苏科版数学八年级上册 6.2 一次函数(1) 教案
- 格式:docx
- 大小:27.39 KB
- 文档页数:3
6.1函数(1)教学目标【知识与能力】1.通过简单的实例,了解常量、变量、自变量、因变量以及函数的定义.2.会判断某个变化过程中两个变量之间是否是函数关系.【过程与方法】通过写出一些简单的实际问题中变量之间的函数关系,提高抽象能力【情感态度价值观】体会函数思想,体会数学来源于生活教学重难点【教学重点】了解常量、变量、自变量、因变量以及函数的定义【教学难点】会确定常量、变量、自变量、因变量以及函数课前准备无教学过程引入:问题1、汽车从镇江出发沿沪宁高速匀速驶向上海。
行程问题:路程(s)、速度(v)、时间(t)讨论:有不变的数量吗?有变化的数量吗?探索新知定义:(1)常量:在变化过程中,保持不变取值的量叫常量。
(2)变量:在变化过程中,可以不断变化取值的量叫变量。
思考:你能指出下列各式的常量和变量吗?求余角的计算公式为β=900- α圆面积S和半径r的关系式为S=πr2矩形的长a一定,宽b,面积s= a b问题2:这是工作人员根据水库的水位变化与水库蓄水量变化情况而制作的表格:说说表格里有几个变量?他们有怎样的关系呢?问题3:根据小鱼的条数与所需火柴棒的根数的关系,说说你从中获得的信息。
说说这里有几个变量?他们有怎样的关系呢?上述问题都有怎样的共同之处呢?一般地,设在一个变化的过程中有两个变量x 和y 。
如果对于变量x 的每一个值,变量y 都有唯一的值与它对应,我们称y 是x 的函数(function ).其中,x 是自变量,y 是因变量。
思考1、圆面积s 是半径r 的函数吗?思考2、搭小鱼所需火柴的根数S 是所搭小鱼条数n 的函数吗?你能再举一些你熟悉的函数例子吗?知识运用用一根1m 长的铁丝围成一个长方形。
(1)当长方形的宽为0.1m 时,长为m(2)当长方形的宽为0.2m 时,长为m(3)当长方形的宽为a m 时,长为m(4)长方形的长是宽的函数吗?为什么?拓展延伸1、在圆的周长公式2c r π=中,下列说法正确的是( )A.常量为2,变量为,,c r πB.常量为2,,π变量为,c rC.常量为2,,r π,变量为cD.以上答案都不对2、分别写出下列各问题中的函数关系式,并指出其中的自变量与因变量(1)一个正方形的边长为3cm ,它的各边减少xcm 后,得到的新的正方形的周长为 ycm ,求x 与y 之间的函数关系式。
苏科版数学八年级上册6.3《一次函数的图象》(第1课时)教学设计一. 教材分析《一次函数的图象》是苏科版数学八年级上册6.3节的内容,本节内容是在学生已经掌握了函数的概念、一次函数的定义和性质的基础上进行学习的。
本节主要让学生了解一次函数的图象特征,学会如何绘制一次函数的图象,并能够通过图象判断一次函数的性质。
二. 学情分析学生在学习本节内容之前,已经掌握了函数的概念和一次函数的定义,但对于一次函数的图象可能还比较陌生。
因此,在教学过程中,需要引导学生通过实际操作来感受一次函数的图象特征,并学会如何绘制一次函数的图象。
三. 教学目标1.让学生了解一次函数的图象特征,学会如何绘制一次函数的图象。
2.培养学生通过图象判断一次函数的性质的能力。
3.培养学生运用数学知识解决实际问题的能力。
四. 教学重难点1.一次函数的图象特征。
2.如何绘制一次函数的图象。
3.通过图象判断一次函数的性质。
五. 教学方法采用“问题驱动”的教学方法,引导学生通过实际操作来感受一次函数的图象特征,并学会如何绘制一次函数的图象。
在教学过程中,注重让学生观察、思考、交流、总结,提高学生的动手能力和思维能力。
六. 教学准备1.准备一次函数的图象示例。
2.准备绘图工具,如直尺、圆规、画图软件等。
七. 教学过程1.导入(5分钟)通过展示一次函数的图象示例,让学生初步感受一次函数的图象特征。
引导学生思考:一次函数的图象是什么样的?有哪些特点?2.呈现(10分钟)讲解一次函数的图象特征,让学生明白一次函数的图象是一条直线。
引导学生思考:一次函数的图象是如何得到的?如何绘制一次函数的图象?3.操练(10分钟)让学生分组进行实际操作,尝试绘制一次函数的图象。
教师巡回指导,解答学生遇到的问题。
4.巩固(5分钟)让学生展示自己的绘制成果,互相评价,教师点评。
引导学生总结一次函数图象的特征和绘制方法。
5.拓展(5分钟)让学生思考:如何通过一次函数的图象判断其性质?引导学生观察图象,总结一次函数的性质。
苏科版数学八年级上册《6.2 一次函数》教学设计一. 教材分析苏科版数学八年级上册《6.2 一次函数》是学生在学习了平面直角坐标系、不等式等知识的基础上,进一步研究函数的一种表达形式。
本节内容通过具体的实例,引导学生认识一次函数,理解一次函数的性质,并能运用一次函数解决实际问题。
教材中安排了丰富的例题和练习题,有助于学生巩固所学知识。
二. 学情分析八年级的学生已经具备了一定的数学基础,对平面直角坐标系、不等式等概念有所了解。
但学生在学习过程中,可能对函数的概念和性质理解不够深入,需要通过实例和练习来进一步巩固。
此外,学生可能对实际问题中的函数关系理解不够,需要通过生活中的实例来启发和引导。
三. 教学目标1.了解一次函数的概念,理解一次函数的性质。
2.能够运用一次函数解决实际问题,提高解决问题的能力。
3.培养学生的数学思维能力和合作交流能力。
四. 教学重难点1.一次函数的概念和性质。
2.一次函数在实际问题中的应用。
五. 教学方法1.采用问题驱动法,引导学生主动探究一次函数的性质。
2.利用生活中的实例,让学生感受一次函数的实际意义。
3.运用合作交流法,让学生在讨论中加深对一次函数的理解。
4.采用练习法,巩固所学知识,提高解题能力。
六. 教学准备1.准备相关的教学课件和教学素材。
2.准备一次函数的练习题和实际问题。
3.准备黑板和粉笔,用于板书。
七. 教学过程1.导入(5分钟)通过一个生活中的实例,如购物时发现的总价与数量之间的关系,引导学生思考这种关系可以用数学模型来表示。
进而引出一次函数的概念。
2.呈现(10分钟)呈现一次函数的定义和性质,通过具体的例子,让学生理解一次函数的表达形式,掌握一次函数的性质。
3.操练(10分钟)让学生分组讨论,运用一次函数解决实际问题。
每组选择一个实际问题,列出一次函数的表达式,并解释其含义。
4.巩固(10分钟)让学生独立完成一次函数的练习题,检验学生对一次函数的理解和掌握程度。
6.2 一次函数第1课时一、教学目标1.通过实例理解一次函数和正比例函数的概念,以及它们之间的关系;2.能根据所给条件写出简单的一次函数表达式;3.经历一般规律的探索过程、发展学生的抽象思维能力.二、教学重点、难点教学重点:1.一次函数、正比例函数的概念及关系;2.会根据已知信息写出一次函数的表达式.教学难点:对一次函数和正比例函数概念的理解.三、教学方法与教学手段采用“问题分析—合作交流—归纳提炼”的方法,引导学生“观察—思考—提炼—理解”,使学生体会一次函数的意义.运用多媒体辅助教学手段,启发学生思考、理解.采用小组合作的方式,培养学生合作、探索的意识与能力.四、教学过程(一)创设情境、感受概念创设“汽车加油过程”、“行程”、“汽车油量”的生活情境,写出函数表达式.【情境1】给汽车加油的加油枪流量为25 L/min.如果加油前油箱里没有油,那么加油过程中,油箱里的油量y(L)与加油时间x(min)之间有怎样的函数关系?如果加油前油箱里有6L油,那么在加油过程中,邮箱里的油量y(L)与加油时间x(min)之间有怎样的函数关系?【情境2】陈老师用导航搜索了一下,发现桐岐中学与南闸中学之间的行程是16 km,早上7点30分,陈老师以80 km/h的速度从桐岐中学开车驶向南闸中学,那么在行驶过程中,陈老师行驶的路程s(km)与行驶时间t(h)之间的函数表达式是__________.在行驶过程中,陈老师离南闸中学的路程y(km)与行驶时间t(h)之间的函数表达式是____________.【情境3】加油后陈老师的油箱有汽油75 L,在行驶过程中,陈老师发现每行驶100 km耗油10 L,那么行驶过程中的耗油量y(L)与行驶路程s(km)之间的函数表达式是_______.那么行驶过程中的余油量Q(L)与行驶路程s(km)之间的函数表达式是_________.(二)合作探究、理解概念请学生分组讨论,上述函数表达式中的自变量分别是什么?在这些函数表达式中,表示函数的自变量的式子是关于自变量的几次整式?共同总结概念:一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做一次函数,其中x是自变量,y是x的函数.请学生说说上述6个一次函数表达式的k ,b ,发现异同,归纳出正比例函数的概念:特别地,当b =0时,y =kx (k 为常数,k ≠0),y 叫做x 的正比例函数.☆正比例函数一定是一次函数,一次函数不一定是正比例函数.它们之间的关系可以用下图来描述:(三)例题示范、应用概念例1 有下列函数:①y =x -6,②y =x 2,③y =8x ,④y =7-x ,⑤y =5x 2,⑥y =(x -2)-x ,其中y 是x 的一次函数的是_____________ ;y 是x 的正比例函数的是________.例2 用函数表达式表示下列变化过程中两个变量之间的关系,并指出其中的一次函数、正比例函数.(1)正方形的面积S 随边长x 的变化而变化;_________(2)正方形的周长l 随边长x 的变化而变化;_________(3)当长方形的长为常量a 时,面积S 随宽x 的变化而变化;___________(4)如图,A ,B 两站相距200 km ,一列火车从B 站出发以120 km/h 的速度驶向C 站,火车离A 站的路程y (km )随随行驶时间t (h )变化而变化.____________(四)自我诊断、落实概念 1.高速列车以300 km/h 的速度驶离A 站,列车行驶的路程为y (km ),行驶时间是t (h ).试写出 y 与 t 之间的函数表达式,并判断 y 是否为 t 的一次函数,是否为 t 的正比例函数.2.水池中有水465 m 3,每小时排水15 m 3,排水 t h 后,水池中还有水 y m 3.试写出 y 与 t 之间的函数表达式,并判断 y 是否为 t 的一次函数,是否为 t 的正比例函数.3.一个长方形的长为15 cm ,宽为10 cm .如果将长方形的长减少x cm ,宽不变,那么长方形的面积y (cm 2)与x (cm )之间有怎样的函数表达式?判断 y 是否为 x 的一次函数,是否为x 的正比例函数.(五)拓展延伸、强化概念例3 (1)已知函数y=2x m -1,当m 取什么值时,y 是x 的一次函数?(2)已知函数y=x m 21--1,当m 取什么值时,y 是x 的一次函数?(3)已知函数y =(m +2)x m 1--1,当m 取什么值时,y 是x 的一次函数?(4)已知函数y=x m21 -n,当m,n取什么值时,y是x的一次函数?当m,n取什么值时,y是x的正比例函数?(六)总结归纳、升华概念1.交流对话:(1)对自己说:“有哪些收获?”(2)对同学说:“有哪些提示?”(3)对老师说:“有哪些疑惑?”2.教师小结:(1)一次函数.(2)一次函数与正比例函数的关系.第2课时【学习目标】1.能根据已知条件确定一次函数关系式;2.能利用一次函数关系式求相应的自变量的值以及函数值.【重、难点】重点:运用待定系数法求一次函数关系式.难点:求一次函数关系式中的自变量的取值范围.【新知预习】1.已知函数y=2x-3,当x=-2时,y=____;当y=1时,x=___ .2.某跨江大桥的收费站对过往车辆都要收费,规定大车收费60元,小车收费50元,若某天过往车辆为3 000辆,求所收费用y(元)与小车x(辆)之间的函数关系,及x的取值范围.【导学过程】活动1:一盘蚊香长105 cm,点燃时每小时缩短10 cm.(1)写出蚊香点燃后的长度y(cm)与点燃时间t(h)之间的函数关系式.(2)5 h后蚊香还剩多长?(3)该盘蚊香可以使用多长时间?(4)求t的取值范围.练习:甲、乙两地相距520 km,一辆汽车以80 km/h的速度从甲地开往乙地,行驶了t h.试问:剩余路程s(km)与行驶时间t(h)之间有怎样的函数表达式?求t的取值范围.活动2:在弹性限度内,弹簧的长度y(厘米)是所挂物体的质量x(克)的一次函数,当所挂物体的质量为10克时,弹簧长11厘米;当所挂物体的质量为30克时,弹簧长15厘米.(1)写出y与x之间的函数关系式.(2)求所挂物体的质量为4克时的弹簧的长度.(3)当弹簧长为29厘米时,所挂物体的质量为多少克?想一想:如何用“待定系数法”确定一次函数的表达式?小结:求一次函数表达式的一般步骤:例1 已知y 与x-3 成正比例,当x=4 时,y=3,求y 与x 的函数关系式.变式1 已知y-1 与x 成正比例,当x=2 时,y=-4,求y 与x 的函数关系式.变式2 已知y=y1+y2,其中y1 与x 成正比例,y2 与x-2 成正比例,当x=-1 时,y=2;当x=2 时,y=5,求y 与x 的函数关系式.例2 已知长方形的周长为20 cm.(1)写出长y 与宽x 之间的函数关系式.(2)当长为5 cm 时,宽为多少?(3)求长的取值范围.【课堂反馈】1. 完成教材P146练习.2. 已知函数y=4x+5,当x=-3时,y= ;当y=5时,x= .3. 已知y与4x-1成正比例,当x=3时,y=6,求出y与x的函数关系式.4. 已知一次函数y=kx+b,当x=-4时,y=9;当x=2时,y=-3.(1)求这个函数的函数关系式;(2)当y=5时,求x的值.5. 已知y-3与x+2成正比例,且当x=2时,y=7.(1)写出y与x之间的函数关系式;(2)计算当x=4时,y的值;(3)计算当y=4时,x的值.6.将长为38 cm,宽为5 cm的长方形白纸,按如图的方法粘合在一起,粘合部分白纸为2 cm.(1)求10张白纸粘合后的长度;(2)设x张白纸粘合后的总长为y cm,写出y与x的函数关系式;(3)求x的取值范围.。
苏科版数学八年级上册6.2《一次函数》教学设计1一. 教材分析苏科版数学八年级上册 6.2《一次函数》是学生在学习了初中数学基础知识后,对函数概念的进一步理解。
本节内容主要让学生掌握一次函数的定义、性质和图像,以及如何运用一次函数解决实际问题。
教材通过丰富的实例和生动的语言,引导学生探究一次函数的本质特征,培养学生的数学思维能力和解决问题的能力。
二. 学情分析学生在学习本节内容前,已经掌握了实数、方程、不等式等基础知识,对数学概念有一定的理解能力。
但部分学生对函数概念的理解可能仍存在模糊之处,对一次函数的应用能力和解决实际问题的能力有待提高。
因此,在教学过程中,要关注学生的个体差异,针对不同学生的学习需求进行有针对性的指导。
三. 教学目标1.理解一次函数的定义和性质,掌握一次函数的图像特点。
2.能够运用一次函数解决实际问题,提高学生的数学应用能力。
3.培养学生的数学思维能力和团队合作精神。
四. 教学重难点1.一次函数的定义和性质。
2.一次函数图像的特点。
3.运用一次函数解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入一次函数,让学生感受数学与生活的紧密联系。
2.合作学习法:引导学生分组讨论,共同探究一次函数的性质和图像特点。
3.启发式教学法:教师提问,引导学生思考,激发学生的学习兴趣和探究欲望。
4.反馈评价法:及时了解学生的学习情况,针对性地进行指导。
六. 教学准备1.教学课件:制作一次函数的相关课件,包括图片、动画和实例等。
2.练习题:准备一次函数的相关练习题,包括基础题、应用题和拓展题。
3.教学工具:准备黑板、粉笔、直尺等教学工具。
七. 教学过程1.导入(5分钟)利用生活实例引入一次函数的概念,如“某商品的原价是80元,打8折后的价格是多少?”引导学生思考,激发学生的学习兴趣。
2.呈现(10分钟)展示一次函数的定义和性质,如y=kx+b(k≠0,k、b为常数)。
通过动画和实例,让学生直观地感受一次函数的图像特点,如直线、斜率、截距等。
苏科版数学八年级上册《6.2 一次函数》说课稿一. 教材分析苏科版数学八年级上册《6.2 一次函数》这一节主要介绍了什么?一次函数的定义、性质和图象。
通过这一节的学习,学生能够掌握一次函数的基本知识,理解一次函数的图象特征,并能运用一次函数解决实际问题。
在教材中,首先介绍了函数的概念,让学生理解函数是一种数学对应关系。
然后,引入一次函数的定义,让学生了解一次函数的表达方式。
接着,通过实例讲解一次函数的性质,让学生理解一次函数的增减性和比例系数的概念。
最后,讲解一次函数的图象,让学生学会如何绘制一次函数的图象,并能够从图象中获取信息。
二. 学情分析学生在学习这一节内容时,需要具备哪些基础知识和技能?首先,学生需要了解函数的基本概念,知道函数是一种数学对应关系。
其次,学生需要掌握一些基本的代数运算,如解方程、求导数等。
此外,学生还需要具备一定的图形识别能力,能够识别和绘制一次函数的图象。
在学习这一节内容的过程中,学生可能会遇到哪些困难和问题?首先,学生可能对函数的概念不够清晰,难以理解函数的定义和性质。
其次,学生可能对一次函数的表达方式不够熟悉,难以理解和运用一次函数的公式。
此外,学生可能对一次函数的图象不够了解,难以绘制和解读一次函数的图象。
三. 说教学目标通过这一节的学习,我希望学生能够达到哪些目标?首先,我希望学生能够理解一次函数的定义和性质,掌握一次函数的表达方式。
其次,我希望学生能够学会绘制一次函数的图象,并能从图象中获取信息。
最后,我希望学生能够运用一次函数解决实际问题,提高学生的数学应用能力。
四. 说教学重难点在这一节内容中,我认为哪些部分是学生的难点和重点?首先,函数的概念和一次函数的定义是学生的重点和难点。
其次,一次函数的性质和图象是学生的重点和难点。
最后,运用一次函数解决实际问题是学生的重点和难点。
五. 说教学方法与手段在这一节的教学中,我打算采用哪些方法和手段进行教学?首先,我打算采用讲授法,向学生讲解一次函数的定义、性质和图象。
6.1函数(1)教学目标:1.通过简单实例,了解常量与变量的意义;2.通过实例,多角度、多层面地认识和理解函数的意义,感受函数的本质——对应;3.能说出一些函数的实例,并能判断两个变量间的关系是否是函数关系.教学重点:1.函数概念的建立;2.判断两个变量间的关系是否是函数关系.教学难点:函数概念中的常量、变量的理解及其对应关系探索.教学过程:引入新课:初步感悟生活中的变化我们生活在一个千变万化的世界:随着四季的变化,气温也随之变化;随着年龄的增长,大家的个子越来越高.……“变化”让我们的生活多姿多彩,“变化”也时常给我们带来困惑,所以“变”引领我们去探索新知,这节课开始让我们在变化过程中去感悟新知识.设计意图:由学生熟悉的话题引入,在观察星球变化、花儿开放的动态过程中,感悟变化. 任务1:初步感悟生活中的变量1.观察加油的过程,思考:涉及到哪些量?在这些量中有哪些量是没有变化的?哪些量是不断变化的?2.归纳两个新的概念:常量与变量的概念.3.你还能举出生活中的某些变化过程,并说明其中的常量和变量吗?设计意图:由“变”到“变化的量”实现生活到数学的自然过渡.通过“提出问题——寻找其中的量——对量进行分类——归纳概念”,让学生亲身经历概念形成的全过程,感受数学概念形成的自然性与合理性.任务2:研究特殊的变量关系引入:在各种变化过程中往往存在着两个互相联系的变量.这节课的任务是在不同的变化过程中探索变量与变量之间的关系.在加油过程中,有哪些变量?当油量在变化时,金额怎么变?当油量取一个值时,金额有几个值?(1)学生独立思考、交流.(2)教师点拨:从三个方面探索变量之间的关系,关键词:变化,确定,对应.问题1 已知水库的水位变化与蓄水量变化情况如下表所示:从表格里可以看出:有几个变量?这些变量之间有什么关系?问题2 如图,搭一条小鱼需要8根火柴,每多搭一条小鱼就要增加6根火柴,请说出搭小鱼过程中的变量.这两个变量间有什么关系?你能写出搭n条小鱼所需的火柴根数s与小鱼条数n之间的关系式吗?说说你从关系式中获得的信息.问题3 下图是泰州市某一天的气温变化曲线。
6.2一次函数(1)
一、内容与内容解析
1.内容
苏科版数学八年级上册6.2一次函数(第一课时)
2.内容解析
一次函数是初中阶段研究的第一个函数,是学生难以建立的一个抽象数学概念,它的研究方法具有一般性和代表性,关系到后续函数(二次函数、反比例函数)的研究和学习.同时,整个初中阶段,一元一次方程、一元一次不等式都存在于一次函数中,三者相互依存,紧密联系.学好本节内容尤为重要.
教学重点是:一次函数、正比例函数的概念及关系.
教学难点是:会根据所给条件写出简单的一次函数表达式.
二、教学目标
(1)能结合具体情境理解一次函数和正比例函数的概念及其意义;
(2)能根据实际问题列出简单的一次函数的表达式;
(3)经历由实际问题引出一次函数解析式和由已知信息写一次函数表达式的过程,体会数学与现实生活的联系,体会建立函数模型的思想,发展学生的抽象思维能力.
三、教学过程设计
1. 创设情境
问题1今天早上,老师开车来学校,假设汽车的行驶的平均速度是60千米/小时,则汽车的行驶路程与时间有怎样的关系?
追问1 设汽车的行驶路程为y(千米),行驶时间为x(小时),你能写出y与x之间的关系式吗?
设计意图:由老师生活入手,符合学生的心智特征,激发学生的学习兴趣,用行驶路程问题,作为新知导入的问题情境,比较符合学生的认知特点.
问题2老师在行驶途中进入一加油站加油,给汽车加油的加油枪流量为25L/min,如果加油前油箱里没有油,那么在加油过程中,油箱里的油量Q (L)与加油时间t (min)之间有怎样的函数关系?
追问1 如果加油前油箱里有6L油,那么加油过程中你能随时说出油箱中的油量吗?
追问2 在加油过程中,油箱里的油量Q (L)与加油时间t (min)之间有怎样的函数关系?
设计意图:通过问题2使学生逐步加深对函数概念的理解,也为导出一次函数、正比例函数概念做好铺垫.
问题3 老师到了学校,看见我们校内池塘准备换水.水池中有水450 m3,每小时放水15 m3.放水t h后,水池中还有水y m3,则y (m3)与t (h)之间有怎样的函数关系?
追问1 放完后重新加水,每小时进水10 m3,进水t h后,水池中有水y m3,则y(m3)与t(h)之间有怎样的函数关系?
设计意图:
1.数学源于生活,以现实生活为学习素材,创设情境引入有关数学概念,易于学生接受,可激发学生的学习兴趣,让学生感受生活中处处有数学.
2.学生利用已有的知识解决五个问题串得到五个函数表达式,学生能够体会到成功的喜悦,同时这一过程也体现出一种“问题情境----数学模型----概念归纳“的模式,有计划地逐步展示知识的产生过程,渗透函数的思想.
2.归纳概念
问题 4 请同学们观察上述得到的函数表达:(1)y=60x(2)Q=25t(3)Q=25t+6 (4)y=450−15t (5)y=10t,这些函数表达式有什么共同和不同之处?
追问1 你能否将他们分类?
追问2 你能再写两个类似的式子吗?
师生总结:一般地,如果两个变量x与y之间的函数关系,可以表示为y=kx+b(k、b为常数,且k≠0)的形式.那么称y是x的一次函数(linear function).
特别地,当b=0时,y叫做x的正比例函数.所以正比例函数是特殊的一次函数.
设计意图:
使学生在思考、对比、分析、类比、迁移中,亲身经历一次函数的概念的构建过程.同时也让学生体会到类比、归纳的思想,体现一种“特殊---猜想---归纳----一般”的模式,让学生分析问题和解决问题的能力在无形中得到提高.
3. 辨析概念
判断下列函数是否为一次函数或正比例函数.
y=6x-8, h=t2,y=-9t,s=50-3t,m=,y=πx
设计意图:
深化学生对一次函数概念的理解.
4. 巩固练习
例1 用函数表达式表示下列变化过程中两个变量之间的关系,并指出是否是一次函数?是否是正比例函数.
(1)正方形周长l 与边长x之间的函数关系;
(2)正方形面积S 与边长x之间的函数关系;
(3)长方形的长为常量a 时,面积S与宽x 之间的函数关系;
(4)如图,高速列车以300 km/h的速度驶离A站,在行驶过程中,这列火车离开A 站的路程y (km)与行驶时间x (h)之间的函数关系;
思考:如图,A、B两地相距200 km,一列火车从B 地出发沿BC 方向以120 km/h 的速度行驶,在行驶过程中,设火车行驶时间为x (h).请你提出一个问题.
例2 一个长方形的长为15 cm,宽为10 cm.若长方形的长减少x cm,宽不变,则长方形的面积y (cm2)与x (cm)之间的函数关系.
追问1 如果宽增加x cm呢?
设计意图:
通过“具体——抽象——具体”的过程,使学生进一步加深对一次函数概念的认识,并在这个过程中,体会一次函数是刻画现实世界变化规律的重要数学模型,感悟函数的思想.引导在学习交流中,认识到函数是解决现实问题的重要工具,提高学习数学的自信心. 增强应用数学的意识.
5. 小结反思,归纳提升
通过本节课,你有哪些收获?
设计意图:小结归纳,总结反思.
6.布置作业
评价手册。