数模型,用函数法来解决.例5 如图7,在ABC ∆中,2AB AC BC ===,点P 是AB 边上的动点(不与点,A B 重合).过点P 作//PE BC 交AC 于点E ,作P F B C ⊥于点F ,连结,EF M 是EF 上的点,且2EM FM =,则PM 的最小值是 .解析 由条件“2AB AC BC ===”可知ABC ∆是确定的,tan 2B =;又根据作图可知PBF ∆形状也是确定的,PF 二2BF,并且有2PF BF =.所以,分析可得PM 的大小取决于BF 的大小,所以引入参数.设BF x =,则2PF x =,22PE x =-.加图7,作MN PF ⊥于点N .2EM FM =Q ,122333MN PE x ∴==-,2433PN PF x ==, 在Rt PMN ∆中,222224()()333PM x x =-+, 化简得2220116()9545PM x =-+.所以当15BF =时,PM。
1 / 14线段最值问题一、将军饮马问题作法图形原理在直线l 上求作点P ,使PA +PB 最小.连接AB ,与l 交点即为P.两点之间,线段最短. PA +PB 最小值即为AB 长.在直线l 上求一点P ,使AP BP +最短将A 对称到'A ,连接'A B ,与l 的交点即为点P两点之间,线段最短.'AP BP A B +=在直线12l l 、上分别求点M N 、,使PMN △周长最小分别将点P 关于两直线对称到'''P P 、,连接'''P P 与两直线交点即为M N 、两点之间,线段最短.'''PM MN PN P P ++=在直线l 1、l 2上分别求点M N 、,使四边形PMNQ 周长最小将P Q 、分别对称到P ′、Q ′,连接''P Q 与直线的交点即为M N 、两点之间,线段最短.''PM MN NQ P Q ++=直线l 1∥l 2,在l 1、l 2上分别求点M N 、,使MN ⊥l 1,且AM +MN +NB 最小.将点A 向下平移MN 的长度 得A ′,连接A ′B ,交l 2于点N ,过点N 作MN⊥l 1于点M.两点之间,线段最短. AM +MN +NB 的最小值为A ′B+MN .2 / 14在直线l 上求两点M N 、(M在左),使得MN =a ,并使AM MN NB ++最短将B 向左平移a 个单位到B ′,对称A 到A′,连接A′B′与l 交点即为M ,右平移a 个单位即为N.两点之间,线段最短.AM MN NB ++的最小值为A′B′+MN .在OA 上求点M ,在OB 上求点B ,使PM+PN 值最小.作点P 关于OA 的对称点P ′,作P ′N ⊥OB 于点N ,交OA 于点M.点到直线,垂线段最短.PA+AB 的最小值为线段P ′N 的长.P ,Q 为OA ,OB 的定点,在OA ,OB 上求作点M ,N ,使PN +NM +MQ 的值最小.作点P 关于OA 的对称点P ′,作点Q 关于OB 的对称点Q ′,连P ′Q′交OA 于点M ,交OB 于点N.两点之间,线段最短. PN +NM +MQ 最小值为线段P′Q′的长.在直线l 上求作点P ,使|PA -PB|的值最小.连AB ,作AB 的垂直平分线与直线l 的交点即为P.垂直平分线上的点到线段两端的距离相等.|PA -PB|最小为0.在直线l 上求作点P ,使|PA -PB|的值最大.作直线AB ,与直线l 的交点即为P.三角形任意两边之差小于第三边. |PA -PB|最大值即为AB 长.在直线l 上求点P ,使AP BP -最大 作点B 关于l 的对称点B ′,作直线'AB ,与l 的交点即为点P .三角形任意两边之差小于第三边. |AP −BP |最大值即为AB′.3 / 14二、垂线段最值问题作法图形原理在直线l 上求作点P ,使线段AP 的值最小. 过点A 作AP ′⊥l于点P ′.连结直线外一点和直线上各点的所有线段中,垂线段最短. AP ′即为最小值.三、轨迹问题问题作法图形原理如图,在Rt△ABC 中,∠ACB=90°,AC=4,BC=6,点D 是边BC 的中点,点E 是边AB 上的任意一点(点E 不与点B 重合),沿DE 翻折△DBE 使点B 落在点F 处,连接AF ,则线段AF 长的最小值是________.由翻折得到,DF=DB=3.所以点F 在以点D 为圆心以3为半径的圆上.连接A 与圆心D ,AD 与圆的交点即为F'所以AF 的最小值是AD-DF'=5-3=2.利用“画圆”来确定动点问题解决最值问题. 如图,E ,F 是正方形ABCD 的边AD 上两个动点,满足AE=DF .连接CF 交BD 于点G ,连接BE 交AG 于点H .若正方形的边长为2,则线段DH 长度的最小值是________.取AB 的中点O ,连接OH 、OD ,根据直角三角形斜边上的中线等于斜边的一半可得OH=AB=1,利用勾股定理列式求出OD ,然后根据三角形的三边关系可知当O 、D 、H 三点共线求线段的最大值与最小值需要将该条线段转化到一个三角形中,在该三角形中,其他两边是已知的,则所求线段的最大值为其他两线段之和,最小时,DH的长度最小.值为其他两线段之差.4/ 14巩固练习类型一、将军饮马问题1.如图,在Rt△ABC中∠ACB=90°,AC=BC=8,CD=2,点P是AB上的一的动点,求:PC+PD的最小值。
初中几何最值问题常用解法初中几何最值问题一直是学生们的难点,但通过一些常用的解法,我们可以轻松解决这些问题。
以下将介绍9种常用的解法,帮助您更好地理解和学习。
一、轴对称法轴对称法是一种常用的解决最值问题的方法。
通过将图形进行轴对称变换,可以将问题转化为相对简单的问题,从而找到最值。
二、垂线段法垂线段法是指在几何图形中,利用垂线段的性质来求取最值。
例如,在矩形中,要使矩形的周长最小,可以将矩形的一条边固定,然后通过调整其他边的长度,使得矩形的周长最小。
三、两点之间线段最短两点之间线段最短是几何学中的基本原理。
在解决最值问题时,我们可以利用这个原理,找到两个点之间的最短距离。
四、利用三角形三边关系三角形三边关系是指在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边。
利用这个关系,可以解决一些与三角形相关的最值问题。
五、利用余弦定理求最值余弦定理是三角学中的基本定理,它可以用来解决一些与角度和边长相关的问题。
通过余弦定理,我们可以找到一个角的最大或最小余弦值,从而求得最值。
六、利用基本不等式求最值基本不等式是指在一个数列中,平均值总是小于等于几何平均值。
利用这个不等式,可以解决一些与数列相关的最值问题。
七、代数运算求最值代数运算是一种基本的数学运算方法,它可以用来解决一些与代数式相关的最值问题。
例如,通过求导数或微分的方法,可以找到一个函数的最大或最小值。
八、代数方程求最值代数方程是一种基本的数学方程形式,它可以用来解决一些与代数方程相关的最值问题。
例如,通过解二次方程或不等式的方法,可以找到一个表达式的最大或最小值。
九、几何变换求最值几何变换是指在几何图形中,通过平移、旋转、对称等方式改变图形的形状和大小。
利用几何变换的方法,可以解决一些与图形变换相关的最值问题。
例如,在矩形中,要使矩形的面积最大。
初中数学线段最值问题解题技巧(最新版4篇)目录(篇1)1.线段最值问题的定义和特点2.解题思路和方法3.具体解题步骤和技巧正文(篇1)一、线段最值问题的定义和特点线段最值问题是指在已知线段长度范围内,求取最大或最小值的问题。
此类问题在数学中较为常见,尤其是在几何学和代数中的应用广泛。
其特点在于,通常需要结合线段长度、角度、边长等几何要素进行求解。
二、解题思路和方法1.转化:将问题转化为具体几何模型或代数方程。
2.寻找最大值点:通过观察线段或几何图形,找到最大值点。
3.应用数学知识:利用数学知识求解最大值,如三角函数、勾股定理等。
4.运用数学公式:运用特定数学公式,如辅助线公式、几何倍增等,来寻找最大值。
三、具体解题步骤和技巧1.分析问题:首先需要认真阅读问题,理解问题的要求。
2.构建模型:根据问题建立几何模型或代数方程。
3.寻找最大值点:根据题目中的条件,找到最大值点。
这可能需要对几何图形或代数方程进行深入分析。
4.应用数学知识:使用所学的数学知识求解最大值,例如:三角函数、勾股定理等。
5.验证结果:验证所求得的解是否符合题目要求,必要时进行修正。
总之,解决线段最值问题需要灵活运用数学知识,同时注意分析问题、建立模型、寻找最大值点和应用数学知识等多个步骤。
目录(篇2)一、初中数学线段最值问题解题技巧概述1.解题技巧简介2.解题技巧的应用范围和优势3.解题技巧的适用条件和限制二、初中数学线段最值问题解题技巧详解1.寻找临界点法2.构造辅助线法3.转化角度法4.函数思想法三、初中数学线段最值问题解题技巧的实际应用案例1.题目类型:线段和的最值问题2.题目类型:线段长的最值问题3.题目类型:线段差的的最值问题4.题目类型:三角形中的最值问题正文(篇2)初中数学线段最值问题解题技巧是解决线段相关问题的有效工具。
它通过寻找临界点、构造辅助线、转化角度以及运用函数思想等方法,将复杂的问题简单化,从而快速准确地求解。
二次函数背景下的几何问题——线段最值问题线段最值问题是在二次函数背景下的一种几何问题,主要是求解一个线段的最大值或最小值。
这个问题可以通过二次函数的图像和相关的数学理论来解决。
在解决这类问题时,我们可以利用二次函数的性质和相关的数学技巧来找到线段的最值点,从而得出最值。
首先,我们来回顾一下二次函数的一般形式:f(x) = ax^2 + bx+ c,其中a、b、c都是常数且a不等于0。
根据二次函数的图像特点,我们知道它是一个抛物线,可以是开口向上(a>0)或开口向下(a<0)的。
对于线段最值问题,我们通常要确定线段的端点,然后找出其中的最大值或最小值点。
这可以通过以下步骤来完成:1.确定二次函数的图像形状:根据二次函数的参数a的值,确定抛物线是开口向上还是开口向下。
2.确定线段的端点:线段的端点可以是给定的数值,也可以通过求解二次函数的解来确定。
根据二次函数的性质,它的两个解(也就是x的值)对应着抛物线与x轴的交点,即抛物线的顶点和x轴的两个交点。
3.求解最值点:对于线段的最大值点,我们需要找到抛物线的顶点,并通过计算确定它的y坐标值。
通过二次函数的解析式,我们可以知道抛物线的顶点坐标是(-b/2a, f(-b/2a))。
同样的,对于线段的最小值点,我们也可以通过类似的方法来解决。
4.判断最值点是否在线段上:在找到最值点之后,我们需要判断它是否在给定的线段上。
这可以通过将最值点的x坐标值与线段的端点的x坐标值进行比较来实现。
如果最值点的x坐标值位于线段的端点之间,则最值点就在线段上。
通过以上步骤,我们可以很容易地求解线段的最值问题。
当然,在实际应用中,可能会碰到更复杂的情况,例如线段与其他二次函数曲线的交点等。
但是,通过理解二次函数的性质和运用相关的数学知识,我们可以应对这些情况并解决问题。
总结而言,线段最值问题是在二次函数背景下的一种几何问题,通过确定二次函数的图像形状、线段的端点、求解最值点和判断最值点是否在线段上,我们可以解决线段的最值问题。
几何中的最值几何中的最值问题是指在一定的条件下,求平面几何图形中某个量(如线段长度、角度大小、图形周长或面积)等的最大值或最小值。
求几何最值问题的基本方法有:1、几何定理(公理)法;2、临界状态(特殊位置与极端位置法);解决几何最值问题的通常思路(分析定点、动点,寻找定量)①模型解题:若属于常见模型,调用模型解决问题;②定理解题:若不属于常见模型,寻找定量,借助基本定理解决问题. ③轨迹解题:一般用于压轴题转化原则:尽量减少变量,向定点、定线段、定图形靠拢.一.几何定理:(画出模型)1.线段公理——两点之间,线段最短;2.直线外一点与直线的所有连线中垂线段最短3.三角形三边关系(两边之和大于第三边,两边之差小于第三边)4.两平行线间距离最短;5.过圆内一点,最长的弦为直径,最短的弦为垂直于直径的弦二、常见模型㈠.过河问题llB线段求其和, AB 河两侧,线段求其差, AB 河同侧,㈡、角平分线模型P A +PB 最小,需要点在异侧 |P A -PB |最大, 需要点在同侧蜂蜜蚂蚁C㈢梯子靠墙模型O A ⊥OB,AB=a ,⊿ABP 是等腰直角三角形。
求OP 的最大值 解法一:根据直角三角形斜边上的中线等于斜边的一半,可知a AB OE 2121==是定值,与OP 构造三角形OEP.解法二:根据等腰直角三角形ABP 斜边上的中线等于斜边的一半,可知解法三:A,B,O 三点在以AB 为直径的圆上,即二.常见临界状态(有待补充):三、观察动点的运动轨迹在武汉中考题的压轴题中求最值问题时,仅依靠定理或模型解决不了问题时,需要我们尝试去思考动的运动轨迹是什么,从而帮助我们解题。
一、过河模型1、在直线l 上找一点P ,使得其到直线同侧两点A 、B 的距离之和最小。
2、直线12l l 、交于O 、P 是两直线间的一点,在直线12l l 、上分别找一点A 、B ,使得△PAB的周长最短。
3、如图,圆柱形玻璃杯,高为12cm ,底面周长为18cm ,在杯内离杯底4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为______cm .AB2第2题图4、如图,当四边形P ABN 的周长最小时,a = .5、如图,两点A 、B 在直线MN 外的同侧,A 到MN 的距离AC =8,B 到MN 的距离BD =5,CD =4,P 在直线MN 上运动,则PA PB -的最大值等于 .6、点A 、B 均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角坐标系如图所示.若P 是x 轴上使得PA PB -的值最大的点,Q 是y 轴上使得QA +QB 的值最小的点,则OP OQ ⋅= .(1)如图1,若点C (x ,0)且-1<x <3,BC ⊥AC ,求y 与x 之间的函数关系式; (2)如图2,当点B 的坐标为(-1,1)时,在x 轴上另取两点E ,F ,且EF =1.线段EF 在x 轴上平移,线段EF 平移至何处时,四边形ABEF 的周长最小?求出此时点E 的坐标.B (-图1 图28、在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,OA =3,OB =4,D 为边OB 的中点.(1)若E 为边OA 上的一个动点,当△CDE 的周长最小时,求点E 的坐标;(2)若E 、F 为边OA 上的两个动点,且EF =2,当四边形CDEF 的周长最小时,求点E 、F 的坐标.1. (2011湖北荆门3分)分,高为5cm .若一只蚂蚁从P 点开始经过4 】A.13cmB.12cmC.10cmD.8cm2.(2011四川广安3分)如图,圆柱的底面周长为6cm ,AC 是底面圆的直径,高BC=6cm ,点P 是母线BC 上一点,且PC=23BC .一只蚂蚁从A 点出发沿着圆柱体的表面爬行到点P 的最短距离是【 】A 、6(4)π+㎝ B 、5cm C 、㎝ D 、7cm3.(2011广西贵港2分)如图所示,在边长为2P 为线段EF 上一个动点,连接BP 、GP ,则△BPG 19、已知:抛物线2(0)y ax bx c a =++≠的对称轴为C ,其中(3,0)A -,(0,2)C -。
几何最值的解题方法1. 引言几何最值问题是数学中常见的一类问题,它涉及到在给定的几何形状或空间中寻找某个特定量的最大值或最小值。
在解决这类问题时,我们需要运用几何知识和数学分析方法,结合具体情境进行推理和计算。
本文将介绍几何最值问题的解题方法,并通过实例进行说明。
2. 几何最值问题的分类几何最值问题可以分为两类:平面几何中的最值问题和立体几何中的最值问题。
2.1 平面几何中的最值问题在平面几何中,我们常常需要求解线段、角度、面积等量的最大值或最小值。
例如,求一个给定周长的矩形的面积最大,或者求一个给定半径的圆形内接三角形的面积最大。
为了解决这类问题,我们可以使用以下方法:2.1.1 导数法当需要求解平面图形上某个量(如面积)取得极大或极小值时,我们可以通过对该量进行微分,并令导数等于零来求得临界点。
通过判断临界点处导数符号变化来确定极大或极小值。
例如,对于矩形的面积最大问题,我们可以设矩形的长为x,宽为y,则矩形的面积为S=xy。
根据周长固定的条件,可以得到2x+2y=常数。
将这个条件代入面积公式S=xy中,可以得到只含有一个变量x的函数表达式S(x),然后对S(x)求导,并令导数等于零,即可求得临界点。
2.1.2 直观法直观法是一种通过观察和推理来解决几何最值问题的方法。
在解决一些简单的几何最值问题时,我们可以通过直观地找出一些特殊情况或者利用几何图形的性质来确定最值。
例如,在求解一个给定周长的矩形面积最大问题时,我们可以发现正方形是具有相同周长下面积最大的矩形,因而答案是正方形。
2.2 立体几何中的最值问题在立体几何中,我们常常需要求解体积、表面积等量的最大值或最小值。
例如,求一个给定表面积的圆柱体体积最大,或者求一个给定体积的圆柱体表面积最小。
为了解决这类问题,我们可以使用以下方法:2.2.1 导数法与平面几何中的导数法类似,我们可以通过对体积或表面积进行微分,并令导数等于零来求得临界点。
几何探究型问题(针对第25题)线段最值问题“费马点”问题【问题背景】“费马点”——就是到三角形三个顶点的距离之和最小的点.“费马点”问题在中考考查时主要隐藏在求PA+PB+PC的最小值问题,通常将某三角形绕点旋转一定的角度,从而将三条线段转化在同一条直线上,利用两点之间线段最短解决问题.【模型分析】对于一个各角不超过120°的三角形,“费马点”是对各边的张角都是120°的点,对于有一个角超过120°的三角形,费马点就是这个内角的顶点.费马点P使它到△ABC三个顶点的距离之和PA+PB+PC最小,这就是所谓的“费马”问题.如图,将△APC绕点A逆时针旋转60°到△AP′C′,则可以构造出等边三角形APP′,从而得到AP=PP′,CP=C′P′,所以将PA+PB+PC的值转化为PP′+PB+P′C′的值,则线段BC′的长即为所求的最小值.例题1.如图,已知点P为等边三角形ABC外接圆的劣弧BC上任意一点,求证:PB+PC=PA.证明:如答图,在P A上截取PM=PC,连接CM.∵△ABC 是等边三角形,∴∠ABC =∠ACB =60°,BC =AC .∵∠ABC =∠APC ,∴∠MPC =60°,∴△MPC 是等边三角形,∴∠MCP =60°,MC =PC ,∴∠ACM =∠BCP .在△BPC 和△AMC 中,⎩⎪⎨⎪⎧ BC =AC ,∠BCP =∠ACM ,PC =MC ,∴△BPC ≌△AMC (SAS),∴BP =AM ,∴PB +PC =AM +PM =P A .2.已知三个村庄A ,B ,C 构成了如图所示的△ABC(其中∠A ,∠B ,∠C 均小于120°),现选取一点P 作为打水井,使水井P 到三个村庄A ,B ,C 所铺设的输水管总长度最小.求输水管总长度的最小值.解:如答图,以BC 为边在△ABC 的外部作等边三角形BCD ,连接AD .∴AD 的长就是△ABC 的费马距离.易得∠ABD =90°,∴AD =AB 2+BD 2=5(km).答:输水管总长度的最小值为5 km.练习(2019·陕师大附中六模)问题提出(1)如图1,在△ABC 中,BC =2,将△ABC 绕点B 顺时针旋转60°得到△A ′BC ′,则CC ′=______.【解答】由旋转的性质可知∠CBC ′=60°,BC ′=BC ,则∠△BCC ′是等边三角形,故CC ′=BC =2.问题探究(2)如图2,在△ABC中,AB=BC=3,∠ABC=30°,点P为△ABC内一点,连接PA,PB,PC,求PA+PB+PC的最小值,并说明理由.解题思路将△ABP绕点B逆时针旋转60°得到△EBF,连接PF,EC.易证PA+PB+PC=EF+PF+PC;由PC+PF+EF≥EC,推出当点P,F在直线EC上时,PA+PB+PC的值最小,即为EC的长,求出EC的长即可解决问题.【解答】如答图1,将△ABP绕点B逆时针旋转60°得到△EBF,连接PF,EC.由旋转的性质可知△PBF是等边三角形,∴PB=PF.∵P A=EF,∴P A+PB+PC=EF+PF+PC.∵PC+PF+EF≥EC,∴当点P,F在直线EC上时,P A+PB+PC的值最小,易得BC=BE=BA=3,∠CBE=90°,∴EC=2BC=32,∴P A+PB+PC的最小值为3 2.问题解决(3)如图3,在四边形ABCD中,AD∥BC,AB=6,AD=4,∠ABC=∠BCD=60°.在四边形ABCD内部有一点P,满足∠APD=120°,连接BP,CP,点Q为△BPC内的任意一点,是否存在一点P和一点Q,使得PQ+BQ+CQ有最小值?若存在,请求出这个最小值;若不存在,请说明理由.解题思路将△PBQ绕点B逆时针旋转60°得到△EBG,则PQ=EG,△BQG是等边三角形,易知PQ+BQ+CQ=EG+GQ+QC≥EC,推出当EC取得最小值时,PQ +BQ +CQ 的值最小.延长BA 交CD 的延长线于点S ,作△ADS 的外接圆⊙O ,将线段BO ,BP 绕点B 逆时针旋转60°得到线段BO ′,BE ,连接EO ′,OB ,OP .易证△BEO ′≌△BPO(SAS),推出EO ′=OP =433,故点E 在以点O ′为圆心,433为半径的圆上,则当点E 在线段CO ′上时,EC 的值最小,最小值为CO ′-EO ′的长.【解答】如答图2,将△PBQ 绕点B 逆时针旋转60°得到△EBG ,连接GQ ,EC ,则PQ =EG ,△BQG 是等边三角形,∴BQ =QG ,∴PQ +BQ +CQ =EG +GQ +QC ≥EC ,∴当EC 取得最小值时,PQ +BQ +CQ 的值最小.如答图3,延长BA 交CD 的延长线于点S ,作△ADS 的外接圆⊙O ,连接OB .将线段BO ,BP 绕点B 逆时针旋转60°得到线段BO ′,BE ,连接EO ′,OP.易证△BEO ′≌△BPO (SAS),∴EO ′=PO .∵∠APD +∠ASD =180°,∴A ,P ,D ,S 四点共圆,∴OP =433,∴EO ′=433, ∴点E 在以点O ′为圆心,433为半径的圆上, ∴当点E 在线段CO ′上时,EC 的值最小,最小值为CO ′-EO ′的长,连接OO ′,延长OO ′到点R ,使得O ′R =OO ′,连接BR ,则∠OBR =90°,作RH ⊥CB 交CB 的延长线于点H ,O ′T ⊥CH 于点T ,OM ⊥BC 于点M .易知在Rt △OBM 中,BM =5,OM =1133, ∴OB =OM 2+BM 2=1433, ∴BR =3OB =14.易知△BHR ∽△OMB ,∴RH BM =BR OB,∴RH =5 3.∵HR ∥O ′T ∥OM ,OO ′=RO ′,∴TM =TH ,∴O ′T =RH +OM 2=1333,∴BT =O ′B 2-O ′T 2=3, ∴CO ′=CT 2+O ′T 2=2633, ∴CE =CO ′-EO ′=2633-433=2233, ∴PQ +BQ +CQ 的最小值为2233.类型三 “阿氏圆”问题【问题背景】“PA +k ·PB ”型的最值问题是近几年中考考查的热点,更是一个难点.当k 的值为1时,即可转化为“PA +PB ”之和最短问题,就可用我们常见的“将军饮马”问题模型来处理,即可以转化为轴对称问题来处理.当k 取任意不为1的正数时,此类问题的处理通常以动点P 的运动轨迹不同来分类,一般分为两类研究,即点P 在直线上运动和点P 在圆上运动.其中点P 在圆周上运动的类型称之为“阿氏圆”问题.【模型分析】如图1,⊙O 的半径为r ,点A ,B 都在⊙O 外,P 为⊙O 上一动点,已知r =k ·OB ,连接PA ,PB ,则当PA +k ·PB 的值最小时,点P 的位置如何确定?如图2,在线段OB 上截取OC ,使OC =k ·r ,则可证明△BPO 与△PCO 相似,即k ·PB =PC .故求PA +k ·PB 的最小值可以转化为PA +PC 的最小值,其中A ,C 为定点,P 为动点,当点P ,A ,C 共线时,PA +PC 的值最小,如图3.“阿氏圆”模型解题策略:第一步:连接动点与圆心O(一般将含有k 的线段两端点分别与圆心O 相连),即连接OB ,OP ;第二步:计算线段OP 与OB 及OP 与OA 的线段比,找到线段比为k 的情况,如例子中的OP OB =k ; 第三步:在OB 上取点C ,使得OC OP =OP OB ;第四步:连接AC ,与⊙O 的交点即为点P .例题如图,在Rt △ABC 中,∠ACB =90°,CB =4,CA =6,⊙C 的半径为2,P 为圆上一动点,连接AP ,BP ,求AP +12BP 的最小值. 解:如答图,连接CP ,在CB 上取点D ,使CD =1,连接AD ,PD .∵CD CP =CP BC =12,∠PCD =∠BCD , ∴△PCD ∽△BCP ,∴PD BP =12, ∴PD =12BP ,∴AP +12BP =AP +PD , ∴要使AP +12BP 最小,则AP +PD 最小, 当点A ,P ,D 在同一条直线时,AP +PD 最小,即AP +12BP 的最小值为AD 的长. 在Rt △ACD 中,∵CD =1,AC =6,∴AD =AC 2+CD 2=37,∴AP +12BP 的最小值为37. 练习问题提出(1)如图1,已知线段AB 和BC ,AB =2,BC =5,则线段AC 的最小值为______.解题思路当点A 在线段BC 上时,线段AC 有最小值.【解答】∵当点A 在线段BC 上时,线段AC 有最小值,∴线段AC 的最小值为5-2=3.问题探究(2)如图2,已知在扇形COD 中,∠COD =90°,DO =CO =6,A 是OC的中点,延长OC 到点F ,使CF =OC ,P 是CD ︵上的动点,点B 是OD 上的一点,BD =1.①求证:△OAP ∽△OPF .解题思路由题意可得OA OP =OP OF =12,由相似三角形的判定可得△OAP ∽△OPF . 【解答】∵A 是OC 的中点,DO =CO =6=OP ,∴OA OP =12. ∵CF =OC ,∴OF =2OC =2OP ,∴OP OF =12, ∴OA OP =OP OF,且∠AOP =∠POF ,∴△OAP ∽△OPF .②求BP +2AP 的最小值.解题思路由相似三角形的性质可得PF =2AP ,可得BP +2AP =BP +PF ,即当F ,P ,B 三点共线时,BP +2AP 有最小值,最小值为BF 的长,由勾股定理即可求解.【解答】∵△OAP ∽△OPF ,∴AP PF =OP OF =12, ∴PF =2AP .∵BP +2AP =BP +PF ,∴当F ,P ,B 三点共线时,BP +2AP 有最小值,最小值为BF 的长.∵DO =CO =6,BD =1,∴BO =5,OF =12,∴BF =OB 2+OF 2=13.问题解决(3)如图3,有一个形状为四边形ABCD 的人工湖,BC =9千米,CD =4千米,∠BCD =150°,现计划在湖中选取一处建造一座假山P ,且BP =3千米,为方便游客观光,从C ,D 分别建小桥PD ,PC .已知建桥PD 每千米的造价是3万元,建桥PC 每千米的造价是1万元,建桥PD 和PC 的总造价是否存在最小值?若存在,请确定点P 的位置,并求出总造价的最小值,若不存在,请说明理由.(桥的宽度忽略不计)解题思路以点B 为圆心,3为半径作圆交AB 于点E ,交BC 于点F ,点P 为EF ︵上一点,连接BP ,PC ,PD ,在BC 上截取BM =1,连接MD ,PM ,过点D 作DG ⊥CB ,可证△BPM ∽△BCP ,可得PC =3PM ,当点P 在线段MD 上时,建桥PD 和PC 的总造价有最小值,由勾股定理可求MD 的值,即可求出建桥PD 和PC 的总造价的最小值.【解答】存在.如答图,以点B 为圆心,3为半径作圆交AB 于点E ,交BC 于点F ,P 为EF ︵上一点,连接BP ,PC ,PD ,在BC 上截取BM =1,连接MD ,PM ,过点D 作DG ⊥BC 交BC 的延长线于点G .∵BM BP =13=BP BC,且∠PBM =∠CBP , ∴△BPM ∽△BCP ,∴PM CP =BM BP =13,∴PC =3PM . ∵建桥PD 和PC 的总造价为3PD +PC =3PD +3PM =3(PD +PM ),∴当点P 在线段MD 上时,建桥PD 和PC 的总造价有最小值.∵∠BCD =150°,∴∠DCG =30°.∵DG ⊥BC ,∴DG =12DC =23(千米),CG =3DG =6(千米), ∴MG =BC +CG -BM =9+6-1=14(千米),∴MD =DG 2+MG 2=413(千米),∴建桥PD 和PC 的总造价的最小值为3×413=1213万元.作业5.(2019·交大附中三模)问题提出(1)如图1,点M ,N 是直线l 外两点,在直线l 上找一点K ,使得MK +NK 最小. 问题探究(2)如图2,在等边三角形ABC 内有一点P ,且P A =3,PB =4,PC =5,求∠APB 的度数.问题解决(3)如图3,矩形ABCD是某公园的平面图,AB=30 3 米,BC=60米,现需要在对角线BD上修一凉亭E,使得到公园出口A,B,C的距离之和最小.问:是否存在这样的点E?若存在,请画出点E的位置,并求出EA+EB+EC的最小值;若不存在,请说明理由.解:(1)如答图1,连接MN,与直线l交于点K,点K即为所求.(2)如答图2,把△APB绕点A逆时针旋转60°得到△AP′C,连接PP′.由旋转的性质,得P′A=P A=3,P′C=PB=4,∠P AP′=60°,∠AP′C=∠APB,∴△APP′是等边三角形,∴PP′=P A=3,∠AP′P=60°.∵PP′2+P′C2=32+42=25,PC2=52=25,∴PP′2+P′C2=PC2,∴△PP′C为直角三角形,且∠PP′C=90°,∴∠AP′C=∠AP′P+∠PP′C=60°+90°=150°,∴∠APB=∠AP′C=150°.(3)存在.如答图3,把△ABE绕点B逆时针旋转60°得到△A′BE′,连接EE′.答图由旋转的性质,得A′B=AB=30 3 米,BE′=BE,A′E′=AE,∠E′BE=60°,∠A′BA=60°,∴△E′BE是等边三角形,∴BE=EE′,∴EA +EB +EC =A ′E ′+EE ′+EC .根据两点之间线段最短,可知当EA +EB +EC =A ′C 时最短,连接A ′C ,与BD 的交点E 2即为所求,此时EA +EB +EC 最短,最短距离为A ′C 的长度.过点A ′作A ′G ⊥CB 交CB 的延长线于点G . ∵∠A ′BG =90°-∠A ′BA =90°-60°=30°, A ′G =12A ′B =12AB =12×303=153(米),∴GB =3A ′G =3×153=45(米), ∴GC =GB +BC =45+60=105(米).在Rt △A ′GC 中,A ′C =A ′G 2+GC 2=(153)2+1052=3013(米), 因此EA +EB +EC 的最小值为3013 米. 6.问题提出(1)如图1,已知△OAB 中,OB =3,将△OAB 绕点O 逆时针旋转90°得△OA ′B ′,连接BB ′,则BB ′=问题探究(2)如图2,已知△ABC 是边长为43的等边三角形,以BC 为边向外作等边三角形BCD ,P 为△ABC 内一点,将线段CP 绕点C 逆时针旋转60°,点P 的对应点为点Q .①求证:△DCQ ≌△BCP . ②求P A +PB +PC 的最小值. 问题解决(3)如图3,某货运场为一个矩形场地ABCD ,其中AB =500米,AD =800米,顶点A ,D 为两个出口,现在想在货运广场内建一个货物堆放平台P ,在BC 边上(含B ,C 两点)开一个货物入口M ,并修建三条专用车道P A ,PD ,PM .若修建每米专用车道的费用为10 000元,当M ,P 建在何处时,修建专用车道的费用最少?最少费用为多少?(结果保留根号)解:(1)由旋转的性质,得∠BOB ′=90°,OB =OB ′=3, 根据勾股定理,得BB ′=3 2. (2)①证明:∵△BDC 是等边三角形, ∴CD =CB ,∠DCB =60°.由旋转的性质,得∠PCQ =60°,PC =QC , ∴∠DCQ =∠BCP .在△DCQ 和△BCP 中,⎩⎪⎨⎪⎧CD =CB ,∠DCQ =∠BCP ,CQ =CP ,∴△DCQ ≌△BCP (SAS). ②如答图1,连接AD ,PQ . ∵PC =CQ ,∠PCQ =60°,∴△CPQ 是等边三角形,∴PQ =PC , 由①知DQ =PB ,∴P A +PB +PC =P A +QD +PQ ,由两点之间线段最短,得P A +QD +PQ ≥AD , ∴P A +PB +PC ≥AD ,∴当点A ,P ,Q ,D 在同一条直线上时,P A +PB +PC 取得最小值,即为AD 的长,过点D 作DE ⊥AC ,交AC 的延长线于点E . ∵△ABC 是边长为43的等边三角形, ∴CB =AC =43,∠BCA =60°, ∴CD =CB =43,∠DCE =60°, ∴DE =6,∠DAE =∠ADC =30°, ∴AD =12,即P A +PB +PC 的最小值为12.答图(3)如答图2,将△ADP 绕点A 逆时针旋转60°,得△AD ′P ′.由(2)知,当点M ,P ,P ′,D ′在同一条直线上时,P A +PM +PD 最小,最小值为D ′M 的长.∵M 在BC 上,∴当D ′M ⊥BC 时,D ′M 取得最小值. 设D ′M 交AD 于点E ,连接DD ′,AM ,DM . 易知△ADD ′是等边三角形,∴EM =AB =500米, ∴BM =400米,PM =EM -PE =(500-40033)米,∴D ′E =32AD =4003(米),∴D ′M =(4003+500)米, ∴最少费用为10 000×(4003+500)= 1 000 000(43+5)元.∴当M 建在BC 的中点(BM =400米)处,点P 在过M 且垂直于BC 的直线上,且在M上方(500-40033)米处时,修建专用车道的费用最少,最少费用为1 000 000(43+5)元.类型三 “阿氏圆”问题7.(2018·西工大附中三模) 问题提出(1)如图1,在△ABC 中,AB =AC ,BD 是AC 边的中线,请用尺规作图作出AB 边的中线CE ,并证明BD =CE ;问题探究(2)如图2,已知点P 是边长为6的正方形ABCD 内部一动点,P A =3,求PC +12PD 的最小值;问题解决(3)如图3,在矩形ABCD 中,AB =18,BC =25,点M 是矩形内部一动点,MA =15,当MC +35MD 最小时,画出点M 的位置,并求出MC +35MD 的最小值.解:(1)如答图1,线段EC 即为所求.证明:∵AB =AC ,AE =EB ,AD =CD ,∴AE =AD , 在△BAD 和△CAE 中,⎩⎪⎨⎪⎧AB =AC ,∠A =∠A ,AD =AE ,答图1∴△BAD ≌△CAE (SAS),∴BD =CE . (2)如答图2,在AD 上截取AE ,使得AE =32.∵P A 2=9,AE ·AD =32×6=9,∴P A 2=AE ·AD ,∴P A AD =AEP A.∵∠P AE =∠DAP ,∴△P AE ∽△DAP , ∴PE DP =P A DA =12,∴PE =12PD , ∴PC +12PD =PC +PE .∵PC +PE ≥EC ,∴PC +12PD 的最小值即为EC 的长,在Rt △CDE 中,∵∠CDE =90°,CD =6,DE =92,∴EC =62+(92)2=152,∴PC +12PD 的最小值为152.答图(3)如答图3,在AD 上截取AE ,使得AE =9. ∵MA 2=225,AE ·AD =9×25=225,∴MA 2=AE ·AD ,∴MA AD =AEMA.∵∠MAE =∠DAM ,∴△MAE ∽△DAM , ∴EM MD =MA DA =1525=35,∴ME =35MD , ∴MC +35MD =MC +ME .∵MC +ME ≥EC ,∴MC +35MD 的最小值即为EC 的长.如答图3,以点A 为圆心,AM 长为半径画弧,交EC 于点M ′,点M ′即为所求. 在Rt △CDE 中,∵∠CDE =90°,CD =18,DE =16, ∴EC =162+182=2145, ∴MC +35MD 的最小值为2145.8.(1)如图1,已知正方形ABCD 的边长为4,⊙B 的半径为2,P 是⊙B 上的一个动点,求PD +12PC 的最小值和PD -12PC 的最大值;(2)如图2,已知正方形ABCD 的边长为9,⊙B 的半径为6,P 是⊙B 上的一个动点,那么PD +23PC 的最小值为,PD -23PC 的最大值为(3)如图3,已知菱形ABCD 的边长为4,∠B =60°,⊙B 的半径为2,P 是⊙B 上的一个动点,那么PD +12PC 的最小值为,PD -12PC 的最大值为解:(1)如答图1,在BC 上取一点G ,使得BG =1,连接PB ,PG ,DG .∵PB BG =CBPB=2,∠PBG =∠CBP , ∴△PBG ∽△CBP , ∴PG CP =BG BP =12,∴PG =12PC , ∴PD +12PC =PD +PG .∵PD +PG ≥DG ,∴当D ,P ,G 三点共线时,PD +12PC 的值最小,最小值为DG =42+32=5.∵PD -12PC =PD -PG ≤DG ,∴如答图2,当点P 在DG 的延长线上时,PD -12PC 的值最大,最大值为5.答图(2)106,106.【解法提示】如答图3,在BC 上取一点G ,使BG =4,连接PG ,PB ,DG . ∵PB BG =64=32,CB PB =96=32,∴PB BG =CB BP. ∵∠PBG =∠CBP ,∴△PBG ∽△CBP , ∴PG CP =BG BP =23, ∴PG =23PC ,∴PD +23PC =DP +PG .∵DP +PG ≥DG ,∴当D ,P ,G 三点共线时,PD +23PC 的值最小,最小值为DG =52+92=106.∵PD -23PC =PD -PG ≤DG ,∴当点P 在DG 的延长线上时,PD -12PC 的值最大,最大值为106.答图(3)37,37.【解法提示】如答图4,在BC 上取一点G ,使得BG =1,连接PB ,PG ,DG ,作DF ⊥BC 交BC 的延长线于点F .∵PB BG =21=2,BC PB =42=2,∴PB BG =CB BP. ∵∠PBG =∠CBP ,∴△PBG ∽△CBP , ∴PG CP =BG BP =12, ∴PG =12PC ,∴PD +12PC =DP +PG .∵DP +PG ≥DG ,∴当D ,P ,G 三点共线时,PD +12PC 的值最小,最小值为DG 的长.在Rt △CDF 中,∵∠DCF =60°,CD =4, ∴DF =CD ·sin60°=23,CF =2,∴在Rt △GDF 中,DG =(23)2+52=37. ∴PD +12PC 的最小值为37.∵PD -12PC =PD -PG ≤DG ,∴当点P 在DG 的延长线上时,PD -12PC 的值最大,最大值为37.。
几何图形中求线段,线段和,面积等最值问题(压轴通关)目录【中考预测】预测考向,总结常考点及应对的策略 【误区点拨】点拨常见的易错点【抢分通关】精选名校模拟题,讲解通关策略(含新考法、新情境等)几何图形中求线段、线段和、面积最值题是全国中考的热点内容,更是全国中考的必考内容。
每年都有一些考生因为知识残缺、基础不牢、技能不熟、答欠规范等原因导致失分。
1.从考点频率看,几何图形中的性质综合问题,是高频考点、也是必考点。
2.从题型角度看,以解答题的最后一题或最后二题为主,分值12分左右,着实不少!题型一 线段最值问题【例1】(2024·四川成都·一模)如图1,在四边形ABFE 中,90F ∠=︒,点C 为线段EF 上一点,使得AC BC ⊥,24AC BC ==,此时BF CF =,连接BE ,BE AE ⊥,且AE BE =.(1)求CE 的长度;(2)如图2,点D 为线段AC 上一动点(点D 不与A ,C 重合),连接BD ,以BD 为斜边向右侧作等腰直角三角形BGD .①当DG AB ∥时,试求AD 的长度;②如图3,点H 为AB 的中点,连接H G ,试问H G 是否存在最小值,如果存在,请求出最小值;如果不存在,请说明理由.【答案】(2)①103;②2【分析】(1)取AB 的中点H ,连接,EH HC ,证明FEB CAB ∠=∠,得出1tan tan 2FB FEB CAB EF ∠==∠=则12BF EF =,进而根据CE EF CF =−(2)①如图所示,过点D 作DM EF ⊥于点M ,过点D 作DN AB ⊥于点N ,证明DBC GBF ∽得出DC ,即可得出DM GF =,证明DMG GFB ≌,进而证明G 在EF 上,根据已知条件证明D 在EB上,然后解直角三角形,即可求解;②如图所示,过点H 作HP EF ⊥于点P ,连接EH ,由①可得G 在EF 上运动,当HG EF ⊥时,H G 取得最小值,即,G P 重合时,HP 的长即为HG 的最小值,由①可得103AT =,求得sin ETA ∠=45HEF ETA α∠=+︒=∠,即可求解.【详解】(1)解:如图所示,取AB 的中点H ,连接,EH HC ,∵BF CF =,90F ∠=︒,∴45BCF ∠=︒,BC , 又∵AC BC ⊥ ∴45ECA ∠=︒ ∵AE BE =,BE AE ⊥ ∴45EBA ∠=︒ ∴45ECA ABE ∠=∠=︒ ∴FEB CAB ∠=∠ ∵24AC BC ==, ∴2BC =∴BF CF = ∴1tan 2CB CAB AC ∠== ∴1tan tan 2FB FEB CAB EF ∠==∠= ∴12BF EF =∴EF =∴CE EF CF =−(2)①如图所示,过点D 作DM EF ⊥于点M ,过点D 作DN AB ⊥于点N ,由(1)可得45ACE ABE ∠=∠=︒ ∴CDM V 是等腰直角三角形,∴CD ,∵,CBF DBG 都是等腰直角三角形,∴CB DBBF BG==∴BD BGBC BF= 又∵DBG CBF ∠=∠ ∴DBC GBF ∠=∠ ∴DBC GBF ∽∴DC DBGF GB==∴DC ∴DM GF = 在,DMG GFB 中,DM GF DMG F DG BG =⎧⎪∠=∠⎨⎪=⎩∴DMG GFB ≌ ∴MGD FBG ∠=∠ ∵90FBG FGB ∠+∠=︒∴90MGD FGB ∠+∠=︒ 又∵90DGB ∠=︒ ∴180MGF ∠=︒ ∴G 在EF 上,∵DG AB ∥,90DGB ∠=︒ ∴90GBA ∠=︒∵45,45ABE DBG ABD ∠=︒∠=︒=∠ ∴D 在EB 上, ∵1tan 2CAB ∠=,∴12DN AN =,则AD ∵,45DN AB ABE ⊥∠=︒ ∴DN DB = ∴3AB DN =, ∵4AC =,2CB =∴AB ==∴13DN AB ==∴103AD ==, ②如图所示,过点H 作HP EF ⊥于点P ,连接EH ,由①可得G 在EF 上运动,∴当HG EF ⊥时,HG 取得最小值,即,G P 重合时,HP 的长即为H G 的最小值, 设,AC EB 交于点T ,即与①中点D 重合,由①可得103AT =∵AB =∴AE 12EH AB ==∴sin 3AE ETA AT ∠=== 设FEB CAB α∠=∠= 则45HEF ETA α∠=+︒=∠,在Rt PEH △中,sin sin 102PH HEF EH ETA EH =∠⨯=∠⨯= 【点睛】证明G 点在EF 上是解题的关键.【例2】(2024·天津红桥·一模)在平面直角坐标系中,点()0,0O ,()2,0A , (2,B ),C ,D 分别为OA ,OB 的中点.以点O 为中心,逆时针旋转OCD ,得OC D '',点C ,D 的对应点分别为点C ',D ¢.(1)填空∶如图①,当点D ¢落在y 轴上时,点D ¢的坐标为_____,点C '的坐标为______; (2)如图②,当点C '落在OB 上时, 求点D ¢的坐标和 BD '的长; (3)若M 为C D ''的中点,求BM 的最大值和最小值(直接写出结果即可). 逆时针旋转OCD ,得OC D '',知为中心,逆时针旋转OCD,得OC D'',可得(2,23B为中心,逆时针旋转OCD,得OC D'',()A,2,0()A2,0,(2,23 B是AOB的中位线,为中心,逆时针旋转OCD,得OC D'','==,D CD3M是C'(2,23B1.(2024·山东济宁·模拟预测)已知,四边形ABCD 是正方形,DEF 绕点D 旋转(DE AB <),90EDF ∠=︒,DE DF =,连接AE CF ,.(1)如图1,求证:ADE CDF ≅; (2)直线AE 与CF 相交于点G .①如图2,BM AG ⊥于点M ,⊥BN CF 于点N ,求证:四边形BMGN 是正方形;②如图3,连接BG ,若6AB =,3DE =,直接写出在DEF 旋转的过程中,线段BG 长度的最小值为 . 再证明AMB CNB ≅可得MB ,证明BGM 是等腰直角三角形,然后求出【详解】(1)证明:四边形ABCD 是正方形,AD DC ∴=,90ADC ∠=︒,DE DF =,90EDF ∠=︒,ADC EDF ∴∠=∠,ADE CDF \Ð=Ð,在ADE V 和CDF 中,DA DC ADE CDF DE DF =⎧⎪∠=∠⎨⎪=⎩, SAS ADE CDF ∴()≌. (2)解:①证明:如图2中,设AG 与CD 相交于点P ,90ADP ∠=︒, 90DAP DPA ∴∠+∠=︒,ADE CDF ≅,DAE DCF ∴∠=∠,DPA GPC ∠∠=,90DAE DPA GPC GCP ∠∠∠∠∴+=+=︒, 90PGN ∠∴=︒,BM AG ⊥,BN GN ⊥,∴四边形BMGN 是矩形,90MBN ∴∠=︒,四边形ABCD 是正方形,AB BC ∴=,90ABC MBN∠∠==︒,ABM CBN ∴∠=∠,又90AMB BNC ∠∠==︒,AMB CNB ∴≅,MB NB ∴=,∴矩形BMGN 是正方形;∵DAH BAM ABM ∠+∠=∠∴DAH ABM ∠=∠,又∵AD BA =,DHA ∠∴AMB DHA ≌△△, BM AH ∴=,2AH AD =DH ∴最大时,可知,BGM 是等腰直角三角形,23⨯=(1)若AC AB AD BC >⊥,,当点E 在线段AC 上时,AD BE ,交于点F ,点F 为BE 中点.①如图1,若37BF BD AD ===,,求AE 的长度;②如图2,点G 为线段AF 上一点,连接GE 并延长交BC 的延长线于点H .若点E 为GH 中点,602BAC DAC EBC ∠=︒∠=∠,,求证:12AG DF AB +=. (2)如图3,若360AC AB BAC ︒==∠=,.当点E 在线段AC 的延长线上时,连接DE ,将DCE △沿DC 所在直线翻折至ABC 所在平面内得到DCM △,连接AM ,当AM 取得最小值时,ABC 内存在点K ,使得ABK CAK ∠=∠,当KE 取得最小值时,请直接写出2AK 的值.的长,证明(AAS)FDB FGE ≌AD BC EG AD ⊥⊥,, 90BDF ∴∠=︒,EGF ∠=BDF EGF ∴∠=∠,在Rt BDF △中,90BDF ∠=点(AAS)FDB FGE ∴≌3BD GE ∴==DFAD=,7∴=AG ADRt AGE中,2⊥,AD BC90∴∠=︒,ADC点E为GH的中点,∴=,GE HE在AGE和KHE△中,=AE KE∴≌(SAS) AGE KHE∴∠=∠34∠=DAC∴设EBC∠点和KEF中,(SAS)AFB KEF ∴≌89AB FK ∴=∠=∠,BAC ∠=Rt FDM 中,1由题意可知:160∠=︒,AC 30CAM ∴∠=︒,1322CM AC ∴==, ABK ∠=ABK ∴∠+∠EKQ EOA ∴∽,KE KQ QE(1)如图①,在ABC 中,点M ,N 分别是AB ,AC 的中点,若BC =MN 的长为__________. 问题探究:(2)如图②,在正方形ABCD 中,6AD =,点E 为AD 上的靠近点A 的三等分点,点F 为AB 上的动点,将AEF △折叠,点A 的对应点为点G ,求CG 的最小值. 问题解决:(3)如图③,某地要规划一个五边形艺术中心ABCDE ,已知120ABC ∠=︒,60BCD ∠=︒,40m AB AE ==,80m BC CD ==,点C 处为参观入口,DE 的中点P 处规划为“优秀”作品展台,求点C 与点P 之间的最小距离.是ABC 的中位线,由中位线的性质,即可求解,Rt EDC 中,根据勾股定理,求出∵点E为AD上的靠近点∴11633AE AD==⨯=在Rt EDC中,EC 根据折叠的性质,【问题提出】(1)如图1,点D 为ABC 的边BC 上一点,连接2,,3BD AD BDA BAC AB ∠=∠=,若ABD △的面积为4,则ACD 的面积为______; 【问题探究】(2)如图2,在矩形ABCD 中,6,5AB BC ==,在射线BC 和射线CD 上分别取点E F 、,使得65BE CF =,连接AE BF 、相交于点P ,连接CP ,求CP 的最小值; 【问题解决】(3)如图3,菱形ABCD 是某社区的一块空地,经测量,120AB =米,60ABC ∠=︒.社区管委会计划对该空地进行重新规划利用,在射线AD 上取一点E ,沿BE CE 、修两条小路,并在小路BE 上取点H ,将CH 段铺设成某种具有较高观赏价值的休闲通道(通道宽度忽略不计),根据设计要求,BHC BCE ∠=∠,为了节省铺设成本,要求休闲通道CH 的长度尽可能小,问CH 的长度是否存在最小值?若存在,求出CH 长度的最小值;若不存在,请说明理由.994CBAABDSS ==,即可得到ACD 的面积;为直径的O 上交O 于点P )证明,CBH EBC ∽得到,再证明,ABH EBA ∽得到在O 的劣弧与O 相交于点ABDCBAS S=994CBAABDSS ==,∴ACD 的面积为9CBAABDS S−=故答案为:为直径的O 上运动,交O 于点P,作ABH 的外接圆O ,连接∴,CBH EBC ∽ BC BH∴,ABH EBA ∽ 120AHB EAB ∠=∠=在O 的劣弧120=︒在AOB 中,则1602BM AM AB ===米, 与O 相交于点题型二 线段和的最小值问题【例1】(2024·四川达州·模拟预测)【问题发现】(1)如图1,在OAB 中,3OB =,若将OAB 绕点O 逆时针旋转120︒得OA B '',连接BB ',则BB '=________. 【问题探究】(2)如图2,已知ABC 是边长为BC 为边向外作等边BCD △,P 为ABC 内一点,连接AP BP CP ,,,将BPC △绕点C 逆时针旋转60︒,得DQC △,求PA PB PC ++的最小值; 【实际应用】(3)如图3,在长方形ABCD 中,边1020AB AD ==,,P 是BC 边上一动点,Q 为ADP △内的任意一点,是否存在一点P 和一点Q ,使得AQ DQ PQ ++有最小值?若存在,请求出此时PQ 的长,若不存在,请说明理由.将AQD 绕点BC ⊥在OAB 中,3OB =,将OAB 绕点120BOB '∴∠=︒,3OB OB '==,OBB OB B ''∴∠=∠,OBB '∠+OC BB ⊥OCB '∴∠将∴++=+PA PB PC PA∴当点D、Q、P、A⊥连接AD,作DE AC∠=,ABC边长为DCBDCE BCA∴∠=∠=60)如图所示,将AQD绕点,90EA︒=【例2】(2024·贵州毕节·一模)在学习了《图形的平移与旋转》后,数学兴趣小组用一个等边三角形继续进行探究.已知ABC 是边长为2的等边三角形.(1)【动手操作】如图1,若D 为线段BC 上靠近点B 的三等分点,将线段AD 绕点A 逆时针旋转60︒得到线段AE ,连接CE ,则CE 的长为________;(2)【探究应用】如图2,D 为ABC 内一点,将线段AD 绕点A 逆时针旋转60︒得到线段AE ,连接CE ,若,,B D E本题主要考查了等边三角形的性质与判定,矩形的性质与判定,旋转的性质,勾股定理,含度角的直角三角形的性质,解题的关键在于利用旋转构造等边三角形,从而把三条不在一条直线的线段之和的问题,转换成几点共线求线段的最值问题是解题的关键.三点共线,求证:EB 平分AEC ∠;(3)【拓展提升】如图3,若D 是线段BC 上的动点,将线段AD 绕点D 顺时针旋转60︒得到线段DE ,连接CE .请求出点D 在运动过程中,DEC 的周长的最小值. 证明BAD CAE ≌,的三等分点和ABC 是边长为ADB AEC =∠60BEC ∠=︒EB(3)由ABD ACE ≌△△,得CE BD =,可得DEC 的周长BC DE =+,而DE AD =,知AD 的最小时,DEC的周长最小,此时AD BC ⊥,即可求得答案.∵ABC 是等边三角形,AB AC =,∴SAS ABD ACE ≌()BD CE =;的三等分点,且ABC 是边长为∵ABC 是等边三角形,AB AC =,∴SAS ABD ACE≌(),120ADB AEC ∠=∠=上时,DEC 的周长存在最小值,如图:∵ABD ACE ≌△△, ∴CE BD =,∴DEC 的周长DE CE =++∴当点D 在线段BC 上时,DEC 的周长∵DEC 为等边三角形,DE AD =,的最小时,DEC 的周长最小,此时∴DEC 的周长的最小值为【点睛】本题考查几何变换综合应用,旋转性质、涉及等边三角形的性质,全等三角形的判定和性质,垂1.(2024·陕西·二模)在平面直角坐标系中,A 为y 轴正半轴上一点,B 为x 轴正半轴上一点,且4OA OB ==,连接AB .(1)如图1,C 为线段AB 上一点,连接OC ,将OC 绕点O 逆时针旋转90︒得到OD ,连接AD ,求AC AD +的值.(2)如图2,当点C 在x 轴上,点D 位于第二象限时,90ADC ∠=︒,且AD CD =,E 为AB 的中点,连接DE ,试探究线段AD DE +是否存在最小值?若存在,求出AD DE +的最小值;若不存在,请说明理由.≌,可得出点,证明AND CMDAOC的平分线对称,由∴AND CMD≌,DN DM=,P大值和最小值分别是______和______;(2)如图2,在矩形ABCD中,4AB=,6AD=,点P在AD上,点Q在BC上,且AP CQ=,连接CP、QD,求PC QD+最小时AP的长;(3)如图3,在ABCDY中,10AB=,20AD=,点D到AB的距离为动点E、F在AD边上运动,始终保持3EF=,在BC边上有一个直径为BM的半圆O,连接AM与半圆O交于点N,连接CE、FN,求CE EF FN++的最小值.()SASABP CDQ≌=的O 外有一点在O 上, 如图,当点P 在AO 的延长线上时,此时PA 的最大值为:PO OA +故答案为:11;3;(2)延长BA 至点B ',使AB ∵在矩形ABCD 中,4AB =,∴DAB BAP CBA DCQ '∠=∠=∠=∠在ABP 和CDQ 中,AB CD =∴()SAS ABP CDQ ≌Rt B BC '中,AB P BB ''=∠ (3)如图,过点F 作FG EC ∥,交BC OG ',NO ,∵在ABCD Y 中,10AB =,20AD =,点∴AD BC ∥,即EF CG ∥,BC AD =EFGC【点睛】本题考查圆的基本性质,全等三角形的判定和性质,相似三角形的判定和性质,矩形的性质,平行四边形的判定和性质,对称的性质,勾股定理,三角形三边关系定理,两点之间线段最短等知识点.灵活运用所学知识、弄清题意并作出适当辅助线是解题的关键.3.(2024·陕西西安·三模)【问题提出】(1)如图①,AB 为半圆O 的直径,点P 为半圆O 的AB 上一点,BC 切半圆O 于点B ,若10AB =,12BC =,则CP 的最小值为 ; 【问题探究】(2)如图②,在矩形ABCD 中,3AB =,5BC =,点P 为矩形ABCD 内一点,连接PB 、PC ,若矩形ABCD 的面积是PBC 面积的3倍,求PB PC +的最小值; 【问题解决】(3)如图③,平面图形ABCDEF 为某校园内的一片空地,经测量,AB BC ==米,=60B ∠︒,150BAF BCD ∠=∠=︒,DE DC ⊥,20CD =米,劣弧E F 所对的圆心角为90︒,E F 所在圆的圆心在AF 的延长线上,10AF =米.某天活动课上,九(1)班的同学准备在这块空地上玩游戏,每位同学在游戏开始前,在BC 上选取一点P ,在弧E F 上选取一点Q ,并在点P 和点Q 处各插上一面小旗,从点A 出发,先到点P 处拔下小旗,再到点Q 处拔下小旗,用时最短者获胜.已知晓雯和晓静的跑步速度相同,要使用时最短,则所跑的总路程()AP PQ +应最短,问AP PQ +是否存在最小值?若存在,请你求出AP PQ +的最小值;若不存在,请说明理由.交O于点P⊥PH BC交O于点P点P为半圆O的AB上一点,∴当点P与点P不重合时,1当点P与点P重合时,BC切半圆∴∠=ABC=OB OP矩形ABCD 的面积是PBC 面积的13553PBCS∴=⨯⨯=CF PH =又5BC =,60ABC ∠=︒,AB BC ==ABC ∴是等边三角形, 60BAC BCA ∴∠=∠=︒,150BAF BCD ∠=∠=︒,DE AA M '∴和CMN ∴∠=点'A Q OQ+∴的最小值为A Q'ABC为等边三角形,点∴点为BC△,E G分别作,,⊥⊥与EF交于点F,连接CF.EF AD FG AB FG特例感知(1)以下结论中正确的序号有______;ED CF BG为边围成的三角形不是直①四边形AGFE是矩形;②矩形ABCD与四边形AGFE位似;③以,,角三角形;类比发现(2)如图2,将图1中的四边形AGFE绕着点A旋转,连接BG,观察CF与BG之间的数量关系和位置关系,并证明你的发现;拓展应用(3)连接CE ,当CE 的长度最大时, ①求BG 的长度;②连接,,AC AF CF ,若在ACF △内存在一点P ,使CP AP ++的值最小,求CP AP ++的最小值.先证明APF AKL ∽,得到∴HF DE =,CH BG =,∴CHF 是直角三角形,∵四边形ABCD 是矩形,∴43AB CD ==,AD =∴228AC AB BC =+=,则由(2)知,90CEF ∠=︒,∵2247CF CE EF =+=,根据旋转,可得30PAF KAL ∠=∠=,根据两边对应成比例且夹角相等可得APF AKL ∽, ∴3KL PF =,过P 作PS AK ⊥于S ,则12PS AP =题型三 面积的最小值问题【例1】(新考法,拓视野)(2024·陕西西安·一模)【问题提出】(1)如图1,已知在边长为5的等边ABC 中,点D 在边BC 上,3BD =,连接AD ,则ACD 的面积为 ; 【问题探究】(2)如图2,已知在边长为6的正方形ABCD 中,点E 在边BC 上,点F 在边CD 上,且45EAF ∠=︒,若5EF =,求AEF △的面积; 【问题解决】(3)如图3是某座城市廷康大道的一部分,因自来水抢修在4AB =米,AD =ABCD 区域内开挖一个AEF △的工作面,其中B 、F 分别在BC CD 、边上(不与B 、C 、D 重合),且60EAF ∠=︒,为了减少对该路段的拥堵影响,要求AEF △面积最小,那么是否存在一个面积最小的AEF △?若存在,请求出AEF △面积的最小值;若不存在,请说明理由.,证明()SAS ABG ADF ≌,再证明()SAS AEF AEG ≌,得到ABG ,则)()33AEF AEG SS==最小值最小值∵ABC 是边长为 ∴()SAS ABG ADF ≌∴()SAS AEF AEG ≌,得到ABG , )()33AEF AEG SS==最小值最小值【例2】(2024·陕西西安·二模)图形旋转是解决几何问题的一种重要方法.如图1,正方形ABCD 中,E F 、分别在边AB BC 、上,且45EDF ∠=︒,连接EF ,试探究AE CF EF 、、之间的数量关系.解决这个问题可将ADE V 绕点D 逆时针旋转90︒到CDH △的位置(易得出点H 在BC 的延长线上),进一步证明DEF 与DHF △全等,即可解决问题.(1)如图1,正方形ABCD 中,45,3,2EDF AE CF ∠=︒==,则EF =______;(2)如图2,正方形ABCD 中,若30EDF ∠=︒,过点E 作EM BC ∥交DF 于M 点,请计算AE CF +与EM 的比值,写出解答过程;(3)如图3,若60EDF ∠=︒,正方形ABCD 的边长8AB =,试探究DEF 面积的最小值. 进一步证明DEF,,,D F H G 四点共圆;进而可得30FHG ∠=,根据1tan 30AE CF CH CF FH EM GH GH ++====︒(3)过点E 作EK CD ⊥于K ,交DF 于M ,作FT EK ⊥于T ,得出 4DEFS EM =,进而根据(2)的方法得出EM GH =,根据FC AE CH ==时,面积最小,得出32OF =− 【详解】(1)解:∵将ADE V 绕点D 逆时针旋转90︒, ∴90DCH A DCB ∠=∠=︒=∠,DH DE HDC EDA =∠=∠, ∴点H 在BC 的延长线上, ∵四边形ABCD 是正方形 ∴90ADC ∠=︒, ∵45EDF ∠=︒,∴45HDF CDH FDC ADE FDC EDF ∠=∠+∠=∠+∠=︒=∠ 又∵DF DF =,∴DEF ()SAS DHF ≌,∴235EF FH FC CH FC AE ==+=+=+=, 故答案为:5.(2)解:将ADE V ,DEM △绕点D 逆时针旋转90︒,得,DCH DHG∴,AED CHD DEM DHG ∠=∠∠=∠, ∵EM BC ∥,则EM AB ⊥, ∴90AEM ∠=︒,∴90CHG CHD DHG AED DEM AEM ∠=∠+∠=∠+∠=∠=︒, ∵30EDF ∠=︒,EM BC ∥则EM AD ∥, ∴ADE CDH ∠=∠,30GDH MDE ∠=∠=︒, ∵EM BC ∥, ∴EMF DFC ∠=∠,∴180EMD EMF EMD DFC ∠+∠=∠+∠=︒, 即180DFC DGH ∠+∠=︒, ∴,,,D F H G 四点共圆; ∴30GFH GDH ∠=∠=︒, 又30FHG ∠=︒∴1tan 30AE CF CH CF FH EM GH GH ++====︒(3)如图,过点E 作EK CD ⊥于K ,交DF 于M ,作FT EK ⊥于T ,90FTK TKC BCD ∠=∠=∠=︒∴四边形CFTK 是矩形, FT CK ∴=8DK CK DK FT ∴+=+= 111()4222DEFEMDEMFSSSEM DK EM FT EM DK FH EM ∴=+=⋅+⋅=+=同(2)将ADE V ,DEM △绕点D 逆时针旋转90︒,得,DCH DHG , 可得60GFH EDM ∠=∠=︒,EM GH = 取得最小值时,DEF 的面积最小,∵2220−=≥,∴FH x y =+≥ 当且仅当x y =时取得等于号, 此时FC AE CH ==, 设,,,D F H G 的圆心为O , ∵DC FH ⊥,FC CH =, ∴DC 经过点O ,∴OF OD =,sin 602OC OF =︒= ∵8OD OC +=8OF +=解得:32OF =−∴232FH FC OF ===−∴48GH =,∴()44448192DEFSEM GH ====,即DEF 面积的最小为192.【点睛】本题考查了旋转的性质,正方形的性质、全等三角形的判定与性质、四点共圆等知识,解直角三角形,熟练掌握旋转的性质是解题的关键.1.(2023·陕西西安·一模)问题发现(1)在ABC 中,2AB =,60C ∠=︒,则ABC 面积的最大值为 ;(2)如图1,在四边形ABCD 中,6AB AD ==,90BCD BAD ∠=∠=︒,8AC =,求BC CD +的值. 问题解决(3)有一个直径为60cm 的圆形配件O ,如图2所示.现需在该配件上切割出一个四边形孔洞OABC ,要求60O B ∠=∠=︒,OA OC =OABC 的面积尽可能小.试问,是否存在符合要求的面积最小的四边形OABC ?若存在,请求出四边形OABC 面积的最小值及此时OA 的长;若不存在,请说明理由.为弦的确定的圆上,作ABC 的外接圆,可得当点时,ABC 的面积最大,求出,再根据三角形的面积公式计算即可;将ABC 绕点A 逆时针旋转、D 、E 在同一条直线上,求出BCES,可得要使四边形面积最小,就要使BCE 的面积最大,然后由(时,BCE 的面积最)的方法求出BCE 面积的最大值,可得四边形,根据OA 如图,作ABC 的外接圆,∴当点C 在C '的位置,即时,ABC 的面积最大,∴C A C B ''=,BD =∴ABC '△是等边三角形,∴ABC 面积的最大值为)如图,将ABC 绕点∴B ADE ∠=∠,BAC ∠∵6AB AD ==,BCD ∠∴180B ADC ∠+∠=︒,∵60AOC ∠=︒,OA OC =∴将AOB 绕O 点顺时针旋转至COE ,连接∴60BOE ∠=︒,OE OB =∴BOE △是等边三角形,AOBBCOSS+COEBCOSS+ BOE BCES S− BCESBCES,的面积最小,就要使BCE 的面积最大,作BCE 的外接圆I ,点F 是I 上一点,CF 交由(1)可知,当CF 是直径,且CF BE ⊥时,BCE 的面积最大,∴BCE 面积的最大值为150BCES=(1)如图①,已知ABC 是面积为AD 是BAC ∠的平分线,则AB 的长为______. 问题探究:(2)如图②,在ABC 中,90C ∠=︒,AC BC =,4AB =,点D 为AB 的中点,点E ,F 分别在边AC ,BC 上,且90EDF ∠=︒.证明:DE DF =.问题解决:(3)如图③,李叔叔准备在一块空地上修建一个矩形花园ABCD ,然后将其分割种植三种不同的花卉.按照他的分割方案,点P ,Q 分别在AD ,BC 上,连接PQ 、PB 、PC ,60BPC ∠=︒,E 、F 分别在PB 、PC 上,连接QE 、QF ,QE QF =,120EQF ∠=︒,其中四边形PEQF 种植玫瑰,ABP 和PCD 种植郁金香,剩下的区域种植康乃馨,根据实际需要,要求种植玫瑰的四边形PEQF 的面积为2,为了节约成本,矩形花园ABCD 的面积是否存在最小值?若存在,请求出矩形ABCD 的最小面积,若不存在,请说明理由.)设ABC 的边长为EQG ,根据四边形则当PQ BC ⊥时,矩形ABCD 的面积最小,根据2ABCD PEQF S S =四边形四边形,即可求解.【详解】解:(1)∵ABC 是面积为AD 是BAC ∠的平分线, ∴12BD CD AB ==设ABC 的边长为a∴AD ==∴2112224ABCS BC AD a =´=´´=∴24a =解得:4a =, 故答案为:4.(2)如图所示,连接CD ,∵在ABC 中,90C ∠=︒,AC BC =,4AB =,点D 为AB 的中点, ∴CD AD =,90ADC ∠=︒,45A DCF ∠=∠=︒ 又∵90EDF ∠=︒∴ADE ADC CDE EDF EDC CDF ∠=∠−∠=∠−∠=∠ 在,ADE CDF △△中,45A DCF ADE CDF AD CD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴ADE CDF V V ≌ ∴DE DF =; (3)如图所示,∵60BPC ∠=︒,120EQF ∠=︒, ∴36060120180PFQ PEQ ∠+∠=︒−︒−︒=︒ 将QFP △绕点Q 逆时针旋转120︒,得到EQG , ∴,,P E G 三点共线,∴四边形PEQF 的面积等于PQG , 又∵120,PQG PQ GQ ∠=︒=,∴30QPG QGP ∠=∠=︒过点Q 作QN PG ⊥于点N ,则12QN PQ =设PQ b =,则1,22NQ b PN ==∴2PG PN ==∴2111222PQGSPG NQ b =⨯=⨯=∵四边形PEQF 的面积为 ∴16b =,即16PQ =,如图所示,作QM PM ⊥于点M ,∵30EPQ FPQ ∠=∠=︒,QM PM ⊥,QN PG ⊥,则QN QM =, 在,ENQ FMQ 中,QN QM EQ FQ =⎧⎨=⎩∴()HL ENQ FMQ ≌, 同理可得PNQ PMQ ≌ 则2PNQPEQF S S=四边形∴PEQF PNQM S S =四边形四边形,作点Q 关于PE 的对称点T ,连接PT ,则PTQ 是等边三角形,则PTQS=如图所示,依题意,当PQ BC ⊥时,矩形ABCD 的面积最小,此时,E F 与,N M 重合,,∴22ABCD PEQF S S ==⨯四边形四边形∴矩形ABCD 的最小面积为2【点睛】本题考查了全等三角形的性质与判定,等边三角形的性质与判定,等腰三角形的性质与判定,勾股定理,旋转的性质,综合运用以上知识是解题的关键.3.(2024·陕西榆林·二模)(1)如图1,AB CD ∥,1,2AB CD ==,AD ,BC 交于点E ,若4=AD ,则AE = ;(2)如图2,矩形ABCD 内接于O , 2,AB BC ==点 P 在AD 上运动,求 PBC 的面积的最大值; (3)为了提高居民的生活品质,市政部门计划把一块边长为 120米的正方形荒地 ABCD (如图3)改造成一个户外休闲区,计划在边AD ,BC 上分别取点P ,Q ,修建一条笔直的通道PQ ,要求 2CQ AP =,过点 B 作 BE PQ ⊥于点E ,在点E 处修建一个应急处理中心,再修建三条笔直的道路BE CE DE ,,,并计划在 CDE 内种植花卉, DEP 内修建老年活动区, BCE 内修建休息区,在四边形ABEP 内修建儿童游乐园.问种植花卉的 CDE 的面积是否存在最小值? 若存在,求出最小值;若不存在,请说明理由.得ABE DCE ∽,得对应成比例的线段,于是得到结论;时,PBC 的面积有最大值,解直角三角形求出PBC 的高即可得到结论;于点M ,作BME 的外接圆O ,过点OF DC ⊥₂E CD ₂的面积最小. ()∥AB CD DCE ,是O的直径.₂的面积最大.P BC上任意另取一点P₁PBC的面积最大.Rt OBE中,.S=PBC。
几何探究型问题(针对第25题)线段最值问题“费马点”问题【问题背景】“费马点”——就是到三角形三个顶点的距离之和最小的点.“费马点”问题在中考考查时主要隐藏在求PA+PB+PC的最小值问题,通常将某三角形绕点旋转一定的角度,从而将三条线段转化在同一条直线上,利用两点之间线段最短解决问题.【模型分析】对于一个各角不超过120°的三角形,“费马点”是对各边的张角都是120°的点,对于有一个角超过120°的三角形,费马点就是这个内角的顶点.费马点P使它到△ABC三个顶点的距离之和PA+PB+PC最小,这就是所谓的“费马”问题.如图,将△APC绕点A逆时针旋转60°到△AP′C′,则可以构造出等边三角形APP′,从而得到AP=PP′,CP=C′P′,所以将PA+PB+PC的值转化为PP′+PB+P′C′的值,则线段BC′的长即为所求的最小值.例题1.如图,已知点P为等边三角形ABC外接圆的劣弧BC上任意一点,求证:PB+PC=PA.证明:如答图,在P A上截取PM=PC,连接CM.∵△ABC 是等边三角形,∴∠ABC =∠ACB =60°,BC =AC .∵∠ABC =∠APC ,∴∠MPC =60°,∴△MPC 是等边三角形,∴∠MCP =60°,MC =PC ,∴∠ACM =∠BCP .在△BPC 和△AMC 中,⎩⎪⎨⎪⎧BC =AC ,∠BCP =∠ACM ,PC =MC ,∴△BPC ≌△AMC (SAS),∴BP =AM ,∴PB +PC =AM +PM =P A .2.已知三个村庄A ,B ,C 构成了如图所示的△ABC(其中∠A ,∠B ,∠C 均小于120°),现选取一点P 作为打水井,使水井P 到三个村庄A ,B ,C 所铺设的输水管总长度最小.求输水管总长度的最小值.解:如答图,以BC 为边在△ABC 的外部作等边三角形BCD ,连接AD .∴AD 的长就是△ABC 的费马距离. 易得∠ABD =90°,∴AD =AB 2+BD 2=5(km).答:输水管总长度的最小值为5 km.练习(2019·陕师大附中六模)问题提出(1)如图1,在△ABC 中,BC =2,将△ABC 绕点B 顺时针旋转60°得到△A ′BC ′,则CC ′=______.【解答】由旋转的性质可知∠CBC ′=60°,BC ′=BC ,则∠△BCC ′是等边三角形,故CC ′=BC =2.问题探究(2)如图2,在△ABC中,AB=BC=3,∠ABC=30°,点P为△ABC内一点,连接PA,PB,PC,求PA+PB+PC的最小值,并说明理由.解题思路将△ABP绕点B逆时针旋转60°得到△EBF,连接PF,EC.易证PA+PB+PC=EF+PF+PC;由PC+PF+EF≥EC,推出当点P,F在直线EC上时,PA+PB+PC的值最小,即为EC的长,求出EC的长即可解决问题.【解答】如答图1,将△ABP绕点B逆时针旋转60°得到△EBF,连接PF,EC.由旋转的性质可知△PBF是等边三角形,∴PB=PF.∵P A=EF,∴P A+PB+PC=EF+PF+PC.∵PC+PF+EF≥EC,∴当点P,F在直线EC上时,P A+PB+PC的值最小,易得BC=BE=BA=3,∠CBE=90°,∴EC=2BC=32,∴P A+PB+PC的最小值为3 2.问题解决(3)如图3,在四边形ABCD中,AD∥BC,AB=6,AD=4,∠ABC=∠BCD=60°.在四边形ABCD内部有一点P,满足∠APD=120°,连接BP,CP,点Q为△BPC内的任意一点,是否存在一点P和一点Q,使得PQ+BQ+CQ有最小值?若存在,请求出这个最小值;若不存在,请说明理由.解题思路将△PBQ绕点B逆时针旋转60°得到△EBG,则PQ=EG,△BQG是等边三角形,易知PQ+BQ+CQ=EG+GQ+QC≥EC,推出当EC取得最小值时,PQ +BQ +CQ 的值最小.延长BA 交CD 的延长线于点S ,作△ADS 的外接圆⊙O ,将线段BO ,BP 绕点B 逆时针旋转60°得到线段BO ′,BE ,连接EO ′,OB ,OP .易证△BEO ′≌△BPO(SAS),推出EO ′=OP =433,故点E 在以点O ′为圆心,433为半径的圆上,则当点E 在线段CO ′上时,EC 的值最小,最小值为CO ′-EO ′的长.【解答】如答图2,将△PBQ 绕点B 逆时针旋转60°得到△EBG ,连接GQ ,EC ,则PQ =EG ,△BQG 是等边三角形,∴BQ =QG ,∴PQ +BQ +CQ =EG +GQ +QC ≥EC ,∴当EC 取得最小值时,PQ +BQ +CQ 的值最小.如答图3,延长BA 交CD 的延长线于点S ,作△ADS 的外接圆⊙O ,连接OB .将线段BO ,BP 绕点B 逆时针旋转60°得到线段BO ′,BE ,连接EO ′,OP.易证△BEO ′≌△BPO (SAS),∴EO ′=PO .∵∠APD +∠ASD =180°,∴A ,P ,D ,S 四点共圆,∴OP =433,∴EO ′=433, ∴点E 在以点O ′为圆心,433为半径的圆上, ∴当点E 在线段CO ′上时,EC 的值最小,最小值为CO ′-EO ′的长,连接OO ′,延长OO ′到点R ,使得O ′R =OO ′,连接BR ,则∠OBR =90°,作RH ⊥CB 交CB 的延长线于点H ,O ′T ⊥CH 于点T ,OM ⊥BC 于点M .易知在Rt △OBM 中,BM =5,OM =1133, ∴OB =OM 2+BM 2=1433, ∴BR =3OB =14.易知△BHR ∽△OMB ,∴RH BM =BR OB,∴RH =5 3.∵HR ∥O ′T ∥OM ,OO ′=RO ′,∴TM =TH ,∴O ′T =RH +OM 2=1333,∴BT =O ′B 2-O ′T 2=3, ∴CO ′=CT 2+O ′T 2=2633, ∴CE =CO ′-EO ′=2633-433=2233, ∴PQ +BQ +CQ 的最小值为2233.类型三 “阿氏圆”问题【问题背景】“PA +k ·PB ”型的最值问题是近几年中考考查的热点,更是一个难点.当k 的值为1时,即可转化为“PA +PB ”之和最短问题,就可用我们常见的“将军饮马”问题模型来处理,即可以转化为轴对称问题来处理.当k 取任意不为1的正数时,此类问题的处理通常以动点P 的运动轨迹不同来分类,一般分为两类研究,即点P 在直线上运动和点P 在圆上运动.其中点P 在圆周上运动的类型称之为“阿氏圆”问题.【模型分析】如图1,⊙O 的半径为r ,点A ,B 都在⊙O 外,P 为⊙O 上一动点,已知r =k ·OB ,连接PA ,PB ,则当PA +k ·PB 的值最小时,点P 的位置如何确定?如图2,在线段OB 上截取OC ,使OC =k ·r ,则可证明△BPO 与△PCO 相似,即k ·PB =PC .故求PA +k ·PB 的最小值可以转化为PA +PC 的最小值,其中A ,C 为定点,P 为动点,当点P ,A ,C 共线时,PA +PC 的值最小,如图3.“阿氏圆”模型解题策略:第一步:连接动点与圆心O(一般将含有k 的线段两端点分别与圆心O 相连),即连接OB ,OP ;第二步:计算线段OP 与OB 及OP 与OA 的线段比,找到线段比为k 的情况,如例子中的OP OB =k ; 第三步:在OB 上取点C ,使得OC OP =OP OB ;第四步:连接AC ,与⊙O 的交点即为点P .例题如图,在Rt △ABC 中,∠ACB =90°,CB =4,CA =6,⊙C 的半径为2,P 为圆上一动点,连接AP ,BP ,求AP +12BP 的最小值. 解:如答图,连接CP ,在CB 上取点D ,使CD =1,连接AD ,PD .∵CD CP =CP BC =12,∠PCD =∠BCD , ∴△PCD ∽△BCP ,∴PD BP =12, ∴PD =12BP ,∴AP +12BP =AP +PD , ∴要使AP +12BP 最小,则AP +PD 最小, 当点A ,P ,D 在同一条直线时,AP +PD 最小,即AP +12BP 的最小值为AD 的长. 在Rt △ACD 中,∵CD =1,AC =6,∴AD =AC 2+CD 2=37,∴AP +12BP 的最小值为37. 练习问题提出(1)如图1,已知线段AB 和BC ,AB =2,BC =5,则线段AC 的最小值为______.解题思路当点A 在线段BC 上时,线段AC 有最小值.【解答】∵当点A 在线段BC 上时,线段AC 有最小值,∴线段AC 的最小值为5-2=3.问题探究(2)如图2,已知在扇形COD 中,∠COD =90°,DO =CO =6,A 是OC的中点,延长OC 到点F ,使CF =OC ,P 是CD ︵上的动点,点B 是OD 上的一点,BD =1.①求证:△OAP ∽△OPF .解题思路由题意可得OA OP =OP OF =12,由相似三角形的判定可得△OAP ∽△OPF . 【解答】∵A 是OC 的中点,DO =CO =6=OP ,∴OA OP =12. ∵CF =OC ,∴OF =2OC =2OP ,∴OP OF =12, ∴OA OP =OP OF,且∠AOP =∠POF ,∴△OAP ∽△OPF .②求BP +2AP 的最小值.解题思路由相似三角形的性质可得PF =2AP ,可得BP +2AP =BP +PF ,即当F ,P ,B 三点共线时,BP +2AP 有最小值,最小值为BF 的长,由勾股定理即可求解.【解答】∵△OAP ∽△OPF ,∴AP PF =OP OF =12, ∴PF =2AP .∵BP +2AP =BP +PF ,∴当F ,P ,B 三点共线时,BP +2AP 有最小值,最小值为BF 的长.∵DO =CO =6,BD =1,∴BO =5,OF =12,∴BF =OB 2+OF 2=13.问题解决(3)如图3,有一个形状为四边形ABCD 的人工湖,BC =9千米,CD =4千米,∠BCD =150°,现计划在湖中选取一处建造一座假山P ,且BP =3千米,为方便游客观光,从C ,D 分别建小桥PD ,PC .已知建桥PD 每千米的造价是3万元,建桥PC 每千米的造价是1万元,建桥PD 和PC 的总造价是否存在最小值?若存在,请确定点P 的位置,并求出总造价的最小值,若不存在,请说明理由.(桥的宽度忽略不计)解题思路以点B 为圆心,3为半径作圆交AB 于点E ,交BC 于点F ,点P 为EF ︵上一点,连接BP ,PC ,PD ,在BC 上截取BM =1,连接MD ,PM ,过点D 作DG ⊥CB ,可证△BPM ∽△BCP ,可得PC =3PM ,当点P 在线段MD 上时,建桥PD 和PC 的总造价有最小值,由勾股定理可求MD 的值,即可求出建桥PD 和PC 的总造价的最小值.【解答】存在.如答图,以点B 为圆心,3为半径作圆交AB 于点E ,交BC 于点F ,P 为EF ︵上一点,连接BP ,PC ,PD ,在BC 上截取BM =1,连接MD ,PM ,过点D 作DG ⊥BC 交BC 的延长线于点G .∵BM BP =13=BP BC,且∠PBM =∠CBP , ∴△BPM ∽△BCP ,∴PM CP =BM BP =13,∴PC =3PM . ∵建桥PD 和PC 的总造价为3PD +PC =3PD +3PM =3(PD +PM ),∴当点P 在线段MD 上时,建桥PD 和PC 的总造价有最小值.∵∠BCD =150°,∴∠DCG =30°.∵DG ⊥BC ,∴DG =12DC =23(千米),CG =3DG =6(千米), ∴MG =BC +CG -BM =9+6-1=14(千米),∴MD =DG 2+MG 2=413(千米),∴建桥PD 和PC 的总造价的最小值为3×413=1213万元.作业5.(2019·交大附中三模)问题提出(1)如图1,点M ,N 是直线l 外两点,在直线l 上找一点K ,使得MK +NK 最小. 问题探究(2)如图2,在等边三角形ABC 内有一点P ,且P A =3,PB =4,PC =5,求∠APB 的度数.问题解决(3)如图3,矩形ABCD是某公园的平面图,AB=30 3 米,BC=60米,现需要在对角线BD上修一凉亭E,使得到公园出口A,B,C的距离之和最小.问:是否存在这样的点E?若存在,请画出点E的位置,并求出EA+EB+EC的最小值;若不存在,请说明理由.解:(1)如答图1,连接MN,与直线l交于点K,点K即为所求.(2)如答图2,把△APB绕点A逆时针旋转60°得到△AP′C,连接PP′.由旋转的性质,得P′A=P A=3,P′C=PB=4,∠P AP′=60°,∠AP′C=∠APB,∴△APP′是等边三角形,∴PP′=P A=3,∠AP′P=60°.∵PP′2+P′C2=32+42=25,PC2=52=25,∴PP′2+P′C2=PC2,∴△PP′C为直角三角形,且∠PP′C=90°,∴∠AP′C=∠AP′P+∠PP′C=60°+90°=150°,∴∠APB=∠AP′C=150°.(3)存在.如答图3,把△ABE绕点B逆时针旋转60°得到△A′BE′,连接EE′.答图由旋转的性质,得A′B=AB=30 3 米,BE′=BE,A′E′=AE,∠E′BE=60°,∠A′BA=60°,∴△E′BE是等边三角形,∴BE=EE′,∴EA +EB +EC =A ′E ′+EE ′+EC .根据两点之间线段最短,可知当EA +EB +EC =A ′C 时最短,连接A ′C ,与BD 的交点E 2即为所求,此时EA +EB +EC 最短,最短距离为A ′C 的长度.过点A ′作A ′G ⊥CB 交CB 的延长线于点G . ∵∠A ′BG =90°-∠A ′BA =90°-60°=30°, A ′G =12A ′B =12AB =12×303=153(米),∴GB =3A ′G =3×153=45(米), ∴GC =GB +BC =45+60=105(米).在Rt △A ′GC 中,A ′C =A ′G 2+GC 2=(153)2+1052=3013(米), 因此EA +EB +EC 的最小值为3013 米. 6.问题提出(1)如图1,已知△OAB 中,OB =3,将△OAB 绕点O 逆时针旋转90°得△OA ′B ′,连接BB ′,则BB ′=问题探究(2)如图2,已知△ABC 是边长为43的等边三角形,以BC 为边向外作等边三角形BCD ,P 为△ABC 内一点,将线段CP 绕点C 逆时针旋转60°,点P 的对应点为点Q .①求证:△DCQ ≌△BCP . ②求P A +PB +PC 的最小值. 问题解决(3)如图3,某货运场为一个矩形场地ABCD ,其中AB =500米,AD =800米,顶点A ,D 为两个出口,现在想在货运广场内建一个货物堆放平台P ,在BC 边上(含B ,C 两点)开一个货物入口M ,并修建三条专用车道P A ,PD ,PM .若修建每米专用车道的费用为10 000元,当M ,P 建在何处时,修建专用车道的费用最少?最少费用为多少?(结果保留根号)解:(1)由旋转的性质,得∠BOB ′=90°,OB =OB ′=3, 根据勾股定理,得BB ′=3 2. (2)①证明:∵△BDC 是等边三角形, ∴CD =CB ,∠DCB =60°.由旋转的性质,得∠PCQ =60°,PC =QC , ∴∠DCQ =∠BCP .在△DCQ 和△BCP 中,⎩⎪⎨⎪⎧CD =CB ,∠DCQ =∠BCP ,CQ =CP ,∴△DCQ ≌△BCP (SAS). ②如答图1,连接AD ,PQ . ∵PC =CQ ,∠PCQ =60°,∴△CPQ 是等边三角形,∴PQ =PC , 由①知DQ =PB ,∴P A +PB +PC =P A +QD +PQ ,由两点之间线段最短,得P A +QD +PQ ≥AD , ∴P A +PB +PC ≥AD ,∴当点A ,P ,Q ,D 在同一条直线上时,P A +PB +PC 取得最小值,即为AD 的长,过点D 作DE ⊥AC ,交AC 的延长线于点E . ∵△ABC 是边长为43的等边三角形, ∴CB =AC =43,∠BCA =60°, ∴CD =CB =43,∠DCE =60°, ∴DE =6,∠DAE =∠ADC =30°, ∴AD =12,即P A +PB +PC 的最小值为12.答图(3)如答图2,将△ADP 绕点A 逆时针旋转60°,得△AD ′P ′.由(2)知,当点M ,P ,P ′,D ′在同一条直线上时,P A +PM +PD 最小,最小值为D ′M 的长.∵M 在BC 上,∴当D ′M ⊥BC 时,D ′M 取得最小值. 设D ′M 交AD 于点E ,连接DD ′,AM ,DM . 易知△ADD ′是等边三角形,∴EM =AB =500米, ∴BM =400米,PM =EM -PE =(500-40033)米,∴D ′E =32AD =4003(米),∴D ′M =(4003+500)米, ∴最少费用为10 000×(4003+500)= 1 000 000(43+5)元.∴当M 建在BC 的中点(BM =400米)处,点P 在过M 且垂直于BC 的直线上,且在M上方(500-40033)米处时,修建专用车道的费用最少,最少费用为1 000 000(43+5)元.类型三 “阿氏圆”问题7.(2018·西工大附中三模) 问题提出(1)如图1,在△ABC 中,AB =AC ,BD 是AC 边的中线,请用尺规作图作出AB 边的中线CE ,并证明BD =CE ;问题探究(2)如图2,已知点P 是边长为6的正方形ABCD 内部一动点,P A =3,求PC +12PD 的最小值;问题解决(3)如图3,在矩形ABCD 中,AB =18,BC =25,点M 是矩形内部一动点,MA =15,当MC +35MD 最小时,画出点M 的位置,并求出MC +35MD 的最小值.解:(1)如答图1,线段EC 即为所求.证明:∵AB =AC ,AE =EB ,AD =CD ,∴AE =AD , 在△BAD 和△CAE 中,⎩⎪⎨⎪⎧AB =AC ,∠A =∠A ,AD =AE ,答图1∴△BAD ≌△CAE (SAS),∴BD =CE . (2)如答图2,在AD 上截取AE ,使得AE =32.∵P A 2=9,AE ·AD =32×6=9,∴P A 2=AE ·AD ,∴P A AD =AEP A.∵∠P AE =∠DAP ,∴△P AE ∽△DAP , ∴PE DP =P A DA =12,∴PE =12PD , ∴PC +12PD =PC +PE .∵PC +PE ≥EC ,∴PC +12PD 的最小值即为EC 的长,在Rt △CDE 中,∵∠CDE =90°,CD =6,DE =92,∴EC =62+(92)2=152,∴PC +12PD 的最小值为152.答图(3)如答图3,在AD 上截取AE ,使得AE =9. ∵MA 2=225,AE ·AD =9×25=225,∴MA 2=AE ·AD ,∴MA AD =AEMA.∵∠MAE =∠DAM ,∴△MAE ∽△DAM , ∴EM MD =MA DA =1525=35,∴ME =35MD , ∴MC +35MD =MC +ME .∵MC +ME ≥EC ,∴MC +35MD 的最小值即为EC 的长.如答图3,以点A 为圆心,AM 长为半径画弧,交EC 于点M ′,点M ′即为所求. 在Rt △CDE 中,∵∠CDE =90°,CD =18,DE =16, ∴EC =162+182=2145, ∴MC +35MD 的最小值为2145.8.(1)如图1,已知正方形ABCD 的边长为4,⊙B 的半径为2,P 是⊙B 上的一个动点,求PD +12PC 的最小值和PD -12PC 的最大值;(2)如图2,已知正方形ABCD 的边长为9,⊙B 的半径为6,P 是⊙B 上的一个动点,那么PD +23PC 的最小值为,PD -23PC 的最大值为(3)如图3,已知菱形ABCD 的边长为4,∠B =60°,⊙B 的半径为2,P 是⊙B 上的一个动点,那么PD +12PC 的最小值为,PD -12PC 的最大值为解:(1)如答图1,在BC 上取一点G ,使得BG =1,连接PB ,PG ,DG .∵PB BG =CBPB=2,∠PBG =∠CBP , ∴△PBG ∽△CBP , ∴PG CP =BG BP =12,∴PG =12PC , ∴PD +12PC =PD +PG .∵PD +PG ≥DG ,∴当D ,P ,G 三点共线时,PD +12PC 的值最小,最小值为DG =42+32=5.∵PD -12PC =PD -PG ≤DG ,∴如答图2,当点P 在DG 的延长线上时,PD -12PC 的值最大,最大值为5.答图(2)106,106.【解法提示】如答图3,在BC 上取一点G ,使BG =4,连接PG ,PB ,DG . ∵PB BG =64=32,CB PB =96=32,∴PB BG =CB BP. ∵∠PBG =∠CBP ,∴△PBG ∽△CBP , ∴PG CP =BG BP =23, ∴PG =23PC ,∴PD +23PC =DP +PG .∵DP +PG ≥DG ,∴当D ,P ,G 三点共线时,PD +23PC 的值最小,最小值为DG =52+92=106.∵PD -23PC =PD -PG ≤DG ,∴当点P 在DG 的延长线上时,PD -12PC 的值最大,最大值为106.答图(3)37,37.【解法提示】如答图4,在BC 上取一点G ,使得BG =1,连接PB ,PG ,DG ,作DF ⊥BC 交BC 的延长线于点F .∵PB BG =21=2,BC PB =42=2,∴PB BG =CB BP. ∵∠PBG =∠CBP ,∴△PBG ∽△CBP , ∴PG CP =BG BP =12, ∴PG =12PC ,∴PD +12PC =DP +PG .∵DP +PG ≥DG ,∴当D ,P ,G 三点共线时,PD +12PC 的值最小,最小值为DG 的长.在Rt △CDF 中,∵∠DCF =60°,CD =4, ∴DF =CD ·sin60°=23,CF =2,∴在Rt △GDF 中,DG =(23)2+52=37. ∴PD +12PC 的最小值为37.∵PD -12PC =PD -PG ≤DG ,∴当点P 在DG 的延长线上时,PD -12PC 的值最大,最大值为37.。
线段最值问题的常用解法
线段最值问题是一个常见的数学问题,它要求在给定的一组线段中找到最大或最小值。
这类问题在计算几何、最优化和动态规划等领域中经常出现。
解决线段最值问题的常用方法包括扫描线算法、线段树和动态规划等。
扫描线算法是一种常用的解决线段最值问题的方法。
该算法的基本思想是通过将线段按照起点和终点的位置进行排序,然后从左到右扫描线段,同时维护一个当前的最值。
当扫描到一个线段时,根据线段的起点和终点更新当前最值。
这种方法的时间复杂度为O(nlogn),其
中n为线段的数量。
线段树是一种高效的数据结构,用于解决线段最值问题。
它将线段分解成一棵二叉树,并在每个节点上存储线段的最值信息。
通过构建线段树,可以快速查询任意区间的最值。
线段树的构建时间复杂度为
O(nlogn),查询时间复杂度为O(logn)。
动态规划是一种常用的解决线段最值问题的方法。
该方法通过定义状态和状态转移方程,逐步计算出最优解。
对于线段最值问题,可以将线段的起点和终点作为状态,然后根据状态转移方程更新最值。
动态规划的时间复杂度取决于状态的数量和状态转移方程的复杂度。
除了上述方法,还有一些其他的解决线段最值问题的方法,如分治法和贪心算法。
这些方法根据具体问题的特点选择合适的解决策略。
总之,线段最值问题是一个常见的数学问题,可以通过扫描线算法、线段树和动态规划等方法得到解决。
选择合适的解决方法需要根据具体问题的特点和要求进行评估和选择。
几何中线段的最值问题一、一条线段的最值问题一(1)借助旋转求最值2013通州一模24.已知:AD =2,BD =4,以AB为一边作等边三角形ABC使C D两点落在直线AB的两侧.(1)如图,当/ ADB=0°时,求AB及CD的长;(2)当/ADB变化,且其它条件不变时,求CD的最大值,及相应/ ADB的大小•2011丰台一模25.已知:在厶ABC中, BC=a,AC=b以AB为边作等边三角形ABD.探究下列问题乂、(1)如图1,当点D与点C位于直线AB的两侧时,a=b=3,且/ ACB=6o,则CD= ____________ ; D B(2)如图2,当点D与点C位于直线AB的同侧时,a=b=6,且/ ACB=90,贝UCD= ____________ ;(3)如图3,当/ACB变化,且点D与点C位于直线AB的两侧时,求CD的最大值及相应的/ ACB的度数.图1 图2 图3(2)借助直角三角形性质求最值(1)勾股定理(2)直角三角形斜边中线等于斜边一半(3)直角三角形斜边的两条重要的线段,一是斜边上的高,另一个是斜边上的中线,直角三角形斜边上的高是直角顶点到斜边上所有点之中距离最短的,其长度可以用两直角边乘积除以斜边求得.【例1】如图,在△ABC中,/ C=90°, AC=2,BC=1,点A、C分别在x轴、y轴上,当点A在x轴上运动时,点C随之在y轴上运动,在运动过程中,点B 到原点的最大距离是 ___________________________【例2】如图,△ ABC是边长为定值m的正三角形,C点与原点重合,点B在第一象限点,点A在x轴上。
②求出AC边上的高线BD的长度;③当点C在y轴的正半轴滑动时,试求出点0到CA距离的最大值;④已知点P是厶ABC内切圆的圆心,请求出0P的最大值。
2011海淀一模25•在Rt△ ABC中,/ ACB:90°, tan / BA(=1 .点D在边AC上 (不与A,C重合),2连结BD F为BD中点•(1)________________________________________________________________ 若过点D作DEL AB于E,连结CF、EF、CE,如图1.设CF =kEF,则k _______________ ;(2)若将图1中的△ ADE绕点A旋转,使得D E B三点共线,点F仍为BD中点,如图2所示.求证:BEDE=2CF;(3)若BG6,点D在边AC的三等分点处,将线段AD绕点A旋转,点F始终为BD 中点,求线段CF长度的最大值.2010海淀一模25.已知:△AOB 中,AB=OB=2,△ COD 中,CD=OC=3, / ABO = / DCO .连接AD、BC,点M、N、P分别为OA、OD、BC的中点.图1 图2(1)如图1,若A、O、C三点在同一直线上,且Z ABO-6O:,则△ PMN的形状是,此时俎二;BC ---------(2)如图2,若A、O、C三点在同一直线上,且Z ABO=2〉,证明△ PMNBAO,并计算如的值(用含:的式子表示);BC(3)在图2中,固定△ AOB,将△ COD绕点O旋转,直接写出PM的最大值.28.正方形ABC啲边长为3,点E, F分别在射线DC DA上运动,且DE=DF连接BF,作EH L BF所在直线于点H,连接CH(1) _________________________________________________________ 如图1,若点E是DC的中点,CH与AB之间的数量关系是 ___________________________________(2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;(3)如图3,当点E, F分别在射线DC DA上运动时,连接DH过点D作直线DH的垂线,交直线BF于点K,连接CK请直接写出线段CK长的最大值.(3)与圆相关2014燕山24.如图1,已知ABC是等腰直角三角形,.BAC =90,点D是BC 的中点.作正方形DEFG,使点A、C分别在DG和DE上,连接AE,BG .(1)试猜想线段BG和AE的数量关系是 ___________________________ ;(2)将正方形DEFG绕点D逆时针方向旋转:(^ : < 360 ),①判断(1)中的结论是否仍然成立?请利用图2证明你的结论;②若BC二DE =4,当AE取最大值时,求AF的值.2013昌平一模24 .在△ABC中,AB=4,BC=6,/ ACB=30°,将厶ABC绕点B按逆时针方向旋转,得到△A1BC1.(1)如图1,当点C1在线段CA的延长线上时,求/ CC1A1的度数;(2)如图2,连接AA1,CC1.若△CBC1的面积为3,求△ABA1的面积;(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转的过程中,点P的对应点是点P1,直接写出线段EP1长度的最大值与最小值.2015房山一模28.如图1,已知线段BC=2,点B关于直线AC的对称点是点D,点E为射线CA 上一点,且E4BD,连接DE BE(1)依题意补全图1,并证明:△ BDE为等边三角形;(2)若/ ACB45°,点C关于直线BD的对称点为点F,连接FD FB将厶CDE(3)若BC 二DE =2 ,在25-2的旋转过程中,当AE 为最大值时, O 为直角顶点F 分别画出两个直角三角形,记作CO 30°. F 、M 分别是, AC CD DB 的中点,连接FMC 分别在AO BO 勺延长线上时,图 25-11中的△ AOB 绕点O 沿顺时针方向旋B E0^^ 二), D C 图 25-2 绕点D 顺时针旋转a 度(0°V aV 360°)得到△ c DE ' , 点 E 的对应点为E',点C 的对应点为点C .① 如图2,当a =30°时,连接BC .证明:EF =BC ';② 如图3,点M 为DC 中点,点P 为线段C 'E '上的任意一点,试探究:在此 旋转过程中,线段PM 长度的取值范围?A D3.如图25-1,已知△ ABC 是等腰直角三角形,N BAC =90二点D 是BC 的中点.作 正方形DEFG ,使点A 、C 分别在DG 和DE 上,连接AE, BG 图3(1) 试猜想线段BG 和AE 的数量关系,请直接写出你得到的结论.(2) 将正方形DEFG 绕点D 逆时针方向旋转一定角度后(旋转角度大于 0, 小于或等于360 °),如图25-2,通过观察或测量等方法判断(1)中的结论是 否仍然成立?如果成立,请予以证明;如果不成立,请说明理由.他条件不变,判断 更的值是否发生变化,并对你的结论进行证明;EM (2)如图3,若B6373,点N 在线段OD 上,且NO 2.点P 是线段AB 上的 一个动点,在将△ AOB 绕点O 旋转的过程中,线段PN 长度的最小值为 ,最大值为 .(4)其他/ \ i j E OE 2011海淀一模 M24. C 已知平面直角坐标系D xOy 中C,抛物线y =ax 2-(a ,1)x 与直线 —F CF D 点为 A(4,8).O 当点Dn 11.以平面上其中/ ABO (1) 匚②如图2,将图 图 求AF 的值. D A B N y 「=kx(1)求此抛物线和直线的解析式;(2)若点P在线段OA上,过点P作y轴的平行线交(1)中抛物线于点Q求线段PQ长度的最大值;(3)记(1)中抛物线的顶点为M点N在此抛物线上,若四边形AOM恰好是梯形,求点N的坐标及梯形AOMI的面积.朝阳25.如图,二次函数y=ax2+2ax+4的图象与x轴交于点A B,与y轴交于点C, / CBO勺正切值是2.(1)求此二次函数的解析式.⑵动直线丨从与直线AC重合的位置出发,绕点A顺时针旋转,与直线AB重合时终止运动,直线丨与BC交于点D, P是线段AD的中点.①直接写出点P所经过的路线长.②点D与B C不重合时,过点D作DE I AC于点E、作DF丄AB于点F,连接PE PF,在旋转过程中,/ EPF的大小是否发生变化?若不变,求/ EPF的度数;若变化,请说明理由.③在②的条件下,连接EF,求EF的最小值.二、多线段的最值问题2013 一模海淀25.在平面直角坐标系xOy中,抛物线y=x2(1)求点C的坐标(用含m的代数式表示);⑵直线y=x,2与抛物线交于A、B两点,点A在抛物线的对称轴左侧② 若P为直线OC上一动点,求△APB的面积;②抛物线的对称轴与直线AB交于点M,作点B关于直线MC的对称点B'.以M为圆心,MC为半径的圆上存在一点Q,使得QB' - QB的值最小,则这2求出点M 的坐标;若不存在,请说明理由 y*2012东城一模 25. 个最小值为 ______________________2012朝阳二模 25.在平面直角坐标系 xOy 中,抛物线y 二ax 2,bx"经过A (- 3,0 )、B( 4,0 ) 两点,且与y 轴交于点C,点D 在x 轴的负半轴上,且 BD- BC 有一动点P 从 点A 出发,沿线段AB 以每秒1个单位长度的速度向点 B 移动,同时另一个动点 Q 从点C 出发,沿线段CA 以某一速度向点 A 移动.(1) 求该抛物线的解析式;(2) 若经过t 秒的移动,线段PQ 被 CD 垂直平分,求此时t 的值;(3) 该抛物线的对称轴上是否存在一点M 使M Q MA 的值最小?若存在, 如图,在平面直角坐标系 xOy 中,二次函数y 二fx 2 A (-1,0 )、B (3,0 )两点,顶点为 C .(1)求此二次函数解析式;⑵ 点D 为点C 关于x 轴的对称点,过点A 作直线IE ,过点B 作直线BK // AD 交直线I 于K 点.问:在四边形ABKD 勺内部是 否存在点P ,使得它到四边形 ABKD 四边的距离都相等,若存在,请求「 出点P 的坐标;若不存在,请说明理由; -4-⑶ 在(2)的条件下,若M 、N 分别为直线AD 和直线I 上的两个动点,连 结DN 、NM 、MK ,求DN ■ NM ■ MK 和的最小值.2012海淀二模24. 如图,在平面直角坐标系xOy 中,抛物线y=Zx 2—2x 与x 轴负半轴交于点mA ,顶点为B 且对称轴与x 轴交于点C. (1)求点B 的坐标(用含m 的代 数式表示);(2) D 为BO 中点,直线 AD 交y 轴于E ,若点E 的坐标为(0, 2), 求抛物线 的解析式;(3) 在(2)的条件下,点 M 在直线BC 上,且使得厶AMC 勺周长最小,P 在 抛物线上,Q 在直线BC 上,若以AMP 、Q 为顶点的四边形是平行四边形,求点P 的坐 5 - 4 -2 3 4 56与x轴相交于A、F两点(A在F的左侧)(1)求抛物线的解析式;(2)等边△OMN的顶点M、N在线段AE上,求AE及AM的长;(3)点P ABO内的一个动点,设m = PA,PB,PO,请直接写出m的最小值,以及m取得最小值时,线段AP的长.(备用图)2012丰台一模25.已知:如图,在平面直角坐标系xOy中,以点P (2,.空)为圆心的圆与y轴相切于点A,与x轴相交于B C两点(点B在点C的左边).(1)求经过A B、C三点的抛物线的解析式;(2)在(1)中的抛物线上是否存在点皿使厶MBP的面积是菱形ABCP S积的丄.如2 果存在,请直接写出所有满足条件的M点的坐标;如果若不存在,请说明理由;(3)如果一个动点D自点P出发,先到达y轴上的某点,再到达x轴上某点,最后运动到(1)中抛物线的顶点Q处,求使点D运动的总路径最短的路径的长..25.在平面直角坐标系xOy中,抛物线y二ax2• bx 4经过A(-3,0 )、B (4,0 )两点,且与y轴交于点C,点D在x轴的负半轴上,且BD =BC有一动点P从点A出发,沿线段AB以每秒1个单位长度的速度向点B移动,同时另一个动点Q从点C出发,沿线段CA以某一速度向点A移动.(1)求该抛物线的解析式;(2)若经过t秒的移动,线段PQ被CD垂直平分,求此时t的值;(3)该抛物线的对称轴上是否存在一点M使M Q MA的值最小?若存在,求出点M的坐标;若不存在,请说明理由. y八54- 321■■i I 11-5 -4 -3 -2 -1 O-1 -2-3-4。
初中数学线段最值教案1. 让学生理解线段的基本概念和性质,掌握线段的表示方法。
2. 培养学生运用线段解决实际问题的能力,提高学生的数学素养。
3. 引导学生通过合作、探究、交流,培养学生的团队精神和创新能力。
二、教学内容1. 线段的基本概念和性质2. 线段的表示方法3. 线段在实际问题中的应用三、教学重点与难点1. 重点:线段的基本概念、性质和表示方法。
2. 难点:运用线段解决实际问题。
四、教学过程1. 导入:利用实物或图片,引导学生观察并说出线段的特点,从而引出线段的概念。
2. 新课讲解:a. 线段的基本概念:线段是有两个端点的直线段,表示为AB,其中A和B为线段的两个端点。
b. 线段的性质:线段有两个端点,有限长,可以度量。
c. 线段的表示方法:用大写字母表示线段的两个端点,如AB;用小写字母表示线段的长度,如AB=5cm。
d. 线段的画法:用直尺和圆规画线段,注意线段的两个端点要清晰标出。
3. 实例讲解:通过实际问题,让学生运用线段的知识解决问题,如计算两点的距离、设计路线等。
4. 练习与巩固:设计一些练习题,让学生独立完成,检验学生对线段知识的掌握程度。
5. 课堂小结:回顾本节课所学内容,让学生总结线段的基本概念、性质和表示方法。
6. 作业布置:布置一些有关线段的练习题,让学生课后巩固所学知识。
五、教学反思本节课通过观察实物、讲解、实例和练习,让学生掌握了线段的基本概念、性质和表示方法。
在教学过程中,要注意引导学生运用线段解决实际问题,提高学生的数学素养。
同时,要关注学生的学习反馈,及时调整教学方法和策略,使学生在轻松愉快的氛围中学习数学。
斜大于直---一类线段最值的求法通常,我们把直线外一点到这条直线的垂线段的长度叫做点到直线的距离。
经过探究我们得到一个事实:直线外一点与直线上各点连接的所有线段中,垂线段最短。
即我们今天所要讲的内容“斜大于直”问题。
“斜大于直”问题在中考线段最值中考察较为广泛,即点到线的最短距离问题,常见的有单线段的最值,线段和的最小,系数不为1的线段和的最值(胡不归问题)等等。
如需加深难度通常将定点和定线隐藏处理即可。
本文将通过7大变式予以说明。
反思:①本题的关键在于确定△PEF的外心,利用等边三角形的特殊性将垂直平分线的交点转化为角平分线的交点,寻找到外心.
②发现外心为一定点,则转化为求定点到直线的最短距离问题,即垂线段最短(斜大于直).。
初中几何中线段和(差)的最值问题一、两条线段和的最小值。
基本图形解析:(对称轴为:动点所在的直线上)一)、已知两个定点:1、在一条直线m 上,求一点P ,使PA+PB 最小; (1)点A 、B 在直线m 两侧:(2)点A 、B 在直线同侧:A 、A ’ 是关于直线m 的对称点。
2、在直线m 、n 上分别找两点P 、Q ,使PA+PQ+QB 最小。
mmm mABm(1)两个点都在直线外侧:(2)一个点在内侧,一个点在外侧:(3)两个点都在内侧:nmnnmnnnm(4)、台球两次碰壁模型变式一:已知点A 、B 位于直线m,n 的内侧,在直线n 、m 分别上求点D 、E 点,使得围成的四边形ADEB 周长最短.填空:最短周长=________________变式二:已知点A 位于直线m,n 的内侧, 在直线m 、n 分别上求点P 、Q 点PA+PQ+QA 周长最短.二)、一个动点,一个定点: (一)动点在直线上运动:点B 在直线n 上运动,在直线m 上找一点P ,使PA+PB 最小(在图中画出点P 和点B )1、两点在直线两侧:2、两点在直线同侧:m nmnmnm(二)动点在圆上运动点B 在⊙O 上运动,在直线m 上找一点P ,使PA+PB 最小(在图中画出点P 和点B ) 1、点与圆在直线两侧:2、点与圆在直线同侧:三)、已知A 、B 是两个定点,P 、Q 是直线m 上的两个动点,P 在Q 的左侧,且PQ 间长度mmmm恒定,在直线m 上要求P 、Q 两点,使得PA+PQ+QB 的值最小。
(原理用平移知识解) (1)点A 、B 在直线m 两侧:过A 点作AC ∥m,且AC 长等于PQ 长,连接BC,交直线m 于Q,Q 向左平移PQ 长,即为P 点,此时P 、Q 即为所求的点。
(2)点A 、B 在直线m 同侧:QQP练习题1.如图,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值为.Q2、如图1,在锐角三角形ABC中,AB=4,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值为.3、如图,在锐角三角形ABC中,AB=52,∠BAC=45,BAC的平分线交BC于D,M、N分别是AD和AB上的动点,则BM+MN的最小值是多少?4、如图4所示,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AC 边上一点.若AE=2,EM+CM的最小值为 .5、如图3,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AD=4,AB=5,BC=6,点P是AB上一个动点,当PC+PD的和最小时,PB的长为__________.6、如图4,等腰梯形ABCD中,AB=AD=CD=1,∠ABC=60°,P是上底,下底中点EF 直线上的一点,则PA+PB的最小值为.7、如图5菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值为.8、如图,菱形ABCD的两条对角线分别长6和8,点P是对角线AC上的一个动点,点M、N 分别是边AB、BC的中点,则PM+PN的最小值是9、如图,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯内离杯底3cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为________cm.10、如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为11、如图,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.则PB+PE的最小值是12、如图6所示,已知正方形ABCD的边长为8,点M在DC上,且DM=2,N是AC 上的一个动点,则DN+MN的最小值为.13、如图,正方形ABCD的边长是2,∠DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值为.14、如图7,在边长为2cm的正方形ABCD中,点Q为BC边的中点,点P为对角线AC 上一动点,连接PB、PQ,则△PBQ周长的最小值为 cm.(结果不取近似值).15、如图,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,则PA+PC的最小值是.16、如图8,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,B为AN弧的中点,P是直径MN上一动点,则PA+PB的最小值为( )(A)2(B) (C)1 (D)2解答题1、如图9,正比例函数y=x的图象与反比例函数y=(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知三角形OAM的面积为1.(1)求反比例函数的解析式;(2)如果B为反比例函数在第一象限图象上的点(点B与点A不重合),且B点的横坐标为1,在x轴上求一点P,使PA+PB最小.2、如图,一元二次方程x2+2x-3=0的二根x1,x2(x1<x2)是抛物线y=ax2+bx+c 与x轴的两个交点B,C的横坐标,且此抛物线过点A(3,6).(1)求此二次函数的解析式;(2)设此抛物线的顶点为P,对称轴与AC相交于点Q,求点P和点Q的坐标;(3)在x轴上有一动点M,当MQ+MA取得最小值时,求M点的坐标.3、如图10,在平面直角坐标系中,点A的坐标为(1,),△AOB的面积是.(1)求点B的坐标;(2)求过点A、O、B的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使△AOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;4.如图,抛物线y =35x 2-185x +3和y 轴的交点为A ,M 为OA 的中点,若有一动点P ,自M 点处出发,沿直线运动到x 轴上的某点(设为点E ),再沿直线运动到该抛物线对称轴上的某点(设为点F ),最后又沿直线运动到点A ,求使点P 运动的总路程最短的点E ,点F 的坐标,并求出这个最短路程的长.5.如图,已知在平面直角坐标系xOy中,直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC 绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于点E和F.(1)求经过A、B、C三点的抛物线的解析式;(2)当BE经过(1)中抛物线的顶点时,求CF的长;(3)在抛物线的对称轴上取两点P、Q(点Q在点P的上方),且PQ=1,要使四边形BCPQ 的周长最小,求出P、Q两点的坐标.6.如图,已知平面直角坐标系,A,B两点的坐标分别为A(2,-3),B(4,-1)若C(a,0),D(a+3,0)是x轴上的两个动点,则当a为何值时,四边形ABDC的周长最短.7、如图11,在平面直角坐标系中,矩形的顶点O在坐标原点,顶点A、B分别在x 轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.(1)若E为边OA上的一个动点,当△CDE的周长最小时,求点E的坐标;(2)若E、F为边OA上的两个动点,且EF=2,当四边形CDEF的周长最小时,求点E、F的坐标.二、求两线段差的最大值问题 (运用三角形两边之差小于第三边)基本图形解析:1、在一条直线m 上,求一点P ,使PA 与PB 的差最大;(1)点A 、B 在直线m 同侧:解析:延长AB 交直线m 于点P ,根据三角形两边之差小于第三边,P ’A —P ’B <AB ,而PA —PB=AB 此时最大,因此点P 为所求的点。
几何中求线段最值问题一、核心解题依据1、已知线段AB=5,点C 是以B 为圆心,以2为半径的圆上任意一点,则线段AC 的最大值是 ,最小值是 。
题组一 1.在△ABC 中,∠ACB=90°,AC=1,AB=2.将△ABC 绕顶点C 顺时针旋转得到△A ′B ′C,取AC 中点E ,A ′B ′中点P,连接EP ,则在旋转过程中线段EP 的最大值是 ,最小值是 。
2.在Rt △ABC 中,∠ACB =90°,BC=6,AC=12,点D 在边AC 上(不与A ,C重合)且AD=4,连结BD ,,将线段AD 绕点A 旋转,点F 始终为BD 中点,求线段CF 长度的最大值和最小值。
想一想:此类动态问题中求一条线段的最值问题通常通过构造 来解决,构造 的关键是课后作业C BA D CB A1.已知边长是2的正三角形,两顶点分别在平面直角坐标系的轴、轴的正半轴上滑动,点C 在第一象限,连结OC ,则OC 的长的最大值是____________ .2. .已知:AOB △中,2AB OB ==,COD △中,3CD OC ==, 连接AD 、BC ,点M 、N 、P分别为OA 、OD 、BC 的中点. 固定AOB △,将COD △绕点O 旋转,直接写出PM 的最大值3直线23+-=x y 与x 轴交于点C ,与y 轴交于点B ,点A 为y 轴正半轴上的一点,⊙A 经过点B 和点O ,直线BC 交⊙A 于点D 。
(1)求点D 的坐标;(2)过O ,C ,D 三点作抛物线,在抛物线的对称轴上是否存在一点P ,使线段PO 与PD 之差的值最大?若存在,请求出这个最大值和点PABC A B 、x y x。
巧用托勒密定理,求解线段比最值“三例说”
平面几何中有一“托勒密”定理,就是:凸四边形ABCD中,AB·CD+BC·AD≥BD·AC,当A、B、C、D共圆时取等号。
此定理在求解动态图形中的线段比最值时有巧妙之用。
现举以下三例来说说:【例1】(如图)四边形ABCD中,AB=2√3,AC=2,∠BAC=∠ACD=60º,求AD/BD最小值。
【分析】首先,确认AB∥CD,点D的轨迹为CD所在直线;然后,作定点关于直线CD的对称点F,为产生AD/BD搭桥;最后,构造成凸四边形ABFD,应用“托勒密”定理…(过程见下)
【例二】(如图)在△ABC中,∠B=∠ACD,BC=3,S△ABC=3,求:BD/AD的最大值。
【分析】首先,确定点A的轨迹为过点平行BC的直线L;然后,由△ABC∽△ACD,导出BD/AD后,转化为与AB/AC;最后,通过作对称点造四边形BCAQ,应用“托勒密定理”…(过程见下)
【例三】(如图)在△ABC中,CD=2DB=8,∠DAC=60º,点P 满足△BAP∽△CAB,点P不在AC上,求:PB/PD的最大值。
【分析】首先,确定点P的轨迹(此步难度较大),造三角形相似确准点P所在的定直线L;然后,作定点B关于L的对称点M,构造凸四边形BDPM;最后,应用“托勒密定理”导PB/PD…(过程见下,此题难度在于定点P的轨迹)
以上三例之分析,“道听度说”供参考。