高中数学必修五综合测试题含答案
- 格式:doc
- 大小:1.70 MB
- 文档页数:18
高中数学(人教版)必修五第二章数列综合测试卷本试卷满分150分,其中选择题共75分,填空题共25分,解答题共50分。
试卷难度:0.63一.选择题(共15小题,满分75分,每小题5分)1.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1B.2C.4D.82.(5分)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏3.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440B.330C.220D.1104.(5分)已知数列{a n}、{b n}、{c n},以下两个命题:①若{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,则{a n}、{b n}、{c n}都是递增数列;②若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列;下列判断正确的是()A.①②都是真命题B.①②都是假命题C.①是真命题,②是假命题D.①是假命题,②是真命题5.(5分)一给定函数y=f(x)的图象在下列图中,并且对任意a1∈(0,1),=f(a n)得到的数列{a n}满足a n+1>a n,n∈N*,则该函数的图象是由关系式a n+1()A.B.C.D.6.(5分)若数列{a n},{b n}的通项公式分别为a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,则实数a的取值范围是()A.B.[﹣1,1)C.[﹣2,1)D.7.(5分)数列{a n}是正项等比数列,{b n}是等差数列,且a6=b7,则有()A.a3+a9≤b4+b10B.a3+a9≥b4+b10C.a3+a9≠b4+b10D.a3+a9与b4+b10大小不确定8.(5分)已知数列{a n}满足:a1=1,a n+1=(n∈N*)若(n∈N*),b1=﹣λ,且数列{b n}是单调递增数列,则实数λ的取值范围是()A.B.λ<1C.D.9.(5分)设△A n B n C n的三边长分别是a n,b n,c n,△A n B n C n的面积为S n,n∈N*,若b1>c1,b1+c1=2a1,b n+1=,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列10.(5分)《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现.书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织的快,而且每天增加的数量相同,已知第一天织布5尺,一个月(按30天计算)总共织布390尺,问每天增加的数量为多少尺?该问题的答案为()A.尺B.尺C.尺D.尺11.(5分)已知数列{a n}为等差数列,S n其前n项和,且a2=3a4﹣6,则S9等于()A.25B.27C.50D.5412.(5分)《九章算术》是我国古代的数字名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各德几何.”其意思为“已知A、B、C、D、E五人分5钱,A、B两人所得与C、D、E三人所得相同,且A、B、C、D、E每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E所得为()A.钱B.钱C.钱D.钱13.(5分)已知等差数列{a n}的前n项和为s n,且S2=10,S5=55,则过点P(n,a n),Q(n+2,a n+2)(n∈N*)的直线的斜率为()A.4B.C.﹣4D.﹣14.(5分)已知等差数列{a n}的前n项和为S n,且S3=9,a2a4=21,数列{b n}满足,若,则n的最小值为()A.6B.7C.8D.915.(5分)已知函数f(x)的图象关于x=﹣1对称,且f(x)在(﹣1,+∞)上单调,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则{a n}的前100项的和为()A.﹣200B.﹣100C.﹣50D.0二.填空题(共5小题,满分25分,每小题5分)16.(5分)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8=.17.(5分)等差数列{a n}的前n项和为S n,a3=3,S4=10,则=.18.(5分)“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{a n },则此数列的项数为.19.(5分)已知无穷数列{a n },a 1=1,a 2=2,对任意n ∈N *,有a n +2=a n ,数列{b n }满足b n +1﹣b n =a n (n ∈N *),若数列中的任意一项都在该数列中重复出现无数次,则满足要求的b 1的值为.20.(5分)设数列{a n }的通项公式为a n =n 2+bn ,若数列{a n }是单调递增数列,则实数b 的取值范围为.三.解答题(共5小题,满分50分,每小题10分)21.(10分)对于给定的正整数k ,若数列{a n }满足:a n ﹣k +a n ﹣k +1+…+a n ﹣1+a n +1+…+a n +k ﹣1+a n +k =2ka n 对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列.22.(10分)设{a n }和{b n }是两个等差数列,记c n =max {b 1﹣a 1n ,b 2﹣a 2n ,…,b n ﹣a n n }(n=1,2,3,…),其中max {x 1,x 2,…,x s }表示x 1,x 2,…,x s 这s 个数中最大的数.(1)若a n =n ,b n =2n ﹣1,求c 1,c 2,c 3的值,并证明{c n }是等差数列;(2)证明:或者对任意正数M ,存在正整数m ,当n ≥m 时,>M ;或者存在正整数m ,使得c m ,c m +1,c m +2,…是等差数列.23.(10分)已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (Ⅰ)求{a n }的通项公式;(Ⅱ)求和:b 1+b 3+b 5+…+b 2n ﹣1.24.(10分)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=﹣6.(1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.25.(10分)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3﹣x 2=2. (Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1,1),P 2(x 2,2)…P n +1(x n +1,n +1)得到折线P 1 P 2…P n +1,求由该折线与直线y=0,x=x 1,x=x n +1所围成的区域的面积T n.高中数学(人教版)必修五第二章数列综合测试卷参考答案与试题解析一.选择题(共15小题,满分75分,每小题5分)1.(5分)(2017•新课标Ⅰ)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1B.2C.4D.8【考点】85:等差数列的前n项和;84:等差数列的通项公式.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】利用等差数列通项公式及前n项和公式列出方程组,求出首项和公差,由此能求出{a n}的公差.【解答】解:∵S n为等差数列{a n}的前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{a n}的公差为4.故选:C.【点评】本题考查等差数列的面公式的求法及应用,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.2.(5分)(2017•新课标Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏【考点】89:等比数列的前n项和;88:等比数列的通项公式.【专题】11 :计算题;34 :方程思想;54 :等差数列与等比数列.【分析】设这个塔顶层有a盏灯,由题意和等比数列的定义可得:从塔顶层依次向下每层灯数是等比数列,结合条件和等比数列的前n项公式列出方程,求出a 的值.【解答】解:设这个塔顶层有a盏灯,∵宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,∴从塔顶层依次向下每层灯数是以2为公比、a为首项的等比数列,又总共有灯381盏,∴381==127a,解得a=3,则这个塔顶层有3盏灯,故选B.【点评】本题考查了等比数列的定义,以及等比数列的前n项和公式的实际应用,属于基础题.3.(5分)(2017•新课标Ⅰ)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440B.330C.220D.110【考点】8E:数列的求和.【专题】35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】方法一:由数列的性质,求得数列{b n}的通项公式及前n项和,可知当N为时(n∈N+),数列{a n}的前N项和为数列{b n}的前n项和,即为2n ﹣n﹣2,容易得到N>100时,n≥14,分别判断,即可求得该款软件的激活码;方法二:由题意求得数列的每一项,及前n项和S n=2n+1﹣2﹣n,及项数,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,分别分别即可求得N的值.【解答】解:设该数列为{a n},设b n=+…+=2n﹣1,(n∈N+),则=a i,由题意可设数列{a n}的前N项和为S N,数列{b n}的前n项和为T n,则T n=21﹣1+22﹣1+…+2n﹣1=2n﹣n﹣2,),数列{a n}的前N项和为数列{b n}的前n项和,可知当N为时(n∈N+即为2n﹣n﹣2,容易得到N>100时,n≥14,A项,由=435,440=435+5,可知S440=T29+b5=230﹣29﹣2+25﹣1=230,故A 项符合题意.B项,仿上可知=325,可知S330=T25+b5=226﹣25﹣2+25﹣1=226+4,显然不为2的整数幂,故B项不符合题意.C项,仿上可知=210,可知S220=T20+b10=221﹣20﹣2+210﹣1=221+210﹣23,显然不为2的整数幂,故C项不符合题意.D项,仿上可知=105,可知S110=T14+b5=215﹣14﹣2+25﹣1=215+15,显然不为2的整数幂,故D项不符合题意.故选A.方法二:由题意可知:,,,…,根据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1, (2)﹣1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+…+n=,所有项数的和为S n:21﹣1+22﹣1+23﹣1+…+2n﹣1=(21+22+23+…+2n)﹣n=﹣n=2n+1﹣2﹣n,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,则①1+2+(﹣2﹣n)=0,解得:n=1,总共有+2=3,不满足N>100,②1+2+4+(﹣2﹣n)=0,解得:n=5,总共有+3=18,不满足N>100,③1+2+4+8+(﹣2﹣n)=0,解得:n=13,总共有+4=95,不满足N>100,④1+2+4+8+16+(﹣2﹣n)=0,解得:n=29,总共有+5=440,满足N >100,∴该款软件的激活码440.故选A.【点评】本题考查数列的应用,等差数列与等比数列的前n项和,考查计算能力,属于难题.4.(5分)(2017•上海模拟)已知数列{a n}、{b n}、{c n},以下两个命题:①若{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,则{a n}、{b n}、{c n}都是递增数列;②若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列;下列判断正确的是()A.①②都是真命题B.①②都是假命题C.①是真命题,②是假命题D.①是假命题,②是真命题【考点】81:数列的概念及简单表示法.【专题】11 :计算题;35 :转化思想;4O:定义法;5L :简易逻辑.【分析】对于①不妨设a n=2n,b n=3n、c n=sinn,满足{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,但是不满足c n=sinn是递增数列,对于②根据等差数列的性质和定义即可判断.【解答】解:对于①不妨设a n=2n,b n=3n、c n=sinn,∴{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,但c n=sinn不是递增数列,故为假命题,对于②{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,不妨设公差为分别为a,b,c,∴a n+b n﹣a n﹣1﹣b n﹣1=a,b n+c n﹣b n﹣1﹣c n﹣1=b,a n+c n﹣a n﹣1﹣c n﹣1=c,设{a n},{b n}、{c n}的公差为x,y,x,∴则x=,y=,z=,故若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列,故为真命题,故选:D【点评】本题考查了等差数列的性质和定义,以及命题的真假,属于基础题.5.(5分)(2017•徐汇区校级模拟)一给定函数y=f(x)的图象在下列图中,并且对任意a1∈(0,1),由关系式a n+1=f(a n)得到的数列{a n}满足a n+1>a n,n∈N*,则该函数的图象是()A.B.C.D.【考点】81:数列的概念及简单表示法.【专题】31 :数形结合;51 :函数的性质及应用.=f(a n)得到的数列{a n}满足a n+1>a n(n∈N*),根据点与【分析】由关系式a n+1直线之间的位置关系,我们不难得到,f(x)的图象在y=x上方.逐一分析不难得到正确的答案.=f(a n)>a n知:f(x)的图象在y=x上方.【解答】解:由a n+1故选:A.【点评】本题考查了数列与函数的单调性、数形结合思想方法,考查了推理能力与计算能力,属于基础题.6.(5分)(2017•河东区二模)若数列{a n},{b n}的通项公式分别为a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,则实数a的取值范围是()A.B.[﹣1,1)C.[﹣2,1)D.【考点】82:数列的函数特性.【专题】32 :分类讨论;35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】由a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,可得:(﹣1)n+2016•a<2+,对n分类讨论即可得出.【解答】解:a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,∴(﹣1)n+2016•a<2+,n为偶数时:化为a<2﹣,则a<.n为奇数时:化为﹣a<2+,则a≥﹣2.则实数a的取值范围是.故选:D【点评】本题考查了数列通项公式、分类讨论方法、数列的单调性,考查了推理能力与计算能力,属于中档题.7.(5分)(2017•宝清县一模)数列{a n}是正项等比数列,{b n}是等差数列,且a6=b7,则有()A.a3+a9≤b4+b10B.a3+a9≥b4+b10C.a3+a9≠b4+b10D.a3+a9与b4+b10大小不确定【考点】82:数列的函数特性.【专题】54 :等差数列与等比数列.【分析】由于{b n}是等差数列,可得b4+b10=2b7.已知a6=b7,于是b4+b10=2a6.由于数列{a n}是正项等比数列,可得a3+a9=≥=2a6.即可得出.【解答】解:∵{b n}是等差数列,∴b4+b10=2b7,∵a6=b7,∴b4+b10=2a6,∵数列{a n}是正项等比数列,∴a3+a9=≥=2a6,∴a3+a9≥b4+b10.【点评】本题考查了等差数列与等比数列的性质、基本不等式的性质,属于中档题.8.(5分)(2017•湖北模拟)已知数列{a n}满足:a1=1,a n+1=(n∈N*)若(n∈N*),b1=﹣λ,且数列{b n}是单调递增数列,则实数λ的取值范围是()A.B.λ<1C.D.【考点】82:数列的函数特性.【专题】11 :计算题;35 :转化思想;4O:定义法;54 :等差数列与等比数列.【分析】根据数列的递推公式可得数列{+1}是等比数列,首项为+1=2,公=(n﹣2λ)•2n,根据数列的单调性即可求出λ的范围.比为2,再代值得到b n+1【解答】解:∵数列{a n}满足:a1=1,a n+1=(n∈N*),∴=+1,化为+1=+2∴数列{+1}是等比数列,首项为+1=2,公比为2,∴+1=2n,=(n﹣2λ)(+1)=(n﹣2λ)•2n,∴b n+1∵数列{b n}是单调递增数列,>b n,∴b n+1∴(n﹣2λ)•2n>(n﹣1﹣2λ)•2n﹣1,解得λ<1,但是当n=1时,b2>b1,∵b1=﹣λ,∴(1﹣2λ)•2>﹣λ,故选:A.【点评】本题考查了变形利用等比数列的通项公式的方法、单调递增数列,考查了推理能力与计算能力,属于中档题.9.(5分)(2017•海淀区校级模拟)设△A n B n C n的三边长分别是a n,b n,c n,△A nB nC n的面积为S n,n∈N*,若b1>c1,b1+c1=2a1,b n+1=,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列【考点】82:数列的函数特性.【专题】54 :等差数列与等比数列;58 :解三角形;59 :不等式的解法及应用.【分析】由a n=a n可知△A n B n C n的边B n C n为定值a1,由b n+1+c n+1﹣2a1=(b n+c n+1﹣2a n),b1+c1=2a1得b n+c n=2a1,则在△A n B n C n中边长B n C n=a1为定值,另两边A n C n、A n B n的长度之和b n+c n=2a1为定值,由此可知顶点A n在以B n、C n为焦点的椭圆上,根据b n﹣c n+1=(c n﹣b n),得b n﹣c n=,可知n→+∞时b n→c n,+1据此可判断△A n B n C n的边B n C n的高h n随着n的增大而增大,再由三角形面积公式可得到答案.【解答】解:b1=2a1﹣c1且b1>c1,∴2a1﹣c1>c1,∴a1>c1,∴b1﹣a1=2a1﹣c1﹣a1=a1﹣c1>0,∴b1>a1>c1,又b1﹣c1<a1,∴2a1﹣c1﹣c1<a1,∴2c1>a1,∴c1,+c n+1=+a n,∴b n+1+c n+1﹣2a n=(b n+c n﹣2a n),由题意,b n+1∴b n+c n﹣2a n=0,∴b n+c n=2a n=2a1,∴b n+c n=2a1,﹣c n+1=,又由题意,b n+1∴b n﹣(2a1﹣b n+1)==a1﹣b n,b n+1﹣a1=(a1﹣b n)=(b1 +1﹣a1).∴b n=a1+(b1﹣a1),c n=2a1﹣b n=a1﹣(b1﹣a1),=•=单调递增.可得{S n}单调递增.故选:B.【点评】本题主要考查由数列递推式求数列通项、三角形面积海伦公式,综合考查学生分析解决问题的能力,有较高的思维抽象度,属于难题.10.(5分)(2017•汉中二模)《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现.书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织的快,而且每天增加的数量相同,已知第一天织布5尺,一个月(按30天计算)总共织布390尺,问每天增加的数量为多少尺?该问题的答案为()A.尺B.尺C.尺D.尺【考点】84:等差数列的通项公式.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】由题意,该女子从第一天起,每天所织的布的长度成等差数列,其公差为d,由等差数列的前n项和公式能求出公差.【解答】解:由题意,该女子从第一天起,每天所织的布的长度成等差数列,记为:a1,a2,a3,…,a n,其公差为d,则a1=5,S30=390,∴=390,∴d=.故选:B.【点评】本题查等差数列的公差的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.11.(5分)(2017•徐水县模拟)已知数列{a n}为等差数列,S n其前n项和,且a2=3a4﹣6,则S9等于()A.25B.27C.50D.54【考点】84:等差数列的通项公式.【专题】11 :计算题.【分析】由题意得a2=3a4﹣6,所以得a5=3.所以由等差数列的性质得S9=9a5=27.【解答】解:设数列{a n}的首项为a1,公差为d,因为a2=3a4﹣6,所以a1+d=3(a1+3d)﹣6,所以a5=3.所以S9=9a5=27.故选B.【点评】解决此类题目的关键是熟悉等差数列的性质并且灵活利用性质解题.12.(5分)(2017•安徽模拟)《九章算术》是我国古代的数字名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各德几何.”其意思为“已知A、B、C、D、E五人分5钱,A、B两人所得与C、D、E三人所得相同,且A、B、C、D、E每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E所得为()A.钱B.钱C.钱D.钱【考点】84:等差数列的通项公式.【专题】11 :计算题;21 :阅读型;33 :函数思想;51 :函数的性质及应用;54 :等差数列与等比数列.【分析】设A=a﹣4d,B=a﹣3d,C=a﹣2d,D=a﹣d,E=a,列出方程组,能求出E所得.【解答】解:由题意:设A=a﹣4d,B=a﹣3d,C=a﹣2d,D=a﹣d,E=a,则,解得a=,故E所得为钱.故选:A.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质、等差数列的性质的合理运用.13.(5分)(2017•南开区模拟)已知等差数列{a n}的前n项和为s n,且S2=10,S5=55,则过点P(n,a n),Q(n+2,a n+2)(n∈N*)的直线的斜率为()A.4B.C.﹣4D.﹣【考点】84:等差数列的通项公式.【专题】54 :等差数列与等比数列.【分析】设出等差数列的首项和公差,由已知列式求得首项和公差,代入两点求直线的斜率公式得答案.【解答】解:设等差数列{a n}的首项为a1,公差为d,由S2=10,S5=55,得,解得:.∴过点P(n,a n),Q(n+2,a n+2)的直线的斜率为k=.故选:A.【点评】本题考查等差数列的通项公式,考查等差数列的前n项和,训练了两点求直线的斜率公式,是基础题.14.(5分)(2017•枣阳市校级模拟)已知等差数列{a n}的前n项和为S n,且S3=9,a2a4=21,数列{b n}满足,若,则n的最小值为()A.6B.7C.8D.9【考点】84:等差数列的通项公式.【专题】34 :方程思想;35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】设等差数列{a n}的公差为d,由S3=9,a2a4=21,可得3a1+d=9,(a1+d)(a1+3d)=21,可得a n.由数列{b n}满足,利用递推关系可得:=.对n取值即可得出.【解答】解:设等差数列{a n}的公差为d,∵S3=9,a2a4=21,∴3a1+d=9,(a1+d)(a1+3d)=21,联立解得:a1=1,d=2.∴a n=1+2(n﹣1)=2n﹣1.∵数列{b n}满足,∴n=1时,=1﹣,解得b1=.n≥2时,+…+=1﹣,∴=.∴b n=.若,则<.n=7时,>.n=8时,<.因此:,则n的最小值为8.故选:C.【点评】本题考查了等差数列通项公式与求和公式、数列递推关系及其单调性,考查了推理能力与计算能力,属于中档题.15.(5分)(2017•安徽一模)已知函数f(x)的图象关于x=﹣1对称,且f(x)在(﹣1,+∞)上单调,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则{a n}的前100项的和为()A.﹣200B.﹣100C.﹣50D.0【考点】84:等差数列的通项公式.【专题】11 :计算题;35 :转化思想;4O:定义法;54 :等差数列与等比数列.【分析】由函数图象关于x=﹣1对称,由题意可得a50+a51=﹣2,运用等差数列的性质和求和公式,计算即可得到所求和.【解答】解:函数f(x)的图象关于x=﹣1对称,数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),可得a50+a51=﹣2,又{a n}是等差数列,所以a1+a100=a50+a51=﹣2,则{a n}的前100项的和为=﹣100故选:B.【点评】本题考查函数的对称性及应用,考查等差数列的性质,以及求和公式,考查运算能力,属于中档题.二.填空题(共5小题,满分25分,每小题5分)16.(5分)(2017•江苏)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8=32.【考点】88:等比数列的通项公式.【专题】34 :方程思想;35 :转化思想;54 :等差数列与等比数列.【分析】设等比数列{a n}的公比为q≠1,S3=,S6=,可得=,=,联立解出即可得出.【解答】解:设等比数列{a n}的公比为q≠1,∵S3=,S6=,∴=,=,解得a1=,q=2.则a8==32.故答案为:32.【点评】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.17.(5分)(2017•新课标Ⅱ)等差数列{a n}的前n项和为S n,a3=3,S4=10,则=.【考点】8E:数列的求和;85:等差数列的前n项和.【专题】11 :计算题;35 :转化思想;49 :综合法;54 :等差数列与等比数列.【分析】利用已知条件求出等差数列的前n项和,然后化简所求的表达式,求解即可.【解答】解:等差数列{a n}的前n项和为S n,a3=3,S4=10,S4=2(a2+a3)=10,可得a2=2,数列的首项为1,公差为1,S n=,=,则=2[1﹣++…+]=2(1﹣)=.故答案为:.【点评】本题考查等差数列的求和,裂项消项法求和的应用,考查计算能力.18.(5分)(2017•汕头三模)“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{a n},则此数列的项数为134.【考点】81:数列的概念及简单表示法.【专题】11 :计算题;35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】由能被3除余1且被5除余1的数就是能被15整除余1的数,运用等差数列通项公式,以及解不等式即可得到所求项数.【解答】解:由能被3除余1且被5除余1的数就是能被15整除余1的数,故a n=15n﹣14.由a n=15n﹣14≤2017得n≤135,∵当n=1时,符合要求,但是该数列是从2开始的,故此数列的项数为135﹣1=134.故答案为:134【点评】本题考查数列模型在实际问题中的应用,考查等差数列的通项公式的运用,考查运算能力,属于基础题19.(5分)(2017•闵行区一模)已知无穷数列{a n},a1=1,a2=2,对任意n∈N*,=a n,数列{b n}满足b n+1﹣b n=a n(n∈N*),若数列中的任意一项都在有a n+2该数列中重复出现无数次,则满足要求的b1的值为2.【考点】81:数列的概念及简单表示法.【专题】35 :转化思想;48 :分析法;5M :推理和证明.【分析】依题意数列{a n}是周期数咧,则可写出数列{a n}的通项,由数列{b n}满足b n﹣b n=a n(n∈N*),可推出b n+1﹣b n=a n=⇒,,+1,,…要使数列中的任意一项都在该数列中重复出现无数次,则b2=b6=b10=…=b2n﹣1,b4=b8=b12=…=b4n,可得b8=b4=3即可,【解答】解:a1=1,a2=2,对任意n∈N*,有a n+2=a n,∴a3=a1=1,a4=a2=2,a5=a3=a1=1,∴a n=﹣b n=a n=,∴b n+1﹣b2n+1=a2n+1=1,b2n+1﹣b2n=a2n=2,∴b2n+2﹣b2n=3,b2n+1﹣b2n﹣1=3∴b2n+2∴b3﹣b1=b5﹣b3=…=b2n+1﹣b2n﹣1=3,b4﹣b2=b6﹣b4=b8﹣b6=…=b2n﹣b2n﹣2=3,b2﹣b1=1,,,,,,,…,=b4n﹣2∵数列中的任意一项都在该数列中重复出现无数次,∴b2=b6=b10=…=b4n﹣2,b4=b8=b12=…=b4n,解得b8=b4=3,b2=3,∵b2﹣b1=1,∴b1=2,故答案为:2【点评】本题考查了数列的推理与证明,属于难题.20.(5分)(2017•青浦区一模)设数列{a n}的通项公式为a n=n2+bn,若数列{a n}是单调递增数列,则实数b的取值范围为(﹣3,+∞).【考点】82:数列的函数特性.【专题】35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】数列{a n}是单调递增数列,可得∀n∈N*,a n+1>a n,化简整理,再利用数列的单调性即可得出.【解答】解:∵数列{a n}是单调递增数列,∴∀n∈N*,a n>a n,+1(n+1)2+b(n+1)>n2+bn,化为:b>﹣(2n+1),∵数列{﹣(2n+1)}是单调递减数列,∴n=1,﹣(2n+1)取得最大值﹣3,∴b>﹣3.即实数b的取值范围为(﹣3,+∞).故答案为:(﹣3,+∞).【点评】本题考查了数列的单调性及其通项公式、不等式的解法,考查了推理能力与计算能力,属于中档题.三.解答题(共5小题,满分50分,每小题10分)21.(10分)(2017•江苏)对于给定的正整数k ,若数列{a n }满足:a n ﹣k +a n ﹣k +1+…+a n ﹣1+a n +1+…+a n +k ﹣1+a n +k =2ka n 对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列.【考点】8B :数列的应用.【专题】23 :新定义;35 :转化思想;4R :转化法;54 :等差数列与等比数列.【分析】(1)由题意可知根据等差数列的性质,a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=(a n ﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1)═2×3a n ,根据“P (k )数列”的定义,可得数列{a n }是“P (3)数列”;(2)由已知条件结合(1)中的结论,可得到{a n }从第3项起为等差数列,再通过判断a 2与a 3的关系和a 1与a 2的关系,可知{a n }为等差数列.【解答】解:(1)证明:设等差数列{a n }首项为a 1,公差为d ,则a n =a 1+(n ﹣1)d ,则a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3,=(a n ﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1),=2a n +2a n +2a n ,=2×3a n ,∴等差数列{a n }是“P (3)数列”;(2)证明:当n ≥4时,因为数列{a n }是P (3)数列,则a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=6a n ,①,因为数列{a n }是“P (2)数列”,所以a n ﹣3+a n ﹣3+a n +a n +1=4a n ﹣1,②,a n ﹣1+a n +a n +2+a n +3=4a n +1,③,②+③﹣①,得2a n =4a n ﹣1+4a n +1﹣6a n ,即2a n =a n ﹣1+a n +1,(n ≥4),因此n ≥4从第3项起为等差数列,设公差为d ,注意到a 2+a 3+a 5+a 6=4a 4, 所以a 2=4a 4﹣a 3﹣a 5﹣a 6=4(a 3+d )﹣a 3﹣(a 3+2d )﹣(a 3+3d )=a 3﹣d ,因为a1+a2+a4+a5=4a3,所以a1=4a3﹣a2﹣a4﹣a5=4(a2+d)﹣a2﹣(a2+2d)﹣(a2+3d)=a2﹣d,也即前3项满足等差数列的通项公式,所以{a n}为等差数列.【点评】本题考查等差数列的性质,考查数列的新定义的性质,考查数列的运算,考查转化思想,属于中档题.22.(10分)(2017•北京)设{a n}和{b n}是两个等差数列,记c n=max{b1﹣a1n,b2﹣a2n,…,b n﹣a n n}(n=1,2,3,…),其中max{x1,x2,…,x s}表示x1,x2,…,x s这s个数中最大的数.(1)若a n=n,b n=2n﹣1,求c1,c2,c3的值,并证明{c n}是等差数列;(2)证明:或者对任意正数M,存在正整数m,当n≥m时,>M;或者存在正整数m,使得c m,c m+1,c m+2,…是等差数列.【考点】8B:数列的应用;8C:等差关系的确定.【专题】32 :分类讨论;4R:转化法;54 :等差数列与等比数列.【分析】(1)分别求得a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,代入即可求得c1,c2,c3;由(b k﹣na k)﹣(b1﹣na1)≤0,则b1﹣na1≥b k﹣na k,则c n=b1﹣na1=1﹣c n=﹣1对∀n∈N*均成立;﹣n,c n+1(2)由b i﹣a i n=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),分类讨论d1=0,d1>0,d1<0三种情况进行讨论根据等差数列的性质,即可求得使得c m,c m+1,c m+2,…是等差数列;设=An+B+对任意正整数M,存在正整数m,使得n≥m,>M,分类讨论,采用放缩法即可求得因此对任意正数M,存在正整数m,使得当n≥m时,>M.【解答】解:(1)a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,当n=1时,c1=max{b1﹣a1}=max{0}=0,当n=2时,c2=max{b1﹣2a1,b2﹣2a2}=max{﹣1,﹣1}=﹣1,当n=3时,c3=max{b1﹣3a1,b2﹣3a2,b3﹣3a3}=max{﹣2,﹣3,﹣4}=﹣2,下面证明:对∀n∈N*,且n≥2,都有c n=b1﹣na1,当n∈N*,且2≤k≤n时,则(b k﹣na k)﹣(b1﹣na1),=[(2k﹣1)﹣nk]﹣1+n,=(2k﹣2)﹣n(k﹣1),=(k﹣1)(2﹣n),由k﹣1>0,且2﹣n≤0,则(b k﹣na k)﹣(b1﹣na1)≤0,则b1﹣na1≥b k﹣na k,因此,对∀n∈N*,且n≥2,c n=b1﹣na1=1﹣n,c n+1﹣c n=﹣1,∴c2﹣c1=﹣1,∴c n﹣c n=﹣1对∀n∈N*均成立,+1∴数列{c n}是等差数列;(2)证明:设数列{a n}和{b n}的公差分别为d1,d2,下面考虑的c n取值,由b1﹣a1n,b2﹣a2n,…,b n﹣a n n,考虑其中任意b i﹣a i n,(i∈N*,且1≤i≤n),则b i﹣a i n=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n,=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),下面分d1=0,d1>0,d1<0三种情况进行讨论,①若d1=0,则b i﹣a i n═(b1﹣a1n)+(i﹣1)d2,当若d2≤0,则(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)d2≤0,则对于给定的正整数n而言,c n=b1﹣a1n,此时c n+1﹣c n=﹣a1,∴数列{c n}是等差数列;当d2>0,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣n)d2>0,则对于给定的正整数n而言,c n=b n﹣a n n=b n﹣a1n,﹣c n=d2﹣a1,此时c n+1∴数列{c n}是等差数列;此时取m=1,则c1,c2,…,是等差数列,命题成立;②若d1>0,则此时﹣d1n+d2为一个关于n的一次项系数为负数的一次函数,故必存在m∈N*,使得n≥m时,﹣d1n+d2<0,则当n≥m时,(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i≤n),因此当n≥m时,c n=b1﹣a1n,此时c n﹣c n=﹣a1,故数列{c n}从第m项开始为等差数列,命题成立;+1③若d1<0,此时﹣d1n+d2为一个关于n的一次项系数为正数的一次函数,故必存在s∈N*,使得n≥s时,﹣d1n+d2>0,则当n≥s时,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i ≤n),因此,当n≥s时,c n=b n﹣a n n,此时==﹣a n+,=﹣d2n+(d1﹣a1+d2)+,令﹣d1=A>0,d1﹣a1+d2=B,b1﹣d2=C,下面证明:=An+B+对任意正整数M,存在正整数m,使得n≥m,>M,若C≥0,取m=[+1],[x]表示不大于x的最大整数,当n≥m时,≥An+B≥Am+B=A[+1]+B>A•+B=M,此时命题成立;若C<0,取m=[]+1,当n≥m时,≥An+B+≥Am+B+C>A•+B+C≥M﹣C﹣B+B+C=M,此时命题成立,因此对任意正数M,存在正整数m,使得当n≥m时,>M;综合以上三种情况,命题得证.【点评】本题考查数列的综合应用,等差数列的性质,考查与不等式的综合应用,考查“放缩法”的应用,考查学生分析问题及解决问题的能力,考查分类讨论及转化思想,考查计算能力,属于难题.23.(10分)(2017•北京)已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+…+b2n﹣1.【考点】8E:数列的求和;8M:等差数列与等比数列的综合.【专题】11 :计算题;35 :转化思想;49 :综合法;54 :等差数列与等比数列.【分析】(Ⅰ)利用已知条件求出等差数列的公差,然后求{a n}的通项公式;(Ⅱ)利用已知条件求出公比,然后求解数列的和即可.【解答】解:(Ⅰ)等差数列{a n},a1=1,a2+a4=10,可得:1+d+1+3d=10,解得d=2,所以{a n}的通项公式:a n=1+(n﹣1)×2=2n﹣1.(Ⅱ)由(Ⅰ)可得a5=a1+4d=9,等比数列{b n}满足b1=1,b2b4=9.可得b3=3,或﹣3(舍去)(等比数列奇数项符号相同).∴q2=3,}是等比数列,公比为3,首项为1.{b2n﹣1b1+b3+b5+…+b2n﹣1==.【点评】本题考查等差数列与等比数列的应用,数列求和以及通项公式的求解,考查计算能力.24.(10分)(2017•新课标Ⅰ)记S n为等比数列{a n}的前n项和.已知S2=2,S3=﹣6.(1)求{a n}的通项公式;(2)求S n,并判断S n+1,S n,S n+2是否成等差数列.【考点】8E:数列的求和;89:等比数列的前n项和.【专题】35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】(1)由题意可知a3=S3﹣S2=﹣6﹣2=﹣8,a1==,a2==,由a1+a2=2,列方程即可求得q及a1,根据等比数列通项公式,即可求得{a n}的通项公式;(2)由(1)可知.利用等比数列前n项和公式,即可求得S n,分别求得S n+1,S n+2,显然S n+1+S n+2=2S n,则S n+1,S n,S n+2成等差数列.。
最新人教A 版高中数学必修五综合测试题及答案3套综合学业质量标准检测(一)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在等比数列{a n }中,S 4=1,S 8=3,则a 17+a 18+a 19+a 20的值是( B ) A .14 B .16 C .18D .20[解析] ∵S 4=1,S 8=3,∴a 1·1-q 41-q =1,a 1·1-q 81-q =3,∴1+q 4=3,即q 4=2,∴a 17+a 18+a 19+a 20=a 1q 16(1+q +q 2+q 3)=q 16·a 1(1-q4)1-q=16.2.若1+2+22+…+2n >128,n ∈N *,则n 的最小值( B ) A .6 B .7 C .8D .9[解析] 1+2+22+…+2n =2n +1-1. ∵2n +1-1>128=27,∴n +1>7,n >6. 又∵n ∈N *,∴n =7.3.已知集合A ={x ||x +1|≤2},B ={x |y =lg(x 2-x -2)},则A ∩∁R B =(C ) A .[-3,-1) B .[-3,-1] C .[-1,1]D .(-1,1][解析] 因为A ={x ||x +1|≤2}={x |-3≤x ≤1},B ={x |lg(x 2-x -2)}={x |x 2-x -2>0}={x |x <-1或x >2},所以∁R B ={x |-1≤x ≤2},所以A ∩∁R B ={x |-1≤x ≤1}.4.已知a >b >0,c ≠0,则下列不等式中不恒成立的是( B ) A .ac 2>bc 2 B .a -b c>0C .(a +b )(1a +1b)>4D .a 2+b 2+2>2a +2b[解析] ∵c ≠0,∴c 2>0,又∵a >b ,∴ac 2>bc 2; ∵a >b ,∴a -b >0,又c ≠0, ∴c >0时a -b c >0,c <0时,a -bc <0;∵a >b >0,∴(a +b )(1a +1b )=2+b a +ab>2+∵a >b >0,∴a 2+b 2+2-2a -2b =(a -1)2+(b -1)2>0, 故A ,C ,D 恒成立,B 不恒成立.5.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a 2=b 2+c 2-bc ,bc =4,则△ABC 的面积为( C )A .12B .1C .3D .2[解析] 因为b 2+c 2-a 2=2bc cos A =bc ,所以cos A =12,因为A ∈(0,π),所以A =π3,所以△ABC 的面积为12bc sin A =12×4×32=3,故选C .6.已知x ,y ∈R ,且x >y >0,则( C ) A .1x -1y >0B .sin x -sin y >0C .(12)x -(12)y <0D .ln x +ln y >0[解析] 解法1:因为x >y >0,选项A ,取x =1,y =12,则1x -1y =1-2=-1<0,排除A ;选项B ,取x =π,y =π2,则sin x -sin y =sin π-sin π2=-1<0,排除B ;选项D ,取x =2,y=12,则ln x +ln y =ln(x +y )=ln1=0,排除D .故选C . 解法2:因为函数y =⎝⎛⎭⎫12x在R 上单调递减,且x >y >0,所以⎝⎛⎭⎫12x <⎝⎛⎭⎫12y ,即⎝⎛⎭⎫12x -⎝⎛⎭⎫12y <0,故选C .7.已知数列{a n },满足a n +1=11-a n,若a 1=12,则a 2015=( B )A .12B .2C .-1D .1[解析] 易知a 2=2,a 3=-1,a 4=12,a 5=2,∴数列{a n }的周期为3,而2015=671×3+2,∴a 2015=a 2=2.8.在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影,由区域⎩⎪⎨⎪⎧x -2≤0,x +y ≥0,x -3y +4≥0中的点在直线x +y -2=0上的投影构成的线段记为AB ,则|AB |=( C )A .22B .4C .32D .6[解析] 作出不等式组所表示的平面区域如图中阴影部分所示,过点C ,D 分别作直线x +y -2=0的垂线,垂足分别为A ,B ,则四边形ABDC 为矩形,又C (2,-2).D (-1,1),所以|AB |=|CD |=(2+1)2+(-2-1)2=3 2.故选C .9.已知数列{a n }的通项公式是a n =1n +n +1(n ∈N *),若a n +a n +1=11-3,则n 的值是( B )A .12B .9C .8D .6[解析] ∵a n =1n +n +1=n +1-n ,∴a n +a n +1=n +1-n +n +2-n +1 =n +2-n =11-3=11-9, ∴n =9.10.已知△ABC 中,∠A =30°,AB 、BC 分别是3+2、3-2的等差中项与等比中项,则△ABC 的面积等于( D )A .32B .34C .32或3 D .32或34[解析] 依题意得AB =3,BC =1,易判断△ABC 有两解,由正弦定理,得AB sin C =BCsin A ,3sin C =1sin30°,即sin C =32.又0°<C <180°,因此有C =60°或C =120°.当C =60°时,B =90°,△ABC 的面积为12AB ·BC =32;当C =120°时,B =30°,△ABC 的面积为12AB ·BC ·sin B =12×3×1×sin30°=34.综上所述,选D . 11.设等差数列{a n }的前n 项和为S n ,且a 2+a 7+a 12=24,则S 13=( C ) A .52 B .78 C .104D .208[解析] 由等差数列的性质得a 2+a 7+a 12=3a 7=24,∴a 7=8, ∴S 13=13a 7=104,故选C .12.若直线x a +yb =1(a >0,b >0)过点(1,1),则a +b 的最小值等于13.( C ) A .2 B .3 C .4D .5[解析] 由已知得,1a +1b =1,a >0,b >0,则a +b =(a +b )(1a +1b )=2+b a +ab ≥2+2b a ·a b=4,当b a =ab,即a =b =2时取等号.[点评] 一个小题涉及到直线的方程与基本不等式,难度又不大,这是高考客观题命题的主要方向.平时就要加强这种小综合交汇训练.二、填空题(本大题共4个小题,每个小题4分,共16分.将正确答案填在题中横线上) 13.等比数列{a n }和等差数列{b n }中,a 5=b 5,2a 5-a 2a 8=0,则b 3+b 7=4. [解析] ∵2a 5-a 2a 8=2a 5-a 25=0,a n ≠0,∴a 5=2, ∴b 3+b 7=2b 5=2a 5=4.14.在△ABC 中,∠A =π3,BC =3,AB =6,则∠C =π4.[解析] 由正弦定理得3sin π3=6sin C ,∴sin C =22,∵AB <BC ,∴C <A ,∴C =π4.15.已知变量x 、y 满足约束条件⎩⎪⎨⎪⎧x +2y -3≤0x +3y -3≥0y -1≤0,若目标函数z =ax +y (其中a >0)仅在点(3,0)处取得最大值,则a 的取值范围为⎝⎛⎭⎫12,+∞. [解析] 作出可行域如图(包括边界)当直线z =ax +y 经过A 点, 位于直线l 1与x +2y -3=0之间时, z 仅在点A (3,0)处取得最大值, ∴-a <-12,∴a >12.16.已知点(1,t )在直线2x -y +1=0的上方,且不等式x 2+(2t -4)x +4>0恒成立,则t 的取值集合为{t |3<t <4}.[解析] ∵(1,t )在直线2x -y +1=0的上方, ∴t >3,∵不等式x 2+(2t -4)x +4>0恒成立, ∴Δ=(2t -4)2-16<0,∴0<t <4,∴3<t <4.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分12分)和为114的三个数是一个公比不为1的等比数列的连续三项,也是一个等差数列的第1项,第4项,第25项,求这三个数.[解析] 由题意,设这三个数分别是a q ,a ,aq ,且q ≠1,则aq +a +aq =114①令这个等差数列的公差为d ,则a =aq +(4-1)·d .则d =13(a -a q),又有aq =a q +24×13×⎝⎛⎭⎫a -a q ② 由②得(q -1)(q -7)=0,∵q ≠1,∴q =7 代入①得a =14,则所求三数为2,14,98.18.(本题满分12分)(2016·贵阳市第一中学月考)设函数f (x )=12sin2x -cos 2(x +π4).(1)若x ∈(0,π),求f (x )的单调递增区间;(2)在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若f (B2)=0,b =1,求△ABC 面积的最大值.[解析] (1)由题意可知,f (x )=12sin2x -1+cos (2x +π2)2=12sin2x -1-sin2x 2=sin2x -12.由2k π-π2≤2x ≤2k π+π2,k ∈Z ,得k π-π4≤x ≤k π+π4,k ∈Z .又因为x ∈(0,π),所以f (x )的单调递增区间是(0,π4]和[3π4,π).(2)由f (B 2)=sin B -12=0,得sin B =12,由题意知B 为锐角,所以cos B =32. 由余弦定理b 2=a 2+c 2-2ac cos B ,得1+3ac =a 2+c 2≥2ac ,即ac ≤2+3,当且仅当a =c 时等号成立. 因为S △ABC =12ac sin B ≤2+34,所以△ABC 面积的最大值为2+34. 19.(本题满分12分)为了防止洪水泛滥,保障人民生命财产安全,去年冬天,某水利工程队在河边选择一块矩形农田,挖土以加固河堤,为了不影响农民收入,挖土后的农田改造成面积为10 000 m 2的矩形鱼塘,其四周都留有宽2 m 的路面,问所选的农田的长和宽各为多少时,才能使占有农田的面积最小.[解析] 设鱼塘的长为 x m ,宽为y m ,则农田长为(x +4)m ,宽为(y +4)m ,设农田面积为S .则xy =10 000,S =(x +4)(y +4)=xy +4(x +y )+16=10 000+16+4(x +y )≥10 016+8xy =10 016+800=10 816.当且仅当x =y =100时取等号. 所以当x =y =100时,S min =10 816 m 2. 此时农田长为104 m ,宽为104 m.20.(本题满分12分)(2015·浙江文,17)已知数列{a n }和{b n }满足a 1=2,b 1=1,a n +1=2a n (n ∈N *),b 1+12b 2+13b 3+…+1nb n =b n +1-1(n ∈N *).(1)求a n 与b n ;(2)记数列{a n b n }的前n 项和为T n ,求T n .[分析] 等差等比数列的通项公式;数列的递推关系式;数列求和和运算求解能力,推理论证能力.解答本题(1)利用等比数列的通项公式求a n ;利用递推关系求b n .(2)根据(1)问得到新的数列的通项公式,利用错位相减法进行数列求和.[解析] (1)由a 1=2,a n +1=2a n ,得a n =2n . 当n =1时,b 1=b 2-1,因为b 1=当n ≥2时,1n b n =b n +1-b n由累乘法得:b n =n .①, 又∵b n =1,符合①式,∴b n =n (2)由(1)知,a n b n =n ·2n ,所以T n =2+2·22+3·23+…+n ·2n ,2T n =22+2·23+3·24+…+(n -1)·2n +n ·2n +1,所以T n -2T n =2+22+23+…+2n -n ·2n +1=(1-n )2n +1-2, 所以T n =(n -1)2n +1+2.21.(本题满分12分)(2016·河南高考适应性测试)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知向量m =(cos B,2cos 2C2-1),n =(c ,b -2a ),且m ·n =0.(1)求角C 的大小;(2)若点D 为边AB 上一点,且满足AD →=DB →,|CD →|=7,c =23,求△ABC 的面积. [解析] (1)∵m =(cos B ,cos C ),n =(c ,b -2a ),m ·n =0, ∴c cos B +(b -2a )cos C =0,在△ABC 中,由正弦定理得 sin C cos B +(sin B -2sin A )cos C =0, ∴sin A =2sin A cos C .又∵sin A ≠0,∴cos C =12,∵C ∈(0,π),∴C =π3.(2)由AD →=DB →,知CD →-CA →=CB →-CD →,所以2CD →=CA →+CB →, 两边平方得4|CD →|2=b 2+a 2+2ba cos C ∴b 2+a 2+ba =28.①又∵c 2=a 2+b 2-2ab cos C ,∴a 2+b 2-ab =12.② 由①②得ab =8,所以S △ABC =12ab sin C =2 3.22.(本题满分14分)已知α、β是方程x 2+ax +2b =0的两根,且α∈[0,1],β∈[1,2],a 、b ∈R ,求b -3a -1的最大值和最小值.[解析] ∵⎩⎪⎨⎪⎧α+β=-aαβ=2b ,∴⎩⎪⎨⎪⎧a =-(α+β)b =αβ2,∵0≤α≤1,1≤β≤2, ∴1≤α+β≤3,0≤αβ≤2.∴⎩⎪⎨⎪⎧-3≤a ≤-10≤b ≤1. 建立平面直角坐标系aOb ,则上述不等式组表示的平面区域如图所示.令k =b -3a -1,可以看成动点P (a ,b )与定点A (1,3)的连线的斜率.取B (-1,0),C (-3,1),则k AB =32,k AC =12,∴12≤b -3a -1≤32. 故b -3a -1的最大值是32,最小值是12.综合学业质量标准检测(二)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a <b <0,则( C ) A .1a <1bB .0<a b <1C .ab >b 2D .b a >a b[解析] ∵a <b <0,∴两边同乘b ,得ab >b 2,故选C . 2.己知集合A ={x |x 2-3x +2<0},B ={x |log 4x >12},则( A )A .A ∩B =∅ B .B ⊆AC .A ∩∁R B =RD .A ⊆B[解析] A ={x |x 2-3x +2<0}={x |1<x <2},B ={x |log 4x >12}={x |x >2},∴A ∩B =∅.故选A .3.(x -2y +1)(x +y -3)<0表示的平面区域为( C )[解析] 将点(0,0)代入不等式中,不等式成立,否定A 、B ,将(0,4)点代入不等式中,不等式成立,否定D ,故选C .4.已知数列{a n }中的首项a 1=1,且满足a n +1=12a n +12n ,则此数列的第三项是( C )A .1B .12C .34D .58[解析] ∵a 1=1,a n +1=12a n +12n ,∴a 2=12a 1+12=1,a 3=12a 2+14=34,∴选C .5.已知A 为△ABC 的一个内角,且sin A +cos A =23,则△ABC 的形状是( B ) A .锐角三角形 B .钝角三角形 C .直角三角形D .不确定[解析] 解法1:∵sin A +cos A =23,∴(sin A +cos A )2=29,∴2sin A ·cos A =-79<0,∴A 为钝角,∴△ABC 的形状为钝角三角形.故选B .解法2:假设0<A ≤π2,则π4<A +π4≤3π4,∴sin(A +π4)≥22>13.∴sin A +cos A =2sin(A +π4)≥1>23.与条件矛盾,∴A >π2.故选B .6.设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( C )A .3B .932C .332D .33[解析] 依题意得a 2+b 2-c 2-2ab +6=0,∴2ab cos C -2ab +6=0,即ab =6,△ABC 的面积等于12ab sin C =332,故选C .7.在等差数列{a n }中,a 3+a 9=27-a 6,S n 表示数列{a n }的前n 项和,则S 11=( B ) A .18 B .99 C .198D .297[解析] 由已知得:a 3+a 9+a 6=27,即3a 6=27,a 6=9. ∴S 11=11(a 1+a 11)2=11×2a 62=11a 6=11×9=99.故选B .8.(2016·湖北七市教科研协作体联考)已知直线ax +by -6=0(a >0,b >0)被圆x 2+y 2-2x -4y =0截得的弦长为25,则ab 的最大值是( B )A .9B .92C .4D .52[解析] 圆的标准方程为(x -1)2+(y -2)2=5,直线截圆所得的弦长为 25,等于直径,∴直线ax +by -6=0过圆心,即a +2b -6=0.又a >0,b >0,由基本不等式得a +2b ≥22ab ,即ab ≤92,当且仅当a =3,b =32时等号成立,∴ab 的最大值为92.故选B .9.从某电视塔的正东方向的A 处,测得塔顶仰角是60°;从电视塔的西偏南30°的B 处,测得塔顶仰角为45°,A 、B 间距离是35 m ,则此电视塔的高度是( A )A .521mB .10mC .4 90013mD .35m[解析] 作出示意图,设塔高OC 为h m ,在Rt △AOC 中,OA =h tan60°=33h ,OB =h . AB =35,∠AOB =150°,由余弦定理得352=(33h )2+h 2-2×33h ·h cos150°, 解得h =521.故选A .10.定义np 1+p 2+…+p n为n 个正数p 1,p 2,…,p n 的“均倒数”,若已知数列{a n }的前n 项的“均倒数”为15n ,又b n =a n 5,则1b 1b 2+1b 2b 3+…+1b 10b 11等于( C )A .811B .919C .1021D .1123[解析] 由n a 1+a 2+…+a n =15n 得S n =a 1+a 2+…+a n =5n 2,则S n -1=5(n -1)2(n ≥2),a n =S n -S n -1=10n -5(n ≥2),当n =1时,a 1=5也满足.故a n =10n -5,b n =2n -1,1b n b n +1=1(2n -1)(2n +1)=12(12n -1-12n +1),所以原式=12(1b 1-1b 11)=12×(1-121)=1021.故选C .11.已知O 是△ABC 的重心,且满足sin A 3·OA →+sin B 7·OB →+sin C 8·OC →=0,则角B 等于( B )A .30°B .60°C .90°D .120°[解析] 由正弦定理得:a 3OA →+b 7OB →+c 8OC →=0,又由题意得:OA →+OB →+OC →=0,∴a 3=b 7=c8,∴由余弦定理得:cos B =a 2+c 2-b 22ac=⎝⎛⎭⎫37b 2+⎝⎛⎭⎫87b 2-b 22×37b ×87b=12∴B =60°.故选B .12.已知x ,y 满足⎩⎪⎨⎪⎧x ≥2y ≥2,x +y ≤8,则z =x -y 的最大值为( A )A .4B .-4C .0D .2[解析] 作出不等式组表示的可行域如图阴影部分所示,由z =x -y 得y =x -z ,欲求z 的最大值,可将直线l :y =x 向下平移,当直线l 经过A 点时直线在y 轴上的截距-2最小,此时z 取得最大值.易求点A (6,2),则z max =6-2=4.故选A .二、填空题(本大题共4个小题,每个小题4分,共16分.将正确答案填在题中横线上)13.如图,在△ABC 中,∠B =45°,D 是BC 边上一点,AD =5,AC =7,DC =3,则AB 的长为562.[解析] 在△ACD 中,cos ∠ADC =52+32-722×5×3=-12,所以∠ADC =120°,所以∠ADB=60°.在△ABD 中,由正弦定理得AB sin60°=AD sin45°,所以AB =562.14.若函数f (x )=2x 2+2ax -a -1的定义域为R ,则a 的取值范围为-1≤a ≤0. [解析] 2x 2+2ax -a -1≥0⇔x 2+2ax -a ≥0,∴Δ≤0, ∴-1≤a ≤0.15.已知实数a ,b 满足a >1,b >0且2a +2b -ab -2=0,那么a +2b 的最小值是10. [解析] 因为实数a ,b 满足a >1,b >0且2a +2b -ab -2=0,整理1a -1+2b =1,所以a+2b =(a -1)+2b +1=[(a -1)+2b ]⎣⎡⎦⎤1a -1+2b +1=2(a -1)b +2b a -1+6,所以2(a -1)b +2ba -1+6≥22(a -1)b ×2b a -1+6=10.当且仅当2(a -1)b =2ba -1时取等号. 16.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x +y ≤2,y ≥0,则z =(x +1)2+(y -1)2的最小值是12.[解析] 如图,可行域为△ABC 及其内部,其中A (-1,0),B (2,0),C (12,32).目标函数表示可行域内的点M 到点P (-1,1)的距离的平方,因此所求最小值为点P (-1,1)到直线AC :x -y +1=0的距离的平方,即(|-1-1+1|2)2=12.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分12分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知tan ⎝⎛⎭⎫π4+A =2.(1)求sin2Asin2A +cos 2A的值;(2)若B =π4,a =3,求△ABC 的面积.[分析] 考查同角三角函数基本关系式;正弦定理和三角形面积公式.三角恒等变换与运算求解能力.(1)利用两角和与差的正切公式,求出tan A ,再利用同角三角函数基本关系式得到结论; (2)已知A ,B 和a 可利用正弦定理形式的面积公式(两边及夹角)求解.[解析] (1)由tan(π4+A )=2,得tan A =13,所以sin 2A sin 2A +cos 2 A =2sin A cos A 2sin A cos A +cos 2 A =2tan A 2tan A +1=25.(2)由tan A =13,A ∈(0,π)可得,sin A =1010,cos A =31010.由a =3,B =π4及正弦定理知:b =3 5.又sin C =sin(A +B )=sin A cos B +cos A sin B =255,所以S △ABC =12ab sin C =12×3×35×255=9.18.(本题满分12分)已知函数f (x )=x 2-2ax -1+a ,a ∈R . (1)若a =2,试求函数y =f (x )x(x >0)的最小值;(2)对于任意的x ∈[0,2],不等式f (x )≤a 成立,试求a 的取值范围. [解析] (1)依题意得y =f (x )x =x 2-4x +1x =x +1x -4.因为x >0,所以x +1x≥2.当且仅当x =1x ,即x =1时,等号成立.所以y ≥-2.所以当x =1时,y =f (x )x的最小值为-2.(2)解法1:因为f (x )-a =x 2-2ax -1,所以要使得“任意的x ∈[0,2],不等式f (x )≤a 成立”只要“x 2-2ax -1≤0在[0,2]上恒成立”.不妨设g (x )=x 2-2ax -1, 则只要g (x )≤0在[0,2]上恒成立.所以⎩⎪⎨⎪⎧ g (0)≤0,g (2)≤0,即⎩⎪⎨⎪⎧0-0-1≤0,4-4a -1≤0所以a 的取值范围是[34,+∞).解法2:∵f (x )≤a 对任意x ∈[0,2]恒成立, ∴x 2-2ax -1≤0对任意x ∈[0,2]恒成立, 当x =0时,显然恒成立,a ∈R ;当x ∈(0,2]时,有a ≥x 2-12x ,令g (x )=x 2-12x ,则g (x )=x 2-12x 在(0,2]上单调递增,∴g (x )max =g (2)=34.∴a ≥34.综上得a 的取值范围是[34,+∞).19.(本题满分12分)设数列{a n }的首项a 1=a ≠14,且a n +1=⎩⎨⎧12a n (n 为偶数)a n+14 (n 为奇数).记b n =a 2n -1-14,n =1,2,3,….(1)求a 2、a 3;(2)判断数列{b n }是否为等比数列,并证明你的结论. [解析] (1)a 2=a 1+14=a +14,a 3=12a 2=12a +18.(2)∵a 4=a 3+14=12a +38,所以a 5=12a 4=14a +316,所以b 1=a 1-14=a -14,b 2=a 3-14=12(a -14),b 3=a 5-14=14(a -14).猜想:{b n }是公比为12的等比数列.证明如下:∵b n +1=a 2n +1-14=12a 2n -14=12(a 2n -1+14)-14=12(a 2n -1-14)=12b n (n ∈N *),∴{b n }是首项为a -14,公比为12的等比数列.20.(本题满分12分)已知关于x 的一元二次不等式kx 2-2x +6k <0(k ≠0).导学号 54742970(1)若不等式的解集是{x |x <-3或x >-2},求k 的值; (2)若不等式的解集是R ,求k 的取值范围. [解析] (1)∵不等式的解集为{x |x <-3或x >-2}, ∴-3,-2是方程kx 2-2x +6k =0的两根,且k <0. ∴⎩⎪⎨⎪⎧(-3)×(-2)=6,(-3)+(-2)=2k ,∴k =-25. (2)∵不等式的解集为R ,∴⎩⎪⎨⎪⎧k <0,Δ=4-4k ·6k <0,即⎩⎪⎨⎪⎧k <0,k >66或k <-66,∴k <-66. 即k 的取值范围是(-∞,-66). 21.(本题满分12分)已知a ,b ,c 分别是△ABC 的角A ,B ,C 所对的边,且c =2,C =π3. (1)若△ABC 的面积等于3,求a ,b ; (2)若sin C +sin(B -A )=2sin2A ,求A 的值.[解析] (1)∵c =2,C =π3,由余弦定理得4=a 2+b 2-2ab cos π3=a 2+b 2-ab ,∵△ABC 的面积等于3,∴12ab sin C =3,∴ab =4,联立⎩⎪⎨⎪⎧a 2+b 2-ab =4,ab =4,解得a =2,b =2;(2)∵sin C +sin(B -A )=2sin2A , ∴sin(B +A )+sin(B -A )=4sin A cos A , ∴sin B cos A =2sin A cos A , ①当cos A =0时,A =π2,②当cos A ≠0时,sin B =2sin A ,由正弦定理得b =2a ,联立⎩⎪⎨⎪⎧a 2+b 2-ab =4,b =2a ,解得a =233,b =433,∴b 2=a 2+c 2,∵C =π3,∴A =π6,综上所述,A =π2或A =π6.22.(本题满分14分)已知等差数列{a n }中,2a 2+a 3+a 5=20,且前10项和S 10=100. (1)求数列{a n }的通项公式; (2)求数列{a n ·2a n }的前n 项和S n .[解析] (1)设数列{a n }的首项为a 1,公差为d ,由已知得 ⎩⎪⎨⎪⎧2a 2+a 3+a 5=4a 1+8d =20,S 10=10a 1+10×92d =10a 1+45d =100,解得⎩⎪⎨⎪⎧a 1=1,d =2. 所以数列{a n }的通项公式为a n =1+2(n -1)=2n -1. (2)由(1)可知a n ·2a n =(2n -1)×22n -1,所以S n =1×21+3×23+5×25+…+(2n -3)×22n -3+(2n -1)×22n -1,① 4S n =1×23+3×25+5×27+…+(2n -3)×22n -1+(2n -1)×22n -1,② ①-②得-3S n =2+2×(23+25+…+22n -1)-(2n -1)×22n +1 所以S n =2+2×(23+25+…+22n -1)-(2n -1)×22n +1-3=2+2×8(1-4n -1)1-4-(2n -1)×22n +1-3=-6+16(1-4n -1)+(6n -3)×22n +19=10+(6n -5)×22n +19.学业质量标准检测(解三角形、数列部分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在锐角三角形ABC 中,已知A =2C ,则ac 的范围是( C )A .(0,2)B .(2,2)C .(2,3)D .(3,2)[解析] a c =sin A sin C =sin2Csin C =2cos C ,又A +B +C =π,A =2C ,∴π6<C <π4,∴2<ac< 3. 2.已知2a =3b =m ,且a ,ab ,b 成等差数列,则m =( C )A .2 C .6[解析] ∵2a =3b =m ,∴a =log 2又∵a ,ab ,b 成等差数列,∴2ab =a +b ⇒2=1a +1b=log m 2+log m 3=log m 6,∴m = 6.3.在△ABC 中,若(a -a cos B )sin B =(b -c cos C )sin A ,则这个三角形是( D ) A .底角不等于45°的等腰三角形 B .锐角不等于45°的直角三角形 C .等腰直角三角形D .等腰三角形或直角三角形[解析] 由正弦定理,得a sin B =b sin A , ∴a sin B cos B =c sin A cos C , sin A sin B cos B =sin C sin A cos C . ∴sin2B =sin2C .∴B =C ,或2B =π-2C ,即B +C =π2.4.等差数列{a n }中,a 1+a 4+a 7=39,a 3+a 6+a 9=27,则数列{a n }前9项的和S 9等于( B )A .66B .99C .144D .297[解析] 设b i =a i +a i +3+a i +6,则由条件知{b n }为等差数列,且b 1=39,b 3=27,∴公差d =b 3-b 12=-6,∴数列{a n }前9项的和a 1+a 2+…+a 9=b 1+b 2+b 3=3b 2=3(b 1+d )=3×(39-6)=99.5.△ABC 的三边分别为a ,b ,c ,且a =1,B =45°,S △ABC =2,则△ABC 的外接圆的直径为( C )A .43B .5C .52D .62[解析] ∵S △ABC =12ac sin B ,∴c =4 2.由余弦定理,得b 2=a 2+c 2-2ac cos B =25, ∴b =5.由正弦定理,得2R =bsin B=52(R 为△ABC 外接圆的半径),故选C .6.已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和.若S 8=4S 4,则a 10=( B ) A .172B .192C .10D .12[解析] 由题可知:等差数列{a n }的公差d =1,因为等差数列S n =a 1n +n (n -1)d2,且S 8=4S 4,代入计算可得a 1=12;等差数列的通项公式为a n =a 1+(n -1)d ,则a 10=12+(10-1)×1=192.故本题正确答案为B .7.在△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,且a >b >c ,a 2<b 2+c 2,则A 的取值范围为( C )A .(π2,π)B .(π4,π2)C .(π3,π2)D .(0,π2)[解析] 由题意,得cos A =b 2+c 2-a 22bc >0,∴A <π2.又a >b >c ,∴A >B >C .又∵A +B +C =π,∴A >π3,故选C .8.已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S na n ( C )A .4n -1B .4n -1 C .2n -1D .2n -1[解析] 设公比为q ,则a 1(1+q 2)=52,a 2(1+q 2)=54,∴q =12,∴a 1+14a 1=52,∴a 1=2.∴a n =a 1q n -1=2×(12)n -1,S n =2[1-(12)n ]1-12=4[1-(12)n ],∴S n a n =4[1-(12)n ]2×(12)n -1=2(2n -1-12) =2n -1.[点评] 用一般解法解出a 1、q ,计算量大,若注意到等比数列的性质及求S na n,可简明解答如下:∵a 2+a 4=q (a 1+a 3),∴q =12,∴S na n =a 1(1-q n )1-q a 1q n -1=1-q n (1-q )·qn -1=1-12n 12·12n -1=2n -1. 9.根据下边框图,对大于2的整数N ,输出的数列的通项公式是( C )A .a n =2nB .a n =2(n -1)C .a n =2nD .a n =2n -1[解析] 由程序框图可知a 1=2,a 2=22,a 3=23, ∴a n =2n .10.已知等比数列{a n }中,a n >0,a 5、a 95为方程x 2-10x +16=0的两根,则a 20·a 50·a 80的值为( B )A .32B .64C .256D .±64[解析] 由条件知a 5+a 95=10,a 5·a 95=16, ∵{a n }是等比数列,∴a 250=16,∵a n >0,∴a 50=4,∴a 20a 50a 80=a 350=64. 11.△ABC 中,A ︰B =1︰2,∠ACB 的平分线CD 把△ABC 的面积分成3︰2两部分,则cos A 等于( C )A .13B .12C .34D .0[解析] ∵CD 为∠ACB 的平分线, ∴点D 到AC 与点D 到BC 的距离相等, ∴△ACD 与△BCD 的高相等. ∵A ︰B =1︰2,∴AC >BC .∵S △ACD ︰S △BCD =3︰2,∴AC BC =32. 由正弦定理,得sin B sin A =32,又∵B =2A ,∴sin2A sin A =32,∴2sin A cos A sin A =32, ∴cos A =34.12.若△ABC 的三边为a ,b ,c ,f (x )=b 2x 2+(b 2+c 2-a 2)x +c 2,则函数f (x )的图象( B ) A .与x 轴相切 B .在x 轴上方 C .在x 轴下方D .与x 轴交于两点[解析] 函数f (x )相应方程的判别式Δ=(b 2+c 2-a 2)2-4b 2c 2 =(2bc cos A )2-4b 2c 2 =4b 2c 2(cos 2A -1).∵0<A <π,∴cos 2A -1<0,∴Δ<0, ∴函数图象与x 轴没交点.故选B .二、填空题(本大题共4小题,每小题4分,共16分.将正确答案填在题中横线上) 13.已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于27.[解析] ∵n ≥2时,a n =a n -1+12,且a 1=1,∴{a n }是以1为首项,12为公差的等差数列.∴S 9=9×1+9×82×12=9+18=27.14.三角形一边长14,它对的角为60°,另两边之比为8︰5,则此三角形面积为 [解析] 设另两边长为8x 和5x ,则 cos60°=64x 2+25x 2-14280x 2,∴x =2,∴另两边长为16和10,此三角形面积S =12×16×10·sin60°=40 3.15.若数列{a n }满足a 1=2,a n =1-1a n -1,则a 2016=-1. [解析] ∵a 1=2,a n =1-1a n -1,∴a 2=1-1a 1=12,a 3=1-1a 2=-1,a 4=1-1a 3=2,a 5=1-1a 4=12,……∴数列{a n }的值呈周期出现,周期为3. ∴a 2016=a 3=-1.16.已知a ,b ,c 分别为 △ABC 的三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )sin C ,则△ABC[解析] 由a =2,(2+b )(sin A -sin B )=(c -b )sin C 及正弦定理可得,(a +b )(a -b )=(c -b )·c∴b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =12,∴A =60°. 在△ABC 中,a 2=b 2+c 2-2bc cos60°=b 2+c 2-bc ≥2bc -bc =bc ,(等号在b =c 时成立),∴bc ≤4.∴S △ABC =12bc sin A ≤12×4×32= 3. 三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足a cos B +b cos A =2c cos C .(1)求C ;(2)若△ABC 的面积为23,a +b =6,求∠ACB 的角平分线CD 的长度.[解析] (1)已知a cos B +b cos A =2c cos C ,由正弦定理,得sin A cos B +sin B cos A =2sin C cos C ,所以sin(A +B )=2sin C cos C ,即sin C =2sin C cos C .因为0<C <π,所以cos C =12,故C =π3. (2)方法一:由已知,得S =12ab sin C =34ab =23,所以ab =8. 又a +b =6,解得⎩⎪⎨⎪⎧ a =2b =4,或⎩⎪⎨⎪⎧ a =4,b =2. 当⎩⎪⎨⎪⎧a =2b =4时,由余弦定理,得c 2=4+16-2×2×4×12=12, 所以c =2 3.所以b 2=a 2+c 2,△ABC 为直角三角形,∠B =π2. 因为CD 平分∠ACB ,所以∠BCD =π6. 在Rt △BCD 中,CD =2cos π6=433.当⎩⎪⎨⎪⎧ a =4b =2时,同理可得CD =2cos π6=433. 方法二:在△ABC 中,因为CD 平分∠ACB ,所以∠ACD =∠BCD =π6. 因为S △ABC =S △ACD +S △BCD ,所以S △ABC =12b · CD ·sin π6+12a ·CD ·sin π6=12CD ·sin π6·(a +b )=14(a +b )·CD . 因为S △ABC =23,a +b =6,即23=14×6·CD ,解得CD =433. 18.(本题满分12分))在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,若m =(cos 2A 2,1),n =(cos 2(B +C ),1),且m ∥n .(1)求角A ;(2)当a =6,且△ABC 的面积S 满足3=a 2+b 2-c 24S时,求边c 的值和△ABC 的面积. [解析] (1)因为m ∥n ,所以cos 2(B +C )-cos 2A 2=cos 2A -cos 2A 2=cos 2A -cos A +12=0, 即2cos 2A -cos A -1=0,(2cos A +1)(coa A -1)=0. 所以cos A =-12或cos A =1(舍去),即A =120°. (2)由3=a 2+b 2-c 24S 及余弦定理,得tan C =33,所以C =30°. 又由正弦定理a sin A =c sin C,得c =2 3. 所以△ABC 的面积S =12ac sin B =3 3. 19.(本题满分12分)(2016·广西自治区质检)已知数列{a n }的前n 项和为S n ,且S n =32a n -1(n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =2log 3a n 2+1,求1b 1b 2+1b 2b 3+…+1b n -1b n. [解析] (1)当n =1时,a 1=32a 1-1,∴a 1=2. ∵S n =32a n -1,① S n -1=32a n -1-1(n ≥2),② ∴①-②得a n =(32a n -1)-(32a n -1-1),即a n =3a n -1,∴数列{a n }是首项为2,公比为3的等比数列,∴a n =2·3n -1.(2)由(1)得b n =2log 3a n 2+1=2n -1, ∴1b 1b 2+1b 2b 3+…+1b n -1b n =11×3+13×5+…+1(2n -3)(2n -1) =12[(1-13)+(13-15)+…+(12n -3-12n -1)]=n -12n -1. 20.(本题满分12分)用分期付款的方式购买一批总价为2 300万元的住房,购买当天首付300万元,以后每月的这一天都交100万元,并加付此前欠款的利息,设月利率为1%.若从首付300万元之后的第一个月开始算分期付款的第一个月,问分期付款的第10个月应付多少万元?全部贷款付清后,买这批住房实际支付多少万元?[解析] 购买时付款300万元,则欠款2 000万元,依题意分20次付清,则每次交付欠款的数额依次购成数列{a n },故a 1=100+2 000×0.01=120(万元),a 2=100+(2 000-100)×0.01=119(万元),a 3=100+(2 000-100×2)×0.01=118(万元),a 4=100+(2 000-100×3)×0.01=117(万元),…a n =100+[2 000-100(n -1)]×0.01=121-n (万元) (1≤n ≤20,n ∈N *).因此{a n }是首项为120,公差为-1的等差数列.故a 10=121-10=111(万元),a 20=121-20=101(万元).20次分期付款的总和为S 20=(a 1+a 20)×202=(120+101)×202=2 210(万元). 实际要付300+2 210=2 510(万元).即分期付款第10个月应付111万元;全部贷款付清后,买这批住房实际支付2 510万元.21.(本题满分12分)在△ABC 中,若a 2+c 2-b 2=ac ,log 4sin A +log 4sin C =-1,S △ABC =3,求三边a ,b ,c 的长及三个内角A ,B ,C 的度数.[解析] 由a 2+c 2-b 2=ac ,得cos B =a 2+c 2-b 22ac =12. ∵0°<B <180°,∴B =60°.∵S △ABC =12ac sin B =12ac ×32=3, ∴ac =4.①由log 4sin A +log 4sinC =-1,得sin A sin C =14. 由正弦定理,得ac 4R 2=14, ∴44R 2=14, ∴R =2(负值舍去).∴b =2R sin B =2×2×32=2 3. 由已知,得a 2+c 2-(23)2=4.②当a >c 时,由①②,得a =6+2,c =6- 2.∴三边的长分别为a =6+2,b =23,c =6- 2.由正弦定理,得sin A =a 2R =6+24=sin105°. ∴A =105°,即C =15°.同理,当a <c 时,a =6-2,b =23,c =6+2,A =15°,B =60°,C =105°.22.(本题满分14分)(2015·石家庄市一模)设数列{a n }的前n 项和为S n ,a 1=1,a n +1=λS n +1(n ∈N *,λ≠-1),且a 1、2a 2、a 3+3为等差数列{b n }的前三项.(1)求数列{a n }、{b n }的通项公式;(2)求数列{a n b n }的前n 项和.[解析] (1)解法1:∵a n +1=λS n +1(n ∈N *),∴a n =λS n -1+1(n ≥2),∴a n +1-a n =λa n ,即a n +1=(λ+1)a n (n ≥2),λ+1≠0,又a 1=1,a 2=λS 1+1=λ+1,∴数列{a n }为以1为首项,公比为λ+1的等比数列,∴a 3=(λ+1)2,∴4(λ+1)=1+(λ+1)2+3,整理得λ2-2λ+1=0,得λ=1∴a n =2n -1,b n =1+3(n -1)=3n -2,解法2:∵a 1=1,a n +1=λS n +1(n ∈N *),∴a 2=λS 1+1=λ+1,a 3=λS 2+1=λ(1+λ+1)=λ2+2λ+1,∴4(λ+1)=1+λ2+2λ+1+3,整理得λ2-2λ+1=0,得λ=1∴a n +1=S n +1(n ∈N *),∴a n =S n -1+1(n ≥2)∴a n +1-a n =a n ,即a n +1=2a n (n ≥2), 又a 1=1,a 2=2,∴数列{a n }为以1为首项,公比为2的等比数列, ∴a n =2n -1,b n =1+3(n -1)=3n -2.(2)a n b n =(3n -2)·2n -1,∴T n =1·1+4·21+7·22+…+(3n -2)·2n -1 ① ∴2T n =1·21+4·22+7·23+…+(3n -5)·2n -1+(3n -2)·2n ② ①-②得-T n =1·1+3·21+3·22+…+3·2n -1-(3n -2)·2n=1+3·2·(1-2n -1)1-2-(3n -2)·2n整理得:T n =(3n -5)·2n +5.。
一、选择题1.设x ,y R +∈,1x y +=,求14x y +的最小值为( ). A .2 B .4 C .8 D .92.不等式20ax bx c -+>的解集为{}|21x x -<<,则函数2y ax bx c =++的图像大致为( )A .B .C .D .3.若x 、y 满足约束条件36022x y x y y +-≤⎧⎪+≥⎨⎪≤⎩,则22x y +的最小值为( ) A .5 B .4 C .2 D 24.已知实数,x y 满足约束条件5000x y x y y ++≥⎧⎪-≤⎨⎪≤⎩,则241z x y =++的最小值是( )A .14-B .1C .5-D .9-5.若直线l :()200,0ax by a b -+=>>被圆222410x y x y ++-+=截得的弦长为4,则21a b +的最小值为( ) A .2 B .4 C 2 D .226.已知点(x ,y )在直线x +2y =4上移动,则24x y +的最小值是( ) A .2B .32C .6D .8 7.已知实数x 、y 满足约束条件22x y a x y ≤⎧⎪≤⎨⎪+≥⎩,且32x y +的最大值为10,则a =( )A .1B .2C .3D .48.已知2212,202b m a a n b a -=+>=≠-()(),则m ,n 之间的大小关系是 A .m =n B .m <nC .m >nD .不确定9.已知0,0a b >>,,a b 的等比中项是1,且1m b a =+,1n a b =+,则m n +的最小值是( )A .3B .4C .5D .6 10.函数()21f x nx x =+- (0,)bx a b a R +>∈的图像在点()(),b f b 处的切线斜率的最小值是( )A.BC .1D .2 11.已知直线l 的方程为2x +3y =5,点P (a ,b )在l 上位于第一象限内的点,则124123a b +++的最小值为( ) A.720+B.720- CD.720-12.已知正数x ,y 满足x +y =1,且2211x y y x +++≥m ,则m 的最大值为( ) A .163 B .13 C .2 D .4二、填空题13.正实数,x y 满足1x y +=,则12y x y++的最小值为________. 14.已知110,0,1x y x y >>+=,则2236x y y xy++的最小值是_________. 15.已知变量x ,y 满足430401x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩,则点(),x y 对应的区域的222x y xy +的最大值为______.16.设ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且3cos 2cos a C c A b ⋅=⋅+,则()tan A C -的最大值为__________.17.已知M ,N 为平面区域0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩内的两个动点,向量()1,0a =,则MN a ⋅的最大值是______.18.满足关于x 的不等式()()20ax b x -->的解集为1{|2}2x x <<,则满足条件的一组有序实数对(),a b 的值可以是______.19.已知0m >,0n >,且111223m n +=++,则2m n +的最小值为________. 20.设x 、y 满足约束条件22010240x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则2z x y =+的最大值是__________.三、解答题21.定义两个函数的关系:函数()m x ,()n x 的定义域为A ,B ,若对任意的1x A ∈,总存在2x B ∈,使得()()12m x n x =,我们就称函数()m x 为()n x 的“子函数”.设,0a b >,已知函数()f x=23(1)b a b +--,22||11()1822||x g x x a a x x =+-++. (1)当1a =时,求函数()f x 的单调区间;(2)若函数()f x 是()g x 的“子函数”,求22a b ab+的最大值. 22.现有甲、乙两个项目,对甲项目每投资10万元,一年后利润是1.2万元、1.18万元、1.17万元的概率分别为111623,,;已知乙项目的利润与产品价格的调整有关,在每次调整中,价格下降的概率都是p (0<p <1),设乙项目产品价格在一年内进行两次独立的调整.记乙项目产品价格在一年内的下降次数为X ,对乙项目每投资10万元,X 取0、1、2时,一年后相应利润是1.3万元、1.25万元、0.2万元.随机变量X 1、X 2分别表示对甲、乙两项目各投资10万元一年后的利润.(1)求X 1,X 2的概率分布和均值E (X 1),E (X 2);(2)当E (X 1)<E (X 2)时,求p 的取值范围.23.小王于年初用50万元购买一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比上一年增加支出2万元,假定该车每年的运输收入均为25万元.小王在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x 年年底出售,其销售价格为(25-x )万元(国家规定大货车的报废年限为10年).(1)大货车运输到第几年年底,该车运输累计收入超过总支出?(2)在第几年年底将大货车出售,能使小王获得的年平均利润最大?(利润=累计收入+销售收入-总支出)24.已知美国某手机品牌公司生产某款手机的年固定成本为40万美元,每生产1万部还需另投入16万美元.设该公司一年内共生产该款手机x 万部并全部销售完,每万部的销售收入为R (x )万美元,且24006,040()740040000,40x x R x x xx -<⎧⎪=⎨->⎪⎩, (1)写出年利润W (万美元)关于年产量x (万部)的函数解析式;(2)当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润.25.已知函数2()3f x x ax a =-++.(1)当7a =时,解不等式()0f x >;(2)当x ∈R 时,()0f x ≥恒成立,求a 的取值范围.26.解关于x 的不等式:()2230x a a x a -++>.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】由“1”有代换利用基本不等式可得最小值.【详解】因为x ,y R +∈,1x y +=,所以14144()559x y x y x y x y y x ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当4x y y x =,即12,33x y ==时,等号成立. 故选:D .【点睛】易错点睛:本题考查用基本不等式求最小值.解题关键是利用“1”的代换凑配出定值.用基本不等式求最值必须满足三个条件:一正二定三相等.特别是相等这个条件常常会不满足,因此就不能用基本不等式求得最值.2.C解析:C【分析】根据一元二次不等式的解集与一元二次方程的解求出,,a b c 的关系,然后再判断二次函数的图象.【详解】∵不等式20ax bx c ++>的解集为{}|21x x -<<,∴2121bacaa⎧-+=⎪⎪⎪-⨯=⎨⎪<⎪⎪⎩,∴2b ac aa=-⎧⎪=-⎨⎪<⎩,2222(2)y ax bx c ax ax a a x x=++=--=--,图象开口向下,两个零点为2,1-.故选:C.【点睛】关键点点睛:本题考查一元二次不等式的解集,二次函数的图象,解题关键是掌握一元二次不等式的解集与一元二次方程的解、二次函数的图象之间的关系.3.C解析:C【分析】由不等式组作出可行域,如图,目标函数22x y+可视为可行域中的点与原点距离的平方,故其最小值应为原点到直线2x y+=的距离平方,根据点到直线的距离公式可得选项.【详解】由不等式组做出可行域如图,目标函数22x y+可视为可行域内的点与原点距离的平方,故其最小值为原点到直线2x y+=的距离的平方,由点到直线的距离公式可知,原点到直线2x y+=的距离为22d==,所以所求最小值为2.故选:C.【点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,作图时,可将不等式0Ax By C++≥转化为y kx b≤+(或y kx b≥+),明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.4.A【分析】求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.【详解】解:作出不等式组5000x y x y y ++≥⎧⎪-≤⎨⎪≤⎩表示的平面区域,如图所示的阴影部分由241z x y =++可得11244z y x =-+-, 则144z -表示直线11244z y x =-+-在y 轴上的截距,截距越小,z 越小, 由题意可得,当11244z y x =-+-经过点A 时,z 最小, 由500x y x y ++=⎧⎨-=⎩可得5522A ⎛⎫-- ⎪⎝⎭,, 此时552411422z =-⨯-⨯+=-, 故选:A.【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题. 5.B解析:B求出圆的圆心与半径,可得圆心在直线20(0,0)ax by a b -+=>>上,推出22a b +=,利用基本不等式转化求解21a b+取最小值. 【详解】解:圆222410x y x y ++-+=,即22(1)(2)4x y ++-=, 表示以2()1,M -为圆心,以2为半径的圆,由题意可得圆心在直线20(0,0)ax by a b -+=>>上,故220a b --+=,即22a b +=, ∴2212222112242a ba b b a b a b a b a b a +++=+=++++,当且仅当22b a a b=,即2a b =时,等号成立, 故选:B .【点睛】 本题考查直线与圆的方程的综合应用,基本不等式的应用,考查转化思想以及计算能力,属于中档题. 6.D解析:D【分析】运用基本不等式2422x y+≥= 【详解】因为20,40x y >>,所以224228x y x y ++≥===,(当且仅当24x y =时取“=”).故答案为D.【点睛】利用两个数的基本不等式求函数的最值必须具备三个条件:①各项都是正数;②和(或积)为定值;③等号取得的条件.7.B解析:B【分析】作出不等式组所表示的可行域,平移直线32z x y =+,找出使得目标函数32z x y =+取得最大值时对应的最优解,代入目标函数可得出关于实数a 的等式,由此可解得实数a 的值.【详解】不等式组所表示的可行域如下图所示:易知点()2,A a ,由题意可知,点A 在直线2x y +=上或其上方,则22a +≥,可得0a ≥,令32z x y =+,平移直线32z x y =+,当直线32z x y =+经过点A 时,直线32z x y =+在y 轴上的截距最大,此时,z 取得最大值,即max 3226210z a a =⨯+=+=,解得2a =.故选:B.【点睛】本题考查利用线性目标函数的最值求参数,考查数形结合思想的应用,属于中等题. 8.C解析:C【解析】因为a >2,所以a -2>0,所以()112222m a a a a =+=-++≥-- ()12242a a +-⋅=-,当且仅当a =3时取等号,故[4m ∈,)+∞.由b ≠0得b 2>0,所以2-b 2<2,所以222b -<4,即n <4,故()0,4n ∈.综上可得m >n ,故选C .9.B解析:B【分析】由等比中项定义得1ab = ,再由基本不等式求最值.【详解】,a b 的等比中项是1,∴1ab =,∴m +n=1ba++1a b +=a b a b ab +++ = 2()a b + ≥ 44ab = .当且仅当1a b == 时,等号成立.故选B .【点睛】利用基本不等式求最值问题,要看是否满足一正、二定、三相等.10.D解析:D【分析】先求导数,根据导数几何意义得切线斜率,再根据基本不等式求最值.【详解】11()2()2f x x b k f b b x b ''=+-∴==+≥= ,当且仅当1b =时取等号,因此切线斜率的最小值是2,选D.【点睛】利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化. 在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.11.C解析:C【分析】由题意可得2a +3b =5,a ,b >0,可得4a =10﹣6b ,(3b <5),将所求式子化为b 的关系式,由基本不等式可得所求最小值.【详解】直线l 的方程为2x +3y =5,点P (a ,b )在l 上位于第一象限内的点,可得2a +3b =5,a ,b >0,可得4a =10﹣6b ,(3b <5), 则1216412311696a b b b+=+++-+ 120=[(11﹣6b )+(9+6b )](1611696b b+-+)120=(7()61169611696b b b b -+++-+)≥,当且仅当()61169611696b b b b -+=-+时,即b =,a =720+, 故选:C .【点评】本题考查基本不等式的运用:求最值,考查变形能力和化简运算能力,属于中档题. 12.B解析:B【分析】根据题意2211x y y x +++=22(1)(1)11--+++y x y x =(4411+++y x )﹣5,由基本不等式的性质求出4411+++y x =13(4411+++y x )[(x +1)+(y +1)]的最小值,即可得2211x y y x +++的最小值,据此分析可得答案.【详解】根据题意,正数x ,y 满足x +y =1, 则2211x y y x +++=22(1)(1)11--+++y x y x =(y +1)+41+y ﹣4+(x +1)+41x +﹣4=(4411+++y x )﹣5, 又由4411+++y x =13(4411+++y x ) [(x +1)+(y +1)], =13 [8+4(1)4(1)11+++++x y y x ]≥163, 当且仅当x =y =12时等号成立, 所以2211x y y x +++=(4411+++y x )﹣5163≥﹣5=13, 即2211x y y x +++的最小值为13, 所以3m ≤,则m 的最大值为13; 故选:B .【点睛】本题主要考查基本不等式的性质以及应用,还考查了转化求解问题的能力,属于中档题. 二、填空题13.【分析】根据题中条件由展开后利用基本不等式即可求出结果【详解】因为正实数xy 满足所以当且仅当即时等号成立故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三 解析:7【分析】 根据题中条件,由1222()2212y x y x y y x x y x y x y++++=+=+++,展开后,利用基本不等式,即可求出结果.【详解】因为正实数x ,y 满足1x y +=,所以1222()221237y x y x y y x x y x y x y ++++=+=+++≥+=, 当且仅当y x x y =,即1212x y ⎧=⎪⎪⎨⎪=⎪⎩时,等号成立. 故答案为:7.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.14.【分析】由题得化简整理得再利用基本不等式可得解【详解】由得则当且仅当时等号成立此时或;则的最小值是故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一 解析:11【分析】 由题得1x y x y xy xy+=⇒+=,化简整理得()2223636361xy xy x y y xy xy xy xy-+++==+-再利用基本不等式可得解. 【详解】 由110,0,1x y x y>>+=, 得1x y x y xy xy+=⇒+=, 则()2223636x y x y x y y xy xy+++++= ()2223636x y xy x xy y xy xy +-++++== ()236361111xy xy xy xy xy -+==+-≥=, 当且仅当6xy =时等号成立,此时3333 xy⎧=+⎪⎨=-⎪⎩或3333xy⎧=-⎪⎨=+⎪⎩;则2236x y yxy++的最小值是11.故答案为:11.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.15.【分析】作出可行域令所以利用函数的单调性即可求最值【详解】由解得:所以由解得:所以表示可行域内的点与原点连线的斜率所以令所以在单调递减在单调递增当时当时所以的最大值为故答案为:【点睛】思路点睛:非线解析:53【分析】作出可行域,令ytx=,OA OByk kx≤≤,所以7,313t⎡⎤∈⎢⎥⎣⎦,22111222x y x ytxy y x t⎛⎫+⎛⎫=+=+⎪ ⎪⎝⎭⎝⎭,利用函数的单调性即可求最值.【详解】由43040x yx y-+=⎧⎨+-=⎩解得:13575xy⎧=⎪⎪⎨⎪=⎪⎩,所以137,55A⎛⎫⎪⎝⎭,由140x x y =⎧⎨+-=⎩解得:13x y =⎧⎨=⎩,所以()1,3B , y x 表示可行域内的点与原点连线的斜率,所以OA OB y k k x≤≤, 7075131305OA k -==-,30310OB k -==-,令7,313y t x ⎡⎤=∈⎢⎥⎣⎦, 所以22111222x y x y t xy y x t ⎛⎫+⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭, 1y t t =+在7,113⎡⎤⎢⎥⎣⎦单调递减,在[]1,3单调递增, 当3t =时,1713109213791y ⎛⎫=+= ⎪⎝⎭, 当75t =时,1153233y ⎛⎫=+= ⎪⎝⎭, 所以222x y xy +的最大值为53, 故答案为:53. 【点睛】思路点睛:非线性目标函数的常见类型及解题思路: 1.斜率型:()0by ay b a a z ac d cx d c x c++==⋅≠++表示的是可行域内的点(),x y 与点,d b c a ⎛⎫-- ⎪⎝⎭连线所在直线的斜率的a c 倍; 2.距离型:(1)()()22z x a y b =-+-表示的是可行域内的点(),x y 与(),a b 之间距离的平方;(2)z Ax By C =++=(),x y 到直线0Ax By C ++=倍.16.【分析】利用正弦定理将化为然后利用三角形内角和定理将用代换再利用两角和的正弦公式展开整理可得再由同角三角函数关系可得将其代入展开式消去结合基本不等式即可求出的最大值【详解】解:∵由正弦定理边角互化得解析:12【分析】利用正弦定理将3cos 2cos a C c A b ⋅=⋅+化为3sin cos 2sin cos sin A C C A B ⋅=⋅+,然后利用三角形内角和定理将B 用()A C π-+代换,再利用两角和的正弦公式展开整理可得2sin cos 3sin cos A C C A ⋅=⋅,再由同角三角函数关系可得3tan tan 2A C =,将其代入()tan A C -展开式消去tan A ,结合基本不等式即可求出()tan A C -的最大值.【详解】解:∵ 3cos 2cos a C c A b ⋅=⋅+由正弦定理边角互化得3sin cos 2sin cos sin A C C A B ⋅=⋅+,又∵ ()()sin sin sin sin cos cos sin B A C A C A C A C π=-+=+=+⎡⎤⎣⎦,∴ 3sin cos 2sin cos sin cos cos sin A C A C C A A C +⋅=⋅+,∴ 2sin cos 3sin cos A C C A ⋅=⋅∵ 当cos 0C ≤或cos 0A ≤时,等式不成立,∴ ,0,2A C π⎛⎫∈ ⎪⎝⎭,3tan tan 2A C =, ∴ ()22tan tan tan tan tan tan 112tan ==32123132tan tan tan tan C A C C A C C C A C C C-==++++-, 又∵ tan 0C >,∴2tan tan 3C C ≥=+当且仅当23tan tan C C ==,即tan C =等号成立, ∴ ()tan tan tan tan tan tan 1tan =21123A C A C C C A C -≤++-=.【点睛】 本题主要考查正弦定理,两角差的正切公式及基本不等式的应用,需要注意的是在利用基本不等式时,要根据条件确定tan 0C >.17.2【分析】据题意由于MN 为平面区域内的两个动点则不等式组表示的为三角形区域根据向量的数量积由于(当且仅当与共线同向时等号成立)从而求得最大值【详解】由作出可行域如图由条件可得由图知不等式组表示的为三解析:2【分析】据题意,由于M ,N 为平面区域0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩内的两个动点,则不等式组表示的为三角形区域,根据向量的数量积,由于MN a MNa ⋅≤(当且仅当MN 与a 共线同向时等号成立)从而求得最大值.【详解】由0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩作出可行域,如图 由条件0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩可得()()()1,1,2,2,3,1A B C由图知,不等式组表示的为三角形区域,根据向量的数量积,由于MN a MN a MN ⋅≤=(当且仅当MN 与a 共线同向时等号成立),即当MN 所在直线平行于=(1,0)a 所在直线且方向相同的时候得到大值,MN 的最大长度为直线=0x y -与1y =的交点(1,1)与直线4=0x y +-和1y =的交点(3,1)的距离. 22(31)(11)2-+-=,故答案为:2【点睛】解决的关键是对于不等式区域的准确表示,同时能利用向量的数量积来表示得到目标函数,利用a b a b ⋅≤(当且仅当b 与a 共线同向时等号成立)得到结论.属于中档题. 18.【分析】根据题意知不等式对应方程的实数根由此求出写出满足条件的一组有序实数对即可【详解】不等式的解集为方程的实数根为和2且即则满足条件的一组有序实数对的值可以是故答案为【点睛】本题考查了一元二次不等 解析:()2,1--【分析】根据题意知,不等式对应方程的实数根,由此求出20a b =<,写出满足条件的一组有序实数对即可.【详解】不等式()()20ax b x -->的解集为1{|2}2x x <<, ∴方程()()20ax b x --=的实数根为12和2,且012a b a <⎧⎪⎨=⎪⎩, 即20a b =<,则满足条件的一组有序实数对(),a b 的值可以是()2,1--.故答案为()2,1--.【点睛】本题考查了一元二次不等式与对应方程的关系应用问题,是基础题.19.【分析】先换元令则;再采用乘1法求出的最小值即可得解【详解】解:令则且而当且仅当即时等号成立的最小值为故答案为:【点睛】本题考查利用基本不等式求最值采用换元法和乘1法是解题的关键考查学生的转化思想分解析:3+【分析】先换元,令2s m =+,2t n =+,则1113s t +=,226m n s t +=+-;再采用“乘1法”,求出2s t +的最小值即可得解.【详解】解:令2s m =+,2t n =+,则2s >,2t >,且1113s t +=, 2(2)2(2)26m n s t s t ∴+=-+-=+-, 而112223(2)()3(12)3(32)3(322)s ts t s t s t s t t s t s+=++=+++⨯+=+,当且仅当2s t t s=,即s =时,等号成立. 2s t ∴+的最小值为3(3+,2263(322)63m n s t ∴+=+-+-=+故答案为:3+【点睛】本题考查利用基本不等式求最值,采用换元法和“乘1法”是解题的关键,考查学生的转化思想、分析能力和运算能力,属于中档题.20.16【分析】作出不等式组表示的平面区域由可得则表示直线在轴上的截距截距越大越大结合图象即可求解的最大值【详解】作出满足约束条件表示的平面区域如图所示:由可得则表示直线在轴上的截距截距越大越大作直线然 解析:16【分析】作出不等式组表示的平面区域,由2z x y =+可得2y x z =-+,则z 表示直线2y x z =-+在y 轴上的截距,截距越大,z 越大,结合图象即可求解z 的最大值.【详解】作出x 、y 满足约束条件22010240x y x y x y +-⎧⎪-+⎨⎪--⎩表示的平面区域,如图所示:由2z x y =+可得2y x z =-+,则z 表示直线2y x z =-+在y 轴上的截距,截距越大,z 越大作直线20x y +=,然后把该直线向可行域平移,当直线经过A 时,z 最大由10240x y x y -+=⎧⎨--=⎩可得(5,6)A ,此时16z =. 故答案为:16.【点睛】本题主要考查了线性规划知识的应用,求解的关键是明确目标函数中z 的几何意义.属于中档题.三、解答题21.(1)减区间为(],1-∞,增区间为[3,)+∞;(2)18.【分析】(1)根据函数的解析式有意义,求得函数的定义域,再结合二次函数的性质和复合函数的单调性的判定方法,即可求解;(2)先求得函数()f x 的值域为233,b a b ⎡⎫+--+∞⎪⎢⎣⎭,利用基本不等式,求得函数()g x 的值域为116,)[a -+∞,根据题意,得到2331,[),[16)b a b a+--+∞⊆-+∞,结合基本不等式,即可求解.【详解】(1)由题意,函数233()1b f x b +=-有意义, 则满足2430x x -+≥,解得1x ≤或3x ≥,即定义域为{|1x x ≤或3}x ≥,又由函数243y x x =-+在减区间为(],1-∞,增区间为[3,)+∞,根据复合函数的单调性的判定方法,可得()f x 的减区间为(],1-∞,增区间为[3,)+∞.(2)由函数233()1b f x b +=--,可得()f x 的值域为233,b a b ⎡⎫+--+∞⎪⎢⎣⎭, 211111()||||20422016||2||2g x x x x a x a a ⎛⎫⎛⎫=+++-≥+⨯-=- ⎪ ⎪⎝⎭⎝⎭, 当且仅当1||||x x =时,即1x =±,等号成立, 所以()g x 的值域为116,)[a-+∞, 因为()f x 是()g x 的“子函数,所以2331,[),[16)b a b a+--+∞⊆-+∞, 所以233116b a b a+--≥-,即13316a b a b +++≤, 又13(3)()103()b a a b a b a b++=++,221331316(3)6422a b a b a b a b ⎛⎫+++ ⎪⎛⎫⎛⎫++≤≤= ⎪ ⎪ ⎪⎝⎭⎝⎭⎪⎝⎭, 当且仅当1338a b a b+=+=时取“=”,即a =b =或a =,b = 所以103()64b a a b ++≤,即2218a b b a ab a b+=+≤ 所以22a b ab+的最大值为18. 【点睛】利用基本不等式求最值时,要注意其满足的三个条件:“一正、二定、三相等”: (1)“一正”:就是各项必须为正数;(2)“二定”:就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”:利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.22.(1)见解析(2)0<p <0.3【解析】分析:(1)由题意可得随机变量X 1的分布列和期望;结合X ~B (2,p )可得随机变量X 2的分布列和期望.(2)由E (X 1)<E (X 2)可得关于p 的不等式,解不等式可得所求. 详解:(1)由题意得X 1的分布列为∴E (X 1)=1.2×6+1.18×2+1.17×3=1.18. 由题设得X ~B (2,p ),即X 的分布列为22=1.3×(1-2p +p 2)+2.5×(p -p 2)+0.2×p 2=-p 2-0.1p +1.3.(2)由E (X 1)<E (X 2),得-p 2-0.1p +1.3>1.18,整理得(p +0.4)(p -0.3)<0,解得-0.4<p <0.3.因为0<p <1,所以0<p <0.3.即当E (X 1)<E (X 2)时,p 的取值范围是()0,0.3.点睛:(1)求离散型随机变量的分布列的关键是求随机变量所取值对应的概率,在求解时,要注意应用计数原理、古典概型等知识.(2)求解离散型随机变量X 的均值与方差时,只要在求解分布列的前提下,根据均值、方差的定义求EX ,DX 即可.23.(1)3.(2)5.【解析】试题分析:(1)求出第年年底,该车运输累计收入与总支出的差,令其大于0,即可得到结论; (2)利用利润=累计收入+销售收入-总支出,可得平均利润,利用基本不等式,可得结论.试题(1)设大货车运输到第年年底,该车运输累计收入与总支出的差为万元, 则由,可得 ∵,故从第3年,该车运输累计收入超过总支出;(2)∵利润=累计收入+销售收入−总支出,∴二手车出售后,小张的年平均利润为, 当且仅当时,等号成立 ∴小张应当在第5年将大货车出售,能使小张获得的年平均利润最大.考点:根据实际问题选择函数类型, 基本不等式24.(1)2638440,04040000167360,40x x x W x x x ⎧-+-<⎪=⎨--+>⎪⎩;(2)当x =32时,W 取得最大值为6104万美元.【分析】(1)利用利润等于收入减去成本,可得分段函数解析式;(2)分段求出函数的最大值,比较可得结论.【详解】(1)利用利润等于收入减去成本,可得当040x <时,2()(1640)638440W xR x x x x =-+=-+-;当40x >时,40000()(1640)167360W xR x x x x =-+=--+2638440,04040000167360,40x x x W x x x ⎧-+-<⎪∴=⎨--+>⎪⎩; (2)当040x <时,226384406(32)6104W x x x =-+-=--+,32x ∴=时,(32)6104max W W ==;当40x >时,400004000016736027360W x x x =--+-, 当且仅当4000016x x=,即50x =时,(50)5760max W W == 61045760>32x ∴=时,W 的最大值为6104万美元.【点睛】本题考查分段函数模型的构建,考查利用均值不等式求最值,考查学生分析问题解决问题的能力,属于中档题.25.(1)(,2)(5,)-∞⋃+∞;(2)[2,6]-.【分析】(1)当7a =是,解一元二次不等式求得不等式()0f x >的解集.(2)利用判别式列不等式,解不等式求得a 的取值范围.【详解】(1)当7a =时,不等式为27100x x -+>,即(2)(5)0x x -->,∴该不等式解集为(,2)(5,)-∞⋃+∞ .(2)由已知得,若x ∈R 时,230+++≥x ax a 恒成立,24(3)0a a ∴∆=-+≤,即(2)(6)0a a +-≤,∴a 的取值范围为[2,6]-.【点睛】本小题主要考查一元二次不等式的解法,考查一元二次不等式恒成立问题,属于中档题. 26.见解析【分析】由题意,将不等式()2230x a a x a -++>变形为2(0)()x a x a -->,分三种情况讨论,分别求解不等式的解集,即可得到答案.【详解】将不等式()2230x a a x a -++>变形为()()20x a x a -->.当a <0或1a >时,有a < a 2,所以不等式的解集为{|x x a <或2}x a >;当a =0或1a =时,a = a 2=0,所以不等式的解集为{|,x x R ∈且}x a ≠;当0< a <1时,有a > a 2,所以不等式的解集为2{|x x a <或}x a >;【点睛】本题主要考查了含参数的一元二次不等式的求解问题,其中解含参数的一元二次不等式的步骤:(1)若二次项含有参数,应先讨论参数是等于0、小于0,还是大于0,然后整理不等式;(2)当二次项系数不为0时,讨论判别式与0的关系,判断方程的根的个数;(3)确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集的形式.。
.绝密★启用前高中数学必修五综合考试卷第I 卷(选择题)一、单选题1.数列的一个通项公式是( )0,23,45,67⋯A .B . a n =n -1n +1(n ∈N *)a n =n -12n +1(n ∈N *)C .D .a n =2(n -1)2n -1(n ∈N *)a n =2n2n +1(n ∈N *)2.不等式的解集是( )x -12-x ≥0A .B .C .D . [1,2](-∞,1]∪[2,+∞)[1,2)(-∞,1]∪(2,+∞)3.若变量满足 ,则的最小值是( )x,y {x +y ≥0x -y +1≥00≤x ≤1x -3y A .B .C .D . 4-5-314.在实数等比数列{a n }中,a 2,a 6是方程x 2-34x +64=0的两根,则a 4等于( )A . 8B . -8C . ±8D . 以上都不对5.己知数列为正项等比数列,且,则( ){a n }a 1a 3+2a 3a 5+a 5a 7=4a 2+a 6=A . 1B . 2C . 3D . 46.数列前项的和为( )11111,2,3,4,24816n A . B . C .D .2122nn n ++21122n n n +-++2122n n n +-+21122n n n +--+7.若的三边长成公差为的 等差数列,最大角的正弦值为ΔABC a,b,c 232的面积为( )A .B .C .D .1541534213435348.在△ABC 中,已知,则B 等于( )a =2,b =2,A =450A . 30°B . 60°C . 30°或150°D . 60°或120°9.下列命题中正确的是( )A . a >b ⇒ac 2>bc 2B . a >b ⇒a 2>b 2C . a >b ⇒a 3>b 3D . a 2>b 2⇒a >b.10.满足条件,的的个数是 ( )a =4,b =32,A =45∘A . 1个B . 2个C . 无数个D . 不存在11.已知函数满足:则应满足( )f(x)=ax 2-c -4≤f(1)≤-1,-1≤f(2)≤5.f(3)A .B .C .D .-7≤f(3)≤26-4≤f(3)≤15-1≤f(3)≤20-283≤f(3)≤35312.已知数列{a n }是公差为2的等差数列,且成等比数列,则为( )a 1,a 2,a 5a2A . -2B . -3C . 2D . 313.等差数列的前10项和,则等于(){a n }S 10=15a 4+a 7A . 3B . 6C . 9D . 1014.等差数列的前项和分别为,若,则的值为( ){a n },{b n }n S n ,T nS nT n=2n3n +1a 3b 3A .B .C .D . 3547581219第II 卷(非选择题)二、填空题15.已知为等差数列,且-2=-1,=0,则公差={a n }a 7a 4a3d 16.在中,,,面积为,则边长=_________.△ABC A =60∘b =13c 17.已知中,,, ,则面积为_________.ΔABC c =3a =1acosB =bcosA ΔABC 18.若数列的前n 项和,则的通项公式____________{a n }S n =23a n +13{a n }19.直线下方的平面区域用不等式表示为________________.x -4y +9=020.函数的最小值是 _____________.y =x +4x -1(x >1)21.已知,且,则的最小值是______.x ,y ∈R +4x +y =11x +1y三、解答题22.解一元二次不等式(1) (2)-x 2-2x +3>0x 2-3x +5>0.(1)求边上的中线的长;BC AD (2)求△的面积。
一、填空题(共14题,每题4分共70分)1.在△ABC 中,A =45°,B =60°,a =10,则b =________.2.在△ABC 中,若S △ABC =14(a 2+b 2-c 2),那么角C =________. 3.在△ABC 中,a =6,B =30°,C =120°,则△ABC 的面积是________.4.轮船A 和轮船B 在中午12时同时离开海港C ,两船航行方向的夹角为120°,两船的航行速度分别为25nmile/h ,15nmile/h ,则下午2时两船之间的距离是________nmile.5.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若sin A =3sin C ,B =30°,b =2,则△ABC 的面积是________.6.在△ABC 中,已知cos A =513,sin B =35,则cos C 的值为________. 7.在一个塔底的水平面上某点测得塔顶的仰角为θ,由此点向塔底沿直线行走了30m ,测得塔顶的仰角为2θ,再向塔底前进103m ,又测得塔顶的仰角为4θ,则塔的高度为________m.图88.如图8,已知A,B两点的距离为100nmile,B在A的北偏东30°方向,甲船自A以50nmile/h 的速度向B航行,同时乙船自B以30nmile/h的速度沿方位角150°方向航行,航行________h,两船之间的距离最小.9.从A处望B处的仰角为α,从B处望A处的俯角为β,则α、β的关系为________.10.一船自西向东匀速航行,上午10时到达一座灯塔P的南偏西75°距塔68nmile的M 处,下午2时到达这座灯塔的东南方向的N处,则这只船的航行速度为 nmile/h.图1111.如图11所示,要测量河对岸A、B两点间的距离,今沿河岸选取相距40m的C、D两点,测得∠ACB=60°,∠BCD=45°,∠ADB=60°,∠ADC=30°,则A、B间的距离是________m.12.某海岛周围38nmile 有暗礁,一轮船由西向东航行,初测此岛在北偏东60°方向,航行30nmile 后测得此岛在东北方向.若不改变航向,则此船________触礁的危险(填“有”或“无”).13.在△ABC 中,若AB =AC ,则cos A +cos B +cos C 的取值范围为________.14.在三角形ABC 中,A ,B ,C 是其三个内角,内角A ,B ,C 对边的边长分别是a ,b ,c ,c =2,C =π3,记m =(sin C +sin(B -A ),2),n =(sin2A,1),若m 与n 共线,则△ABC 的面积为________.二、解答题(本题共6题,共90分)15.(14分)在△ABC 中,C -A =π2,sin B =13. (1)求sin A 的值;(2)设AC =6,求△ABC 的面积.16.(14分)如图16,某河段的两岸可视为平行,为了测量该河段的宽度,在河的一边选取两点A 、B ,观察对岸的点C ,测得∠CAB =75°,∠CBA =45°,且AB =100m.(1)求sin75°;(2)求该河段的宽度.图1617.(15)在△ABC中,a、b、c分别为内角A、B、C的对边,且2a sin A=(2b+c)sin B+(2c +b)sin C.(1)求A的大小;(2)若sin B+sin C=1,试判断△ABC的形状.18.(5分)如图18,在一条海防警戒线上的点A、B、C处各有一个水声监测点,B、C两点到点A的距离分别为20km和50km.某时刻,B收到发自静止目标P的一个声波信号,8s后A、C同时接收到该声波信号,已知声波在水中的传播速度是1.5km/s.设A到P的距离为x km,用x表示B,C到P的距离,并求x的值;图1819.(16分)在△ABC中,已知角A,B,C的对边分别为a,b,c,且(a+b+c)(b+c-a)=3bc.(1)求A;(2)若B-C=90°,c=4,求b.(结果用根式表示)20.(16分)已知a,b,c分别为△ABC的三内角A,B,C的对边,且a cos C+c cos A=2b cos B.(1)求角B的大小;(2)求sin A+sin C的取值范围.。
一、选择题1.若正数x ,y 满足21y x +=,则2x y +的最小值为( ) A .2 B .4 C .6 D .82.若x ,y 满足约束条件32100260220x y x y x y --≤⎧⎪+-≥⎨⎪-+≥⎩,则6z x y =+的最大值为( )A .30B .14C .25D .363.已知正实数a ,b 满足231a b +=,则12a b +的最小值为( ) A .15 B.8+C .16 D.8+4.设实数x ,y 满足约束条件21,22,x y x y -≤⎧⎨-≥⎩则x y +的最小值是( ) A .2 B .-2 C .1 D .-15.若正实数a ,b 满足lg a +lg b =1,则25a b +的最小值为( ) AB .CD .26.若实数x ,y 满足约束条件21010x y x y -+≥⎧⎨--≤⎩,则2z x y =-的最大值是( ) A .1- B .2 C .3 D .47.在各项均为正数的等差数列{}n a 中,n S 为其前n 项和,7S =14,则2614t a a =+的最小值为( )A .9B .94C .52D .28.已知函数()()log 31a f x x =+-(0a >且1a ≠)的图象恒过定点A ,若点A 在直线40mx ny ++=上,其中0mn >,则12m n +的最小值为( ) A .23 B .43C .2D .4 9.设x ,y 满足约束条件103030x y x y y -+≤⎧⎪-≥⎨⎪-≤⎩,则z x y =+的最小值为( )A .-1B .2C .4D .510.已知点(x ,y )在直线x +2y =4上移动,则24x y +的最小值是( )A.B.C .6 D .811.已知实数x 、y 满足约束条件22x y a x y ≤⎧⎪≤⎨⎪+≥⎩,且32x y +的最大值为10,则a =( )A .1B .2C .3D .412.命题p :变量(),x y 满足约束条件3450y x x y ≤⎧⎪≤⎨⎪+-≥⎩,则y z x =的最小值为14,命题q :直线2x =的倾斜角为2π,下列命题正确的是( ) A .p q ∧ B .()()p q ⌝∧⌝ C .()p q ⌝∧ D .()p q ∧⌝二、填空题13.若x >1,y >1,且a b x y xy ==,则a +4b 的最小值为___________.14.已知x ,y 满足不等式组220,10,30x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则11x z y -=+,则z 的最大值为________. 15.已知0a >,0b >且3a b +=.式子2021202120192020a b +++的最小值是___________. 16.已知0x >,0y >,且212+=x y ,若2322+≥-x y m m 恒成立,则实数m 的取值范围_______.17.若关于x 的不等式()0f x <和()0g x <的解集分别为(),a b 和11,b a ⎛⎫⎪⎝⎭,则称这两个不等式为“对偶不等式”.若不等式()2220x x θ-+<和不等式()224sin 210x x θ++<为“对偶不等式”,且,2πθπ⎛⎫∈ ⎪⎝⎭,则θ=______. 18.已知ABC 中,D 、E 分别为AB 、AC 的中点,DF tDE =,AF x AB y AC =+,则xy 的最大值为________.19.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2c cosB =2a +b ,若△ABC 的面积为12c ,则ab 的最小值为_______. 20.已知a >0,b >0,则p =2b a﹣a 与q =b ﹣2a b 的大小关系是_____. 三、解答题21.设函数2()(2)3(0)f x ax b x a =+-+≠.(1)若不等式()0f x >的解集为(1,3)-,求,a b 的值;(2)若(1)2,0,0f a b =>>,求19a b+的最小值. 22.某单位决定投资3200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,设铁栅长为x 米,一堵砖墙长为y 米.求:(1)写出x 与y 的关系式;(2)求出仓库面积S 的最大允许值是多少?为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?23.(1)已知3x <,求43x x +-的最大值; (2)已知,x y 是正实数,且4x y +=,求13x y+的最小值. (3)若实数,x y 满足2228x y +=,求244y x +-的取值范围.24.二次函数f(x)满足f(x +1)-f(x)=2x ,且f(0)=1.(1)求f(x)的解析式;(2)解不等式f(x)>2x +5.25.某校食堂需定期购买大米.已知该食堂每天需用大米0.6吨,每吨大米的价格为6000元,大米的保管费用z(单位:元)与购买天数x(单位:天)的关系为()()*z 9x x 1x N =+∈,每次购买大米需支付其他固定费用900元. ()1该食堂多少天购买一次大米,才能使平均每天所支付的总费用最少?()2若提供粮食的公司规定:当一次性购买大米不少于21吨时,其价格可享受8折优惠(即原价的80%),该食堂是否应考虑接受此优惠条件?请说明理由.26.设1x >,且4149(1)x x +--的最小值为m . (1)求m ;(2)若关于x 的不等式20ax ax m -+的解集为R ,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】 由21y x +=,对2x y +乘以21y x+=,构造均值不等式求最值 . 【详解】22242248x y x xy y x y xy ⎛⎫⎛⎫+=++=+++≥+= ⎪ ⎪⎝⎭⎝⎭,当且仅当421xy xy y x⎧=⎪⎪⎨⎪+=⎪⎩,即412x y =⎧⎪⎨=⎪⎩时,等号成立,∴min28x y ⎛⎫+= ⎪⎝⎭. 故选:D【点睛】利用基本不等式求最值时,要注意其必须满足的三个条件:“一正、二定、三相等”(1) “一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.如果等号成立的条件满足不了,说明函数在对应区间单调,可以利用单调性求最值或值域. 2.A解析:A【分析】画出约束条件所表示的平面区域,结合目标函数确定出最优解,代入即可求解.【详解】画出约束条件32100260220x y x y x y --≤⎧⎪+-≥⎨⎪-+≥⎩所标示平面区域,把目标函数6z x y =+,化为直线166z y x =-+,当直线166z y x =-+平移到点A 时, 此时直线在y 轴上的截距最大,目标函数取得最大值, 又由32100220x y x y --=⎧⎨-+=⎩,解得()6,4A , 所以目标函数的最大值为666430z x y =+=+⨯=.故选:A.【点睛】根据线性规划求解目标函数的最值问题的常见形式:(1)截距型:形如z ax by =+ .求这类目标函数的最值常将函数z ax by =+ 转化为直线的斜截式:a z y x b b =-+ ,通过求直线的截距z b的最值间接求出z 的最值; (2)距离型:形如()()22z x a y b =-+-,转化为可行域内的点到定点的距离的平方,结合点到直线的距离公式求解;(3)斜率型:形如y b z x a-=-,转化为可行域内点与定点的连线的斜率,结合直线的斜率公式,进行求解. 3.D解析:D【分析】妙用“1”的代换,利用()121223a b a b a b ⎛⎫+=++ ⎪⎝⎭拼凑基本不等式,求和式的最小值即可. 【详解】正实数a ,b 满足231a b +=, 则()12122388282343412843a b a b a b a b a b a b a b⎛⎫+=++=++≥+⋅=+=+ ⎪⎝⎭仅当34b a b a =,即3133,46a b -==时等号成立,故12a b +的最小值为843+ 故选:D.【点睛】思路点睛:利用基本不等式求最值时,需注意取等号条件是否成立.(1)积定,利用2x y xy +≥,求和的最小值;(2)和定,利用()24x y xy +≤,求积的最大值; (3)已知和式(倒数和)或为定值时,妙用“1”拼凑基本不等式求最值.4.C解析:C【分析】 先作出约束条件对应的可行域,然后分析目标函数的几何意义,结合图形即可求解.【详解】作出约束条件2122x y x y -≤⎧⎨-≥⎩所表示的平面区域如图所示:移动直线x y z +=,可知当其过点A 时取得最小值,解方程组2122x y x y -≤⎧⎨-≥⎩,求得10x y =⎧⎨=⎩,即(1,0)A , 代入求得101=+=z ,所以x y +的最小值是1,故选:C.【点睛】方法点睛:该题考查的是有关线性规划的问题,解题方法如下:(1)根据题中所给的约束条件画出可行域;(2)根据目标函数的意义找到最优解;(3)解方程组求得最优解的坐标;(4)代入求得最小值,得到结果.5.D解析:D【分析】应用对数运算得到10ab =,由目标式结合基本不等式有25252a b a b+≥⋅. 【详解】∵lg lg 1a b +=,即lg 1ab =,∴10ab =,而0,0a b >>, ∴252522a b a b +≥⋅=当且仅当2,5a b ==时等号成立. ∴25a b+的最小值为2. 故选:D【点睛】易错点睛:利用基本不等式求最值时,须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方6.D解析:D【分析】画出不等式组对应的平面区域,利用z 的几何意义,利用数形结合即可得到结论.【详解】画出约束条件210110x y x x y -+≥⎧⎪≥⎨⎪--≤⎩或210110x y x x y -+≥⎧⎪<⎨⎪+-≥⎩所表示的平面区域,如图所示,.目标函数2z x y =-,可化为2y x z =-,由图象可知,当直线2y x z =-经过点A 时,使得目标函数2z x y =-取得最大值,又由10210x y x y --=⎧⎨-+=⎩,解得(3,2)A , 所以目标函数的最大值为2324z =⨯-=,故选:D.【点睛】思路点睛:本题主要考查线性规划中,利用可行域求目标函数的最值,属于中等题. 求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.7.B解析:B【分析】根据等差数列的性质和前n 项和公式求得26a a +,然后由“1”的代换应用基本不等式求得最小值.【详解】 由题意172677()7()1422a a a a S ++===,∴264a a +=, ∴26262614114()()4t a a a a a a =+=++62264119(5)(5444a a a a =++≥+=,当且仅当62264a a a a =,即622a a =时等号成立. 故选:B .【点睛】本题考查等差数列的性质,考查基本不等式求最值.解题基础是掌握等差数列的性质,掌握基本不等式求最值中“1”的代换法.8.C解析:C【分析】由对数函数的图象得出A 点坐标,代入直线方程得,m n 的关系,从而用凑出基本不等式形式后可求得最小值.【详解】令31+=x ,2x =-,(2)1f -=-,∴(2,1)A --,点A 在直线40mx ny ++=上,则240m n --+=,即24m n +=,∵0mn >,24m n +=,∴0,0m n >>,∴12112141(2)442444n m m n m n m n m n ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝, 当且仅当4n m m n=,即1,2m n ==时等号成立. 故选:C .【点睛】本题考查对数函数的性质,考查点在直线上,考查用基本不等式求最小值.是一道综合题,属于中档题.9.B解析:B【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】解:由约束条件103030x y x y y -+⎧⎪-⎨⎪-⎩作出可行域如图,化目标函数z x y =+为y x z =-+,由图可知,当直线y x z =-+过点A 时, 直线在y 轴上的截距最小,z 有最小值.联立1030x y x y -+=⎧⎨-=⎩,解得1(2A ,3)2. z ∴的最小值为13222+=.故选:B .【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,属于中档题. 10.D解析:D【分析】 运用基本不等式2422422x y xy +≥= 【详解】 因为20,40x y >>,所以242422422228x y x y x y ++≥===,(当且仅当24x y =时取“=”).故答案为D.【点睛】利用两个数的基本不等式求函数的最值必须具备三个条件:①各项都是正数;②和(或积)为定值;③等号取得的条件.11.B解析:B【分析】作出不等式组所表示的可行域,平移直线32z x y =+,找出使得目标函数32z x y =+取得最大值时对应的最优解,代入目标函数可得出关于实数a 的等式,由此可解得实数a 的值.【详解】不等式组所表示的可行域如下图所示:易知点()2,A a ,由题意可知,点A 在直线2x y +=上或其上方,则22a +≥,可得0a ≥,令32z x y =+,平移直线32z x y =+,当直线32z x y =+经过点A 时,直线32z x y =+在y 轴上的截距最大,此时,z 取得最大值,即max 3226210z a a =⨯+=+=,解得2a =.故选:B.【点睛】本题考查利用线性目标函数的最值求参数,考查数形结合思想的应用,属于中等题. 12.A解析:A【分析】 由约束条件作出可行域,由y z x=的几何意义求得最小值判断p 为真命题,由直线2x =的倾斜角判断q 为真命题,再由复合命题的真假判断得答案.【详解】解:变量(),x y 满足约束条件3450y x x y ≤⎧⎪≤⎨⎪+-≥⎩作出可行域如图:目标式y z x =表示可行域内点(),x y 与()0,0的连线的斜率,由图可知,当过点()4,1D 时,min 14z =,即y z x =的最小值为14,命题p 为真命题; 直线2x =的倾斜角为2π正确,故命题q 为真命题. 所以p q ∧为真命题,()()p q ⌝∧⌝为假命题,()p q ⌝∧为假命题,()p q ∧⌝为假命题; 故选:A【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,考查复合命题的真假判断,属于中档题.二、填空题13.9【分析】首先由已知确定然后利用基本不等式求最小值【详解】因为所以又所以所以当且仅当时等号成立所以的最小值为9故答案为:9【点睛】易错点睛:易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件 解析:9【分析】首先由已知确定1,1a b >>,然后利用基本不等式求最小值.【详解】因为a b x y xy ==,所以1a y x -=,1b x y -=,又1,1x y >>,所以10,10a b ->->, 111(1)(1)()b a b a b x y x x -----===,所以(1)(1)1a b --=,4(1)4(1)52(1)4(1)59a b a b a b +=-+-+≥-⨯-+=,当且仅当14(1)a b -=-时等号成立,所以4a b +的最小值为9.故答案为:9.【点睛】易错点睛:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.14.4【分析】先分析的几何意义然后利用线性规划求解出的取值范围从而的最大值可求【详解】作出可行域如图所示可以看做其中M 为可行域(阴影区域)内一点因为所以所以所以的最大值为4故答案为:【点睛】结论点睛:常 解析:4【分析】先分析11x y -+的几何意义,然后利用线性规划求解出11x y -+的取值范围,从而z 的最大值可求.【详解】作出可行域如图所示,11x z y -=+可以看做1PM k ,其中()1,1P -,M 为可行域(阴影区域)内一点,因为()1121PA k --==-,()0.511314PA k ---==-, 所以(]1,2,4PM k ⎡⎫∈-∞-⋃+∞⎪⎢⎣⎭,所以(]10,4PM k ∈,所以z 的最大值为4,故答案为:4.结论点睛:常见的非线性目标函数的几何意义:(1)y b z x a -=-:表示点(),x y 与点(),a b 连线的斜率;(2)z =(),x y 到点(),a b 的距离;(3)z Ax By C =++:表示点(),x y 到直线0Ax By C ++=倍. 15.2【分析】令从而可得再利用基本不等式即可求解【详解】令则且∴∴当且仅当取等号即时成立故答案为:2【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一正就是各项必 解析:2【分析】令2019a x +=,2020b y +=,从而可得1()14042x y +=,再利用基本不等式即可求解. 【详解】令2019a x +=,2020b y +=,则2019x >,2020y >且4042x y +=,∴1()14042x y +=, ∴202120211111120212021()201920204042x y a b x y x y ⎛⎫⎛⎫+=+=+⋅+ ⎪ ⎪++⎝⎭⎝⎭1111222y x x y⎛⎫=+++⋅ ⎪⎝⎭≥, 当且仅当y x x y=取等号,即2021,2,1x y a b ====时成立. 故答案为:2【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方16.【分析】利用1的替换求出的最小值再解不等式即可【详解】因为当且仅当即时等号成立所以解得故答案为:【点睛】本题主要考查基本不等式求最值涉及到解一元二次不等式是一道中档题解析:3,32⎡⎤-⎢⎥⎣⎦利用“1”的替换求出2x y +的最小值92,再解不等式23922m m -≤即可. 【详解】 因为121122192()(2)(5)(54)2222y x x y x y x y x y +=++=++≥+=,当且仅当22y x x y=, 即32x y ==时等号成立,所以23922m m -≤,解得332m -≤≤. 故答案为:3,32⎡⎤-⎢⎥⎣⎦【点睛】本题主要考查基本不等式求最值,涉及到解一元二次不等式,是一道中档题.17.【分析】由对偶不等式的定义结合一元二次不等式与一元二次方程的关系以及韦达定理可得化简得即可得解【详解】设不等式和不等式的解集分别为和则为方程的两个根为方程的两个根由韦达定理得所以即又所以所以即故答案 解析:56π 【分析】 由对偶不等式的定义结合一元二次不等式与一元二次方程的关系以及韦达定理可得2a b θ+=,2ab =,112sin 2a b θ+=-,1112a b ⋅=,化简得tan 2θ=即可得解.【详解】设不等式()2220x x θ-+<和不等式()224sin 210x x θ++<的解集分别为(),a b 和11,b a ⎛⎫ ⎪⎝⎭,则a ,b 为方程()2220x x θ-+=的两个根, 1a ,1b为方程()224sin 210x x θ++=的两个根,由韦达定理得2a b θ+=,2ab =,112sin 2a b θ+=-,1112a b ⋅=,所以22sin 22θθ=-即tan 2θ= 又 ,2πθπ⎛⎫∈⎪⎝⎭,所以()2,2θππ∈,所以523πθ=即56πθ=. 故答案为:56π. 【点睛】本题考查了一元二次不等式和一元二次方程之间的关系,考查了对于新概念的理解和三角函数的以值求角,属于中档题.18.【分析】首先根据平面向量的线性运算表示出再根据向量相等得到最后利用基本不等式计算可得;【详解】解:因为DE 分别为ABAC 的中点所以又所以由所以当且仅当时取等号;故答案为:【点睛】本题考查平面向量基本 解析:116【分析】 首先根据平面向量的线性运算表示出()11122AF t AB AC =-+,再根据向量相等得到12x y +=,最后利用基本不等式计算可得; 【详解】解:因为D 、E 分别为AB 、AC 的中点,DF tDE =, 所以()12AF AD DF AD tDE AB t AE AD =+=+=+- ()11111122222AB t AC AB t AB AC ⎛⎫=+-=-+ ⎪⎝⎭ 又AF x AB y AC =+,所以()11212x t y t ⎧=-⎪⎪⎨⎪=⎪⎩,由12x y += 所以21216x y xy +⎛⎫≤= ⎪⎝⎭,当且仅当14x y ==时取等号; 故答案为:116【点睛】本题考查平面向量基本定理的应用,以及基本不等式的应用,属于中档题. 19.【解析】分析:由正弦定理将2ccosB =2a +b 转化成由三角形内角和定理将利用两角和的正弦公式展开化简求得的值由余弦定理三角形的面积公式及基本不等式关系求得ab 的最小值详解:2ccosB =2a +b 由 解析:13【解析】分析:由正弦定理将2c cosB =2a +b 转化成2sin cos 2sin sin C B A B =+,由三角形内角和定理,将()sin sin A B C =+,利用两角和的正弦公式展开,化简求得sin C 的值,由余弦定理、三角形的面积公式及基本不等式关系,求得ab 的最小值. 详解:2c cosB =2a +b ,由正弦定理转化成2sin cos 2sin sin C B A B =+∴()2sin cos 2sin sin C B B C B =++化简得:2sin cos sin 0B C B +=, 又0,sin 0B B π<,得1cos 2C =-,0C π<<,得23C π=,则△ABC 的面积为1sin 2S ab C ==,即3c ab =, 由余弦定理得2222cos c a b ab C =+-,化简得22229a b ab a b ++=,222a b ab +≥,当且仅当a b =时取等,∴2229ab ab a b +≤,即13ab ≥, 故ab 的最小值是13. 故答案为13. 点睛:本题考查正余弦定理、三角形内角和定理及基本不等式相结合.20.【分析】由已知结合作差法进行变形后即可比较大小【详解】因为与所以时取等号所以故答案为:【点睛】本题主要考查了不等式大小的比较作差法的应用是求解问题的关键解析:p q【分析】由已知结合作差法进行变形后即可比较大小.【详解】因为0a >,0b >,2b p a a =-与2a qb b=-, 所以2222222()()()()0b a b a b a b a b a b a p q a b ab ba-----+-=-==,b a =时取等号, 所以p q .故答案为:p q .【点睛】本题主要考查了不等式大小的比较,作差法的应用是求解问题的关键.三、解答题21.(1)14a b =-⎧⎨=⎩;(2)16. 【分析】(1)由不等式()0f x >的解集(1,3)-.1-,3是方程()0f x =的两根,由根与系数的关系可求a ,b 值;(2)由()12f =,得到1a b +=,将所求变形为1(9)()a ba b ++展开,利用基本不等式求最小值.【详解】解:(1)∵()2230ax b x +-+>的解集为()1,3-, 1,3∴-是()2230ax b x +-+=的两根,21313413b a a b a -⎧-+=-⎪=-⎧⎪∴⇒⎨⎨=⎩⎪-⨯=⎪⎩. (2)由于()12f =,0a >,0b >,则可知232a b +-+=,得1a b +=,所以199()()101016b a a b a b a b ++=++≥+=, 当且仅当9b a a b=且1a b +=, 即1434a b ⎧=⎪⎪⎨⎪=⎪⎩时成立, 所以19a b+的最小值为16. 【点睛】 易错点睛:在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.22.(1)()320408029x y x x -=<<+;(2)面积S 的最大允许值是100平方米,此时正面铁棚应设计为15米.【分析】(1)由已知条件得出4090203200x y xy ++=,即可得出x 与y 的关系式;(2)化简得出()16991782929S x x ⨯⎡⎤=-++⎢⎥+⎣⎦,利用基本不等式可求得S 的最大值,利用等号成立的条件可求得x 的值.【详解】(1)由于铁栅长为x 米,一堵砖墙长为y 米,由题意可得40245203200x y xy +⨯+=, 即492320x y xy ++=,解得320429x y x -=+, 由于0x >且0y >,可得080x <<,所以,x 与y 的关系式为()320408029x y x x -=<<+; (2)()33822932043383382229292929x x x S xy x x x x x x x x -+-⎛⎫==⋅=⋅=⋅-=- ⎪++++⎝⎭()()169291699169916992169217829292929x x x x x x x +-⨯⨯⨯=-=--=-+-+++()16991782917810029x x ⨯⎡⎤=-++≤-=⎢⎥+⎣⎦, 当且仅当16992929x x ⨯+=+时,即当15203x y =⎧⎪⎨=⎪⎩时,等号成立, 因此,仓库面积S 的最大允许值是100平方米,此时正面铁棚应设计为15米.【点睛】本题考查基本不等式的应用,建立函数解析式是解题的关键,考查计算能力,属于中等题. 23.(1)1-;(2)1+;(3)[12,6]-. 【分析】(1)由于()443333x x x x +=+-+--,再根据基本不等式求解即可; (2)根据题意得()114x y +=,再利用基本不等式“1”的用法求解即可; (3)将2282y x =-代入244y x +-,再配方求解即可得答案.【详解】解:(1)因为3x <,所以30x -<,30x ->,所以()443333x x x x ⎡⎤+=-+-+⎢⎥--⎣⎦31≤-=-, 当且仅当4323x x =-=-,即1x =时等号成立, 所以43x x +-的最大值为1-. (2)由于,x y 是正实数,且4x y +=, 所以()1311313444y x x y x y x y x y ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭14142⎛≥+=+ ⎝当且仅当3y x x y =,即(23y ==时等号成立.故13x y +的最小值为12+. (3)由于实数,x y 满足2228x y +=, 故22820,22y x x =-≥∴-≤≤所以22448244y x x x +-=-+- ()222442166x x x =-++=--+≤,当2x =-时,244y x +-取得最小值为12-故244y x +-的取值范围为[12,6]-.【点睛】本题考查利用基本不等式求最值,注意自变量的取值范围,考查化归转化思想,运算能力,是中档题.24.(1)2()1f x x x =-+;(2)()(),14,-∞-+∞【分析】(1) 设二次函数f (x )=ax 2+bx+c ,利用待定系数法即可求出f (x );(2) 利用一元二次不等式的解法即可得出.【详解】(1).设二次函数f (x )=ax 2+bx+c ,∵函数f (x )满足f (x+1)﹣f (x )=2x , ∴ f(x +1)-f(x)=()()211a x b x c ++++-()2ax bx c ++=2ax+a+b=2x ∴ 220a a b =⎧⎨+=⎩ ,解得11a b =⎧⎨=-⎩.且f (0)=1.∴ c=1 ∴f (x )=x 2﹣x+1.(2) 不等式f (x )>2x+5,即x 2﹣x+1>2x+5,化为x 2﹣3x ﹣4>0.化为(x ﹣4)(x+1)>0,解得x >4或x <﹣1.∴原不等式的解集为()(),14,-∞-⋃+∞【点睛】本题考查了用待定系数法求二次函数的解析式和一元二次不等式的解法,熟练掌握其方法是解题的关键,属于中档题.25.(1)10天购买一次大米;(2)见解析.【分析】()1根据条件建立函数关系,结合基本不等式的应用求最值即可;()2求出优惠之后的函数表达式,结合函数的单调性求出函数的最值进行判断即可.【详解】解:()1设每天所支付的总费用为1y 元, 则()11900y 9x x 19000.660009x 3609360936091803789x x ⎡⎤=+++⨯=++≥++=⎣⎦, 当且仅当9009x x=,即x 10=时取等号, 则该食堂10天购买一次大米,才能使平均每天所支付的总费用最少.()2若该食堂接受此优惠条件,则至少每35天购买一次大米,设该食堂接受此优惠条件后,每x ,()x 35≥天购买一次大米,平均每天支付的总费用为2y , 则()21900y 9x x 19000.660000.89x 2889x x⎡⎤=+++⨯⨯=++⎣⎦, 设()900100f x 9x 9x x x ⎛⎫=+=+ ⎪⎝⎭,x 35≥, 则()f x 在x 35≥时,为增函数,则当x 35=时,2y 有最小值,约为3229.7,此时3229.73789<,则食堂应考虑接受此优惠条件.【点睛】本题主要考查函数的应用问题,基本不等式的性质以及函数的单调性,属于中档题. 26.(1)47=m ;(2)160,7⎡⎤⎢⎥⎣⎦; 【分析】(1)直接利用基本不等式即可求得4149(1)x x +--的最小值; (2)不等式20ax ax m -+的解集为R ,分0a =与0a ≠进行分类讨论,再结合二次函数的图象与性质列不等式求解即可.【详解】解:(1)因为1x >,所以10x ->, 所以444411249(1)49(1)497x x x x +-=-+=--, 当且仅当4149(1)x x -=-,即217x -=,也即97x =时等号成立, 故47=m . (2)由(1)知4,7m =, 若不等式2407ax ax -+ 的解集为R ,则 当0a = 时,407恒成立,满足题意; 当0a ≠时,201607a a a >⎧⎪⎨∆=-⎪⎩, 解得1607a<, 综上,1607a , 所以a 的取值范围为160,7⎡⎤⎢⎥⎣⎦. 【点睛】 本题考查基本不等式的应用,二次函数的图象及其性质,主要考查学生逻辑推理能力和计算能力,属于中档题.。
一、选择题1.在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若()sin sin sin c C a A b a B =+-,角C 的角平分线交AB 于点D ,且CD =,3a b =,则c 的值为( )A .72B .3C .3D .2.在ABC 中,内角,A ,B C 的对边分别为,a ,b c ,已知b =22cos c a b A -=,则a c +的最大值为( )A B .C .D3.在△ABC 中,若222a c b -+=,则C =( ). A .45° B .30°C .60°D .120°4.ABC 的内角,,A B C 的对边分别为,,a b c ,分别根据下列条件解三角形,其中有两解的是( )A .2,4,120a b A ===︒B .3,2,45a b A ===︒C . 6,60b c C ===︒D .4,3,30b c C ===︒5.ABC 的内角,,A B C 的对边分别为,,a b c ,若222sin sin sin sin A C B A C +-=,1b =,则2a -的最小值为( )A .4-B .-C .2-D .6.在ABC 中,,,a b c 分别为三个内角,,A B C 的对边,若cos cos a A b B =,则ABC 一定是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形7.在ABC 中,内角,,A B C 所对应的边分别为,,a b c ,若sin cos 0b A B =,且2b ac =,则a cb+ 的值为( )A BC .2D .48.在直角梯形ABCD 中,//AB CD ,90ABC ∠=,22AB BC CD ==,则cos DAC ∠=( )A B C D .109.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且1a =,cos si 3n 3b c C B -=,则B 的值是( )A .6π B .3π C .23π D .56π 10.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,若3a =,2b =,45B =︒,则A =( )A .30B .30或150︒C .60︒或120︒D .60︒11.构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设2BD AD =,则DEF 与ABC 的面积之比为( )A .12B .13C .15D .1712.已知ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,2sin sin sin B A C =,13a cc a+=+,则B = ( ) A .56π B .6π C .3π D .2π 二、填空题13.已知ABC 的面积为4,2tan 3B =,AB AC >,设M 是边BC 的中点,若5AM =,则BC =___________.14.在ABC 中,点M 是边BC 的中点,3AM =2BC =,则2AC AB +的最大值为___________.15.某小区拟将如图的一直角三角形ABC 区域进行改建:在三边上各选一点连成等边三角形DEF ,在其内建造文化景观.已知207m AB =,107m AC =,则DEF 区域面积(单位:2m )的最小值大约为______2m .7 2.65≈;3 1.73≈)16.如图,一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75︒,距灯塔68海里的M 处,下午2时到达这座灯塔的东南方向N 处,则该船航行的速度为__________海里/小时.17.在三角形ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,222a c b ac +-=,3b =2a c +的最大值为______.18.在ABC 中,若3b =3c =,30B ︒=,则a 等于________.19.ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin sin 22sin sin b C c B a B C +=,2226b c a +-=,则ABC 的面积为_______. 20.已知a ,b ,c 分别为ABC 三个内角A ,B ,C 的对边,且cos cos sin b C c B a A +=,则A =________. 三、解答题21.在ABC 中,已知边长是5,7,8BC AC AB ===. (1)求角B ;(2)求ABC 的面积; (3)求ABC 外接圆面积.22.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且()()()sin sin sin 3a b A B C c b -+=.(1)求角A ;(2)若ABC 的面积23ABC S =△a 的取值范围.23.在△ABC 中,BC =a ,AC =b ,且a ,b 是方程22320x x -+=的两根,()2cos 1A B +=.(1)求角C 的度数; (2)求AB 的长.24.ABC 是等边三角形,点D 在边AC 的延长线上,且AD =3CD ,BD 7,求AD 的值和sin ∠ABD 的值25.在△ABC 中,BC =a ,AC =b ,a 、b 是方程22320x x -+=的两个根,且120A B +=︒,求ABC 的面积及AB 的长.26.在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边长,已知2b ac =,且a 2-c 2=ac -bc ,求∠A 的大小及sin b Bc的值【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用正弦定理边角互化以及余弦定理求出角C 的值,由ABC ACD BCD S S S =+△△△可得出ab a b =+,结合3a b =可求得a 、b 的值,再利用余弦定理可求得c 的值. 【详解】()sin sin sin c C a A b a B =+-,由正弦定理可得()22c a b a b =+-,可得222a b c ab +-=,由余弦定理可得:2221cos 22a b c C ab +-==,0C π<<,所以3C π=,由ABC ACD BCD S S S =+△△△,有111sin sin sin 232626ab a CD b CD πππ=⋅+⋅,得ab a b =+,所以234b b =,0b >,43b ∴=,34a b ==, 由余弦定理可得221616471692cos 3c a b ab C =+--==+. 故选:B. 【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下: (1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”;(2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.2.B解析:B 【分析】由正弦定理化边角,利用诱导公式两角和的正弦公式化简可得B 角,然后用余弦定理得2()33a c ac +-=,再利用基本不等式变形后解不等式得a c +的最大值.【详解】因为22cos c a b A -=,所以由正弦定理得,2sin sin 2sin cos C A B A -=,因为A B C π+=-,所以sin sin()sin cos cos sin C A B A B A B =+=+,所以2sin cos 2cos sin sin 2sin cos A B A B A B A +-=,化简得(2cos 1)sin 0B A -=,因为sin 0A ≠,所以2cos 10B -=,解得1cos 2B =,因为(0,)B π∈,所以3B π=,因为b =222232cos a c ac B a c ac =+-=+-,所以2()33a c ac +-=,所以222313()()()44a c a c a c ≥+-+=+,当且仅当a c =时取等号,所以a c +≤a c +的最大值为故选:B . 【点睛】方法点睛:本题考查主要正弦定理、余弦定理,在三角形问题中出现边角关系时可用正弦定理化边为角,然后由利用三角函数恒等变换公式如诱导公式,两角和与差的正弦公式等化简变形得出所要结论.3.B解析:B 【分析】根据余弦定理,可以求出C 角的余弦值,进而根据C 为三角形内角,解三角方程可以求出C 角.【详解】∵222a c b -+=,∴22222a b c cosC ab +-==. 又∵C 为三角形内角∴30C =︒. 故选B . 【点睛】本题考查余弦定理的应用,属基础题.4.D解析:D 【分析】运用正弦定理公式,可以求出另一边的对角正弦值,最后还要根据三角形的特点:“大角对大边”进行合理排除. 【详解】A. 2,4,120a b A ===︒,由,a b <A B ⇒<所以不存在这样的三角形.B. 3,2,45a b A ===︒,由sin sin sin a b B A B =⇒=,a b >所以只有一个角BC. 6,60b c C ===︒中,同理也只有一个三角形.D. 4,3,30b c C ===︒中2sin sin sin 3c b B C B =⇒=此时b c >,所以出现两个角符合题意,即存在两个三角形. 所以选择D 【点睛】在直接用正弦定理求另外一角中,求出 sin θ后,记得一定要去判断是否会出现两个角.5.A解析:A 【分析】由222sin sin sin sin A C B A C +-=,利用正弦定理和余弦定理,可得6B π=,再根据正弦定理、三角形内角和及两角和的余弦公式,得到2a -4cos 3C π⎛⎫=+ ⎪⎝⎭,借助角C 的范围,即可求得结果. 【详解】222sin sin sin sin A C B A C +-=,∴222a c b +-=,∴2222a c b ac +-=,∴cos 2B =,又0B π<<,∴6B π=,12sin sin sin sin 6b A C B ac π====,∴2sin a A =,2sin c C =,∴24sin a A C -=-4sin()B C C =+-4sin()6C C π=+-14cos 22C C C ⎛⎫=+- ⎪ ⎪⎝⎭2cos C C =-14cos sin 22C C ⎛⎫=- ⎪ ⎪⎝⎭ 4cos 3C π⎛⎫=+ ⎪⎝⎭因为506C π<<,所以7336C πππ<+<,所以当3C ππ+=时,2a -取得最小值,且最小值为4-.故选:A. 【点睛】本题考查了正弦定理和余弦定理的应用、三角形内角和的应用、两角和的余弦公式及余弦型函数的最值问题,考查学生对这些知识的掌握能力,属于中档题.在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,一 般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理.6.D解析:D 【分析】根据cos cos a A b B =,利用正弦定理将边转化为角得到sin cos sin cos A A B B =,然后再利用二倍角的正弦公式化简求解. 【详解】因为cos cos a A b B =,由正弦定理得:sin cos sin cos A A B B =, 所以sin 2sin 2A B =, 所以22A B =或22A B π=-, 即A B =或2A B π+=所以ABC 一定是等腰三角形或直角三角形, 故选:D 【点睛】本题主要正弦定理,二倍角公式的应用,属于中档题.7.C解析:C 【分析】利用正弦定理边化角,结合辅助角公式可求得sin 03B π⎛⎫-= ⎪⎝⎭,从而确定3B π=;利用余弦定理构造方程可求得()24+=a c ac ,代入所求式子即可化简得到结果. 【详解】sin cos 0b A B =,()sin sin cos sin sin 2sin sin 03B A A B A B B A B π⎛⎫∴=-=-= ⎪⎝⎭,()0,A π∈,sin 0A ∴≠,sin 03B π⎛⎫∴-= ⎪⎝⎭,又()0,B π∈,3B π∴=.()22222231cos 2222a c ac a cb ac ac B ac ac ac +-+-+-∴====,整理可得:()24+=a c ac ,2a cb+∴====. 故选:C . 【点睛】本题考查解三角形的相关知识,涉及到正弦定理边化角、余弦定理的应用等知识;解决此类问题的关键是能够通过正弦定理,将边的齐次式转化为角的关系,属于常考题型.8.C解析:C 【分析】设1BC CD ==,计算出ACD ∆的三条边长,然后利用余弦定理计算出cos DAC ∠. 【详解】如下图所示,不妨设1BC CD ==,则2AB =,过点D 作DE AB ⊥,垂足为点D , 易知四边形BCDE 是正方形,则1BE CD ==,1AE AB BE ∴=-=,在Rt ADE ∆中,AD ==AC在ACD ∆中,由余弦定理得2222cos2AC AD CD DAC AC AD +-∠===⋅, 故选C .【点睛】本题考查余弦定理求角,在利用余弦定理求角时,首先应将三角形的边长求出来,结合余弦定理来求角,考查计算能力,属于中等题.9.C解析:C 【分析】cos sin sin 33B C C B A =-,再由三角恒等变换化简可得sin 3=-B B ,进而可得tan 3B =.【详解】 因为1a =cos si 3n 3b c C B -=3cos sin 3b C c B a -=,cos sin sin 33B C C B A =-, 又()sin sin sin cos cos sin A B C B C B C =+=+,33in n co c s s os in s 3s n n i i B C B C C B B C =-, 化简得sin sin 3sin C B B C =-, 因为()0,C π∈,()0,B π∈,所以sin 0C ≠, 所以sin 3=B B 即tan 3B = 所以23B π=. 故选:C. 【点睛】本题考查了三角恒等变换及正弦定理的综合应用,考查了运算求解能力与转化化归思想,属于中档题.10.C解析:C 【解析】 ∵3,2,45a b B ===︒∴根据正弦定理sin sin a b A B=,即sin sin a B A b ===∵a b =>=∴()45,135A ∈︒︒ ∴60A =︒或120︒ 故选C11.D解析:D 【分析】由题意得出点D 为AF的中点,由余弦定理得出AB =,结合三角形面积公式得出正确答案. 【详解】2,BD AD AF BD ==,2AF AD ∴=,即点D 为AF 的中点由余弦定理得:2222cos120AB AD BD AD BD ︒⋅-=+解得:AB =)22ABC1()sin 601217sin 602DEFAD S S ︒︒∴== 故选:D 【点睛】本题主要考查了余弦定理以及三角形的面积公式,属于中档题.12.B解析:B 【分析】根据正弦定理,边角互化可得2b ac =,再根据2221a c a c b c a ac+-+-=,利用余弦定理求角.【详解】∵2sin sin sin B A C =,∴21b ac=,∴2221a c a c b c a ac+-+-== ∴cos 2B =,又()0,πB ∈∴6B π=.故选:B .【点睛】本题考查正弦定理和余弦定理解不等式,重点考查转化的思想,计算能力,属于基础题型.二、填空题13.4【分析】首先利用余弦定理和三角形面积公式建立关于的方程再分别求根据余弦定理求结合条件求得的值【详解】得:解得:①中利用余弦定理②由①②可得解得:或即当时得此时不成立当时得此时成立故故答案为:4【点 解析:4【分析】首先利用余弦定理和三角形面积公式,建立关于,a c 的方程,再分别求,a c ,根据余弦定理求b ,结合条件AB AC >,求得BC 的值.【详解】2tan 3B =,得:sin 13B =,cos 13B =11sin 422ABC S ac B ac ===,解得:ac =① ABM中,利用余弦定理222252cos 5424a a a c c B c =+-⋅⋅=+= ② 由①②可得22174ac a c ⎧=⎪⎨+=⎪⎩,解得:2a c ⎧=⎪⎨=⎪⎩4a c =⎧⎪⎨=⎪⎩, AB AC >,即c b >当2a c ==时,2222cos 32b a c ac B =+-=,得b =c b <,不成立,当4,a c == 2222cos 5b a c ac B =+-=,得b =c b >,成立,故4BC a ==.故答案为:4【点睛】易错点点睛:本题的易错点是求得,a c 后,还需满足条件AB AC >这个条件,否则会增根. 14.【分析】用余弦定理表示出求出后利用余弦函数性质可得最大值【详解】记则在中同理在中可得∴设则其中是锐角显然存在使得∴的最大值为故答案为:【点睛】关键点点睛:本题考查余弦定理考查换元法求最值解题方法是用解析:【分析】用余弦定理表示出,AC AB ,求出2AC AB +后利用余弦函数性质可得最大值.【详解】记AMC α∠=,则AMB πα∠=-,在AMC中,2222cos 314AC AM MC AM MC ααα=+-⋅=+-=-, 同理在AMB中可得24AB α=+,∴228AB AC +=,设AB x =,AC x =,(0,)2x π∈.则12cos )cos )2AC AB x x x x x x +=+=+=+)x θ=+,其中cos θθ==θ是锐角, 显然存在0(0,)22x ππθ=-∈,使得0sin()1x θ+=, ∴2AC AB +的最大值为故答案为:【点睛】关键点点睛:本题考查余弦定理,考查换元法求最值.解题方法是用余弦定理表示出,AB AC ,得出228AB AC +=,利用三角换元法AB x =,AC x =,(0,)2x π∈.这里注意标明x 的取值范围.在下面求最值时需确认最值能取到,然后结合三角函数的性质求最值.15.【分析】设那么在中利用正弦定理求出关于的函数并求出其最大值即可求解【详解】在中可得所以设那么在中由正弦定理可得其中所以当时取到最小值最小值为故面积的最小值故答案为:【点睛】本题考解三角形的实际应用考 解析:130【分析】设CED θ∠=,m DE x =,那么6BFE πθ∠=+,cos CE x θ=,在BEF 中,利用正弦定理,求出x 关于θ的函数,并求出其最大值,即可求解.【详解】在Rt ABC △中,AB =,AC =,可得CB =. 所以6ABC π∠=设CED θ∠=,m DE x =,那么6BFE πθ∠=+,cos CE x θ=.在BFE △中,由正弦定理,可得sin sin 66xπθ=+ ⎪⎝⎭,132(cos sin )cos 1021,(3sin 2cos )102122x x xθθθθθ++=+=, 2121101010sin()3sin 2cos 7s 3in()x θαθθθα===+++,其中23tan α=, 所以当sin()1θα+=时,x 取到最小值,最小值为103, 故DEF 面积的最小值21sin 75375 1.73129.7513023S x π=⨯=≈⨯=≈. 故答案为:130【点睛】本题考解三角形的实际应用,考查正弦定理,三角恒等变换,以及三角函数的性质,属于中档题.本题解题的关键在于设CED θ∠=,m DE x =,进而在BFE △中,得1021cos sin sin 66xx θππθ-=⎛⎫+ ⎪⎝⎭,进而将问题转化为求边x 的最小值问题. 16.【解析】如图在△MNO 中由正弦定理可得则这艘船的航行速度(海里/小时)点睛:(1)测量两个不可到达的点之间的距离问题一般是把求距离问题转化为应用余弦定理求三角形的边长的问题然后把求未知的另外边长问题解析:176 【解析】如图,在△MNO 中,由正弦定理可得,68sin120686346sin 45MN === 则这艘船的航行速度6642v ==(海里/小时). 点睛:(1)测量两个不可到达的点之间的距离问题,一般是把求距离问题转化为应用余弦定理求三角形的边长的问题.然后把求未知的另外边长问题转化为只有一点不能到达的两点距离测量问题,然后运用正弦定理解决.(2)测量从一个可到达的点到一个不可到达的点之间的距离问题,一般可转化为已知两个角和一条边解三角形的问题,从而运用正弦定理解决.17.【分析】由余弦定理可求出角再根据正弦定理即可表示出然后利用消元思想和辅助角公式即可求出的最大值【详解】因为所以而∴∵∴∴其中所以的最大值为当时取得故答案为:【点睛】本题主要考查正余弦定理在解三角形中解析:【分析】由余弦定理可求出角B ,再根据正弦定理即可表示出2a c +,然后利用消元思想和辅助角公式,即可求出2a c +的最大值.【详解】因为222a cb ac +-=,所以2221cos 222a c b ac B ac ac +-===,而0B π<<,∴3B π=.∵2sin sin sin sin 3a b c A B C π====,∴2sin ,2sin a A c C ==.∴222sin 4sin 2sin 4sin 4sin 3a c A C A A A A π⎛⎫+=+=+-=+ ⎪⎝⎭()A ϕ=+,其中tan 2ϕ=. 所以2a c +的最大值为2A πϕ=-时取得.故答案为:【点睛】 本题主要考查正余弦定理在解三角形中的应用,以及利用三角函数求解三角形中的最值问题,意在考查学生的转化能力和数学运算能力,属于中档题.18.或【分析】由正弦定理求得得到或分类讨论即可求得的值【详解】由正弦定理可得所以因为所以或当时可得;当时此时综上可得或故答案为:或【点睛】本题主要考查了正弦定理的应用其中解答中利用正弦定理求得的值得出的解析:【分析】由正弦定理,求得sin C =,得到60C ︒=或120C ︒=,分类讨论,即可求得a 的值. 【详解】 由正弦定理,可得sin sin b c B C =,所以sin 3sin c B C b ⋅===, 因为(0,180)C ∈,所以60C ︒=或120C ︒=,当60C ︒=时,90A ︒=,可得a =;当120C ︒=时,30A ︒=,此时a b ==综上可得a =a =故答案为:.【点睛】本题主要考查了正弦定理的应用,其中解答中利用正弦定理求得sin C 的值,得出C 的大小是解答的关键,着重考查分类讨论,以及运算与求解能力. 19.【分析】由正弦定理得由平方关系和余弦定理可得再利用面积公式即可得解【详解】由已知条件及正弦定理可得易知所以又所以所以所以即所以的面积故答案为:【点睛】本题考查了正弦定理余弦定理和三角形面积公式的应用 解析:32【分析】由正弦定理得sin A =32bc =,再利用面积公式1sin 2S bc A =即可得解. 【详解】由已知条件及正弦定理可得2sin sin sin sin B C A B C =,易知sin sin 0B C ≠,所以sin 2A =, 又2226b c a +-=,所以2223cos 2b c a A bc bc+-==,所以cos 0A >,所以cos A =32bc =,bc =,所以ABC 的面积113sin 2222S bc A ==⨯=. 故答案为:32. 【点睛】本题考查了正弦定理、余弦定理和三角形面积公式的应用,属于中档题. 20.【分析】根据正弦定理把已知等式中的边转化为角的正弦利用两角和公式化简求得的值进而求得【详解】由于为三角形内角可得故答案为:【点睛】本题主要考查正弦定理的应用解题的关键是利用正弦定理把等式中的边转化为 解析:2π 【分析】 根据正弦定理把已知等式中的边转化为角的正弦,利用两角和公式化简求得sin A 的值进【详解】cos cos sin b C c B a A +=,2sin cos sin cos sin()sin sin B C C B B C A A ∴+=+==,sin 0A ≠,sin 1A ∴=,∴由于A 为三角形内角,可得2A π=. 故答案为:2π. 【点睛】本题主要考查正弦定理的应用.解题的关键是利用正弦定理把等式中的边转化为角的正弦. 三、解答题21.(1)3π;(2)3)493π. 【分析】(1)由余弦定理,求得1cos 2B =,即可求得角B 的大小; (2)由三角形的面积公式,即可求得ABC S的面积; (3)由正弦定理,求得2sin AC R B ==. 【详解】 (1)由题意,在ABC 中,5BC =,7AC =,8AB =, 由余弦定理有2222225871cos 22582BC AB AC B BC AB +-+-===⋅⨯⨯, 因为(0,)B π∈,所以3B π=.(2)由三角形的面积公式,可得ABC S=11sin 8522AB BC B ⋅=⨯⨯= (3)由正弦定理,可得72sin sin 3AC R B π===,所以外接圆面积为2493ππ⨯=. 22.(1)30;(2)2a ≥【分析】(1)由正弦定理化角为边可得222b c a +-=,再利用余弦定理即可求出; (2)由面积公式可得8bc =+.(1)由已知结合正弦定理可得()()()3a b a b c c b -+=-,即2223b c a bc +-=, 则由余弦定理可得22233cos 2b c bc A bc a +===-, ()0,180A ∈,30A ∴=;(2)11sin 2324ABC S bc A bc ===+△,则843bc =+, 由2223234a b c bc bc bc =+-≥-=,当且仅当b c =时等号成立,2a ∴≥.23.(1)23C π=;(2)10AB . 【分析】(1)利用诱导公式可得角C 的余弦值,从而可求C 的大小.(2)利用余弦定理和韦达定理可求AB 的长.【详解】(1)由题设可得()1cos 2C π-=即1cos 2C =-, 而C 为三角形内角,故23C π=. (2)由韦达定理可得23,2a b ab +==, 由余弦定理可得()2222222cos 10AB a b ab C a b ab a b ab =+-=++=+-=,故10AB. 24.6;32114. 【分析】在BCD 中,根据AD =3CD ,BD =27,利用余弦定理求解CD ,在A BD 中,利用正弦定理求解.【详解】如图所示:在等边ABC 中,AD =3CD ,所以AC =2CD .又BD 7所以BD 2=BC 2+CD 2-2BC ⋅CD ⋅cos ∠BCD ,即)2=(2CD )2+CD 2-2⋅2CD ⋅CD ⋅cos120°,解得CD =2,可得AD=6,由sin 60AD ABD =∠, 得6sin 60ABD =∠, 解得sin ∠ABD25.S AB == 【分析】 利用韦达定理求出,a b ab +,再利用余弦定理,得到关于c 的方程,解之可得AB 的长;再结合面积公式可得.【详解】,a b 是方程220x-+=的两个根, 2a b ab ∴+==,又因为120A B +=︒则60C =︒,所以由余弦定理得:()(22222222221cos 22222c a b ab c a b c C ab ab -⨯-+--+-====⨯,解得c= 所以AB =ABC的面积11sin 222S ab C ==⨯= 26.3A π=,sin b B c 2= 【分析】 由已知条件变形,结合余弦定理可求得A ,由2b ac =得=b a c b,结合正弦定理可求得sin b B c. 【详解】由2b ac =,且a 2-c 2=ac -bc ,得222b c a bc +-=,所以2221cos 22b c a A bc +-==,因为0A π<<,所以3A π=. 因为2b ac =,所以=b ac b ,所以sin sin sin 2b B a B A c b === 故3A π=,sinb Bc =【点睛】关键点点睛:利用正弦定理和余弦定理求解是解题关键.。
必修五 综合测试题 (第三套)一.选择题:1. 已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是( )A . 15B . 30 C. 31 D. 642. 若全集U=R,集合M ={}24x x >,S =301x xx ⎧-⎫>⎨⎬+⎩⎭,则()U M S I ð=( ) A.{2}x x <- B. {23}x x x <-≥或 C. {3}x x ≥ D. {23}x x -≤<3. 若1+2+22+ (2)>128,n ÎN*,则n 的最小值为( ) A. 6 B. 7 C. 8 D. 9 4. 在ABC V 中,60B =o ,2b ac =,则ABC V 一定是( )A 、等腰三角形B 、等边三角形C 、锐角三角形D 、钝角三角形 5. 若不等式022>++bx ax的解集为⎭⎬⎫⎩⎨⎧<<-3121|x x ,则a -b 值是( )A.-10B.-14C. 10D. 14 6. 在等比数列{a n }中,4S =1,8S =3,则20191817a a a a +++的值是( )A .14B .16C .18D .207.已知12=+y x ,则y x 42+的最小值为( ) A .8 B .6 C .22 D .238. 黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案,则第n 个图案中有白色地面砖的块数是( ) A.42n +B.42n -C.24n +D.33n +9. 已知变量y x ,满足⎪⎩⎪⎨⎧≥<+≤+-12553034x y x y x ,目标函数是y x z +=2,则有( )A .3,12min max ==z zB .,12max=z z 无最小值C .z z ,3min=无最大值 D .z 既无最大值,也无最小值10.在R 上定义运算:(1)x y x y ⊗⊗=-,若不等式()()1x a x a -⊗+<对任意实数x 成立,则实数a 的取值范围是( ) A .11a -<< B .02a << C .1322a -<< D .3122a -<< 二填空题: 11. 在数列{}n a 中,11a =,且对于任意正整数n ,都有1n n a a n +=+,则100a =______第1个 第2个 第3个12.在⊿ABC 中,5:4:21sin :sin :sin=C B A ,则角A =13.某校要建造一个容积为83m ,深为2m 的长方体无盖水池,池底和池壁的造价每平方米分别为240元和160元,那么水池的最低总造价为 元。
一、选择题1.ABC ∆中,角,,A B C 所对的边分别为,,a b c .若13,3,60a b A ===︒,则边c =( ) A .1B .2C .4D .62.在锐角ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若22212a b c =+,则tan A 的取值范围是( ) A .)3,⎡+∞⎣ B .()3,+∞C .()2,+∞D .[)2,+∞3.ABC 的内角,,A B C 的对边分别为,,a b c ,分别根据下列条件解三角形,其中有两解的是( )A .2,4,120a b A ===︒B .3,2,45a b A ===︒C . 6,43,60b c C ===︒D .4,3,30b c C ===︒4.已知,,a b c 分别是ABC ∆的三个内角,,A B C 所对的边,若1,3a b ==,B 是,A C 的等差中项,则角C =( ) A .30B .45︒C .60︒D .90︒5.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若cos 2a B c=,21sin sin (2cos )sin 22A B C A -=+,则A =( ) A .6π B .3π C .2π D .23π 6.如图,某船在A 处看见灯塔P 在南偏东15方向,后来船沿南偏东45的方向航行30km 后,到达B 处,看见灯塔P 在船的西偏北15方向,则这时船与灯塔的距离是:A .10kmB .20kmC .3kmD .53km7.在ABC 中,内角,,A B C 所对应的边分别为,,a b c ,若sin 3cos 0b A a B -=,且2b ac =,则a cb+ 的值为( ) A .22B .2C .2D .48.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且BC 边上的高为3a ,则c bb c+的最大值是( ) A .8B .6C .32D .49.ABC 中角A ,B ,C 所对的边分别为a ,b ,c ,已知a ,b ,c 成等差数列,且2C A =,若AC 边上的中线792BD =,则△ABC 的周长为( ) A .15B .14C .16D .1210.在ABC ∆中,30,10B AC =︒=,D 是AB 边上的一点,25CD =,若ACD ∠为锐角,ACD ∆的面积为20,则BC =( ) A .25B .35C .45D .65 11.在ABC 中,若2a =,23b =,30A =︒,则B 等于( ) A .30B .30或150︒C .60︒D .60︒或120︒12.已知ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,2b =,45B =︒,若三角形有两解,则a 的取值范围是( ) A .2a >B .02a <<C .222a <<D .223a <<二、填空题13.在ABC 中,已知1AC =,A ∠的平分线交BC 于D ,且1AD =,2BD =,则ABC 的面积为_________.14.如图,三个全等的三角形ABF ,BCD ,CAE 拼成一个等边三角形ABC ,且DEF 为等边三角形,若2EF AE =,则tan ACE ∠的值为__________.15.如图,在ABC 中,角C 的平分线交AB 于D 且CD AD =.若3AC =,2BC =,则AB =________16.在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若222a b =,sin 3sin C B =,则cos A =________.17.如图,设A 、B 两点在河的两岸,一测量者在A 的同侧所在的河岸边选定一点C ,测出AC 的距离为50m ,45ACB ∠=︒,105CAB ∠=︒后,就可以计算出A 、B 两点的距离为______18.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,其中23a c ==,,且满足(2)cos cos a c B b C -⋅=⋅,则AB BC ⋅=______.19.在锐角ABC ∆中,a ,b ,c 分别为角A ,B ,C 所对的边,且满足cos 2b aC a-=,则tan A 的取值范围是__. 20.在三角形ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,222a c b ac +-=,3b =2a c +的最大值为______.三、解答题21.如图,在ABC 中,6AB =,3cos 4B =,点D 在BC 边上,4=AD ,ADB ∠为锐角.(1)若62AC =DC 的长度; (2)若2BAD DAC ∠=∠,求sin C 的值.22.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若2sin c bC -=tan cos A C -. (1)求角A 的大小;(2)若32b =,2c =,点D 在边BC 上,且2CD DB =,求a 及AD . 23.在ABC 中,内角A 、B 、C 对应的边长分别为a b c 、、,且,,a b c 满足5cos 44cos 5sin sin cos a B b cB A BC -=+.(1)求cos A ;(2)若3a =,求b c +的最大值.24.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知cos cos 12+=A C a c ,且2b =.(1)证明:4+≥a c ;(2)若ABC 的周长为232+S .25.已知ABC 的三个内角A ,B ,C 的对边分别是a ,b ,c ,且cos cos 2cos b C c B a A +=.(1)求角A ;(2)若3a =ABC 的面积为23b c +的值.26.在ABC 中,内角,,A B C 的对边长分别为,,a b c ,已知222a c b -=,且sin cos 3cos sin A C A C = ,求b【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【解析】试题分析:2222cos a c b cb A =+-213923cos60c c ⇒=+-⨯⨯︒,即2340c c --=,解得4c =或1c =-(舍去). 考点:余弦定理,正弦定理.2.B解析:B 【分析】根据题中条件,由三角形的余弦定理、正弦定理和两角和的正弦公式,化简可得tan 3tan A B =,再由两角和的正切公式,以及锐角三角形的定义,可得tan 0A >,tan 0C >,解不等式可得所求范围. 【详解】因为22212a b c =+,由余弦定理可得,2222cos a b c bc A =+-,则222212cos 2b c b c bc A +=+-,可得4cos c b A =,由正弦定理可得:sin 4sin cos C B A =,可得sin()sin cos sin cos 4sin cos A B A B B A B A +=+=, 化为3sin cos sin cos B A A B =, 在锐角ABC 中,cos 0A ≠,cos 0B ≠, 则tan 3tan A B =,又21tan tan tan tan 3tan tan()11tan tan 1tan 3A AA B C A B A B A ++=-+=-=---,由tan 0A >,tan 0C >,可得211tan 03A -<,解得tan A >, 故选:B . 【点睛】本题考查三角形的正弦定理和余弦定理的运用,以及两角和的三角函数公式,考查方程思想和化简运算能力,属于中档题.3.D解析:D 【分析】运用正弦定理公式,可以求出另一边的对角正弦值,最后还要根据三角形的特点:“大角对大边”进行合理排除. 【详解】A. 2,4,120a b A ===︒,由,a b <A B ⇒<所以不存在这样的三角形.B. 3,2,45a b A ===︒,由sin sin sin 3a b B A B =⇒=且,a b >所以只有一个角BC. 6,60b c C ===︒中,同理也只有一个三角形.D. 4,3,30b c C ===︒中2sin sin sin 3c b B C B =⇒=此时b c >,所以出现两个角符合题意,即存在两个三角形. 所以选择D 【点睛】在直接用正弦定理求另外一角中,求出 sin θ后,记得一定要去判断是否会出现两个角.4.A解析:A 【详解】由题设可得060B =11sin sin 2A A =⇒=,则030A =或0150A =,但a b A B <⇔<,应选答案A .5.C解析:C 【分析】先利用余弦定理化简条件得sin sin B C =,再利用三角恒等变换即求得B ,C ,再求A 角. 【详解】∵cos 2a B c =,∴22222a c b aac c+-=,解得b c =,∴sin sin B C =. ∵212cos sin sin (2cos )sin 222A AB C A --=+=,易知2cos 0A -≠,∴1sin sin 2B C =,又sin sin B C =,∴sin sin 2B C ==,即4B C π==,∴2A π=.故选:C . 【点睛】本题考查了三角恒等变换与解三角形的综合,属于中档题.6.C解析:C 【分析】在ABP ∆中,利用正弦定理求出BP 得长,即为这时船与灯塔的距离,即可得到答案. 【详解】由题意,可得30PAB PBA ∠=∠=,即30,120AB APB =∠=,在ABP ∆中,利用正弦定理得30sin 30sin120PB ==即这时船与灯塔的距离是km ,故选C . 【点睛】本题主要考查了正弦定理,等腰三角形的判定与性质,以及特殊角的三角函数值的应用,其中熟练掌握正弦定理是解答本题的关键,着重考查了推理与运算能力,属于基础题.7.C解析:C 【分析】利用正弦定理边化角,结合辅助角公式可求得sin 03B π⎛⎫-= ⎪⎝⎭,从而确定3B π=;利用余弦定理构造方程可求得()24+=a c ac ,代入所求式子即可化简得到结果. 【详解】sin cos 0b A B =,()sin sin cos sin sin 2sin sin 03B A A B A B B A B π⎛⎫∴=-=-= ⎪⎝⎭,()0,A π∈,sin 0A ∴≠,sin 03B π⎛⎫∴-= ⎪⎝⎭,又()0,B π∈,3B π∴=.()22222231cos 2222a c ac a cb ac ac B ac ac ac +-+-+-∴====,整理可得:()24+=a c ac ,2a cb+∴====. 故选:C . 【点睛】本题考查解三角形的相关知识,涉及到正弦定理边化角、余弦定理的应用等知识;解决此类问题的关键是能够通过正弦定理,将边的齐次式转化为角的关系,属于常考题型.8.D解析:D 【分析】首先利用面积公式可得:2sin a A =,再利用余弦定理2222cos b c a bc A +=+,两者结合可得22sin 2cos b c A bc A +=+,而22c b b c b c bc++=,即可得c bb c +2cos A A =+,再利用辅助角公式即可求解. 【详解】由已知可得:11sin 226bc A a a =⨯,所以2sin a A =,因为222cos 2b c a A bc+-=,所以2222cos sin 2cos b c a bc A A bc A +=+=+所以222cos 4sin 46c b b c A A A b c bc π+⎛⎫+==+=+≤ ⎪⎝⎭, 所以c bb c +的最大值是4 故选:D 【点睛】本题主要考查了三角形面积公式、余弦定理、以及辅助角公式,属于中档题.9.A解析:A 【分析】由已知结合等差数列的性质及二倍角公式,正弦定理及余弦定理进行化简,即可求得结果. 【详解】由a ,b ,c 成等差数列可知,2b a c =+, 因为2C A =,所以sin sin 22sin cos C A A A ==,由正弦定理及余弦定理可得,22222b c a c a bc+-=⋅,所以2223bc ab ac a =+-, 所以32c a =,54b a =,若AC 边上的中线BD =所以2225379242a a a ⎡⎤⎛⎫⎛⎫+=+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,解可得4a =,5b =,6c =, 故△ABC 的周长为15. 故选:A. 【点睛】该题考查的是有关解三角形的问题,涉及到的知识点有余弦定理,正弦定理,等差数列的条件,以及边角关系,属于简单题目.10.C解析:C先利用面积公式计算出sin ACD ∠,计算出cos ACD ∠,运用余弦定理计算出AD ,利用正弦定理计算出sin A ,在ABC ∆中运用正弦定理求解出BC . 【详解】解:由ACD ∆的面积公式可知,11sin 1025sin 2022ACAD ACD ACD ∠=∠=,可得sin ACD∠=,ACD ∠为锐角,可得cos ACD ∠==在ACD ∆中,21002021025805AD =+-=,即有AD =由sin sin AD CDACD A =∠可得sin sin CD ACD A AD ∠=,由sin sin AC BCB A=可知sin sin 2AC A BC B ===.故选C . 【点睛】本题考查正弦定理与余弦定理在解三角形中的应用,考查方程思想,属于中档题.11.D解析:D 【分析】由正弦定理,求得sin sin bB A a=,再由a b <,且0180B ︒<<︒,即可求解,得到答案. 【详解】由题意,在ABC中,由正弦定理可得sin sin a bA B=, 即sin sin sin 3022b B A a ==︒=, 又由a b <,且0180B ︒<<︒, 所以60B =︒或120B =︒, 故选:D. 【点睛】本题主要考查了正弦定理的应用,其中解答中熟记三角形的正弦定理,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.12.C解析:C 【分析】直接利用正弦定理计算得到答案.根据正弦定理:sin sin 2a b A B ==sin A =,三角形有两解,故sin 12A <=<,解得2a << 故选:C. 【点睛】本题考查了利用正弦定理解三角形,意在考查学生的计算能力和转化能力.二、填空题13.【分析】设将利用三角形面积公式表示出来可得在中利用余弦定理可得解得即可求出进而可得的值再利用三角形面积公式即可求解【详解】因为平分所以设则因为设所以所以因为所以即在中所以可得解得:所以所以所以故答案【分析】设12BAD CAD BAC θ∠=∠=∠=,AB x =,将BAD CAD ABC S S S +=△△△利用三角形面积公式表示出来,可得1cos 2x xθ+=,在ABD △中,利用余弦定理可得212cos 2x xθ+-=,解得2x =,即可求出cos θ,sin θ,进而可得sin BAC ∠的值,再利用三角形面积公式即可求解. 【详解】因为AD 平分BAC ∠,所以12BAD CAD BAC ∠=∠=∠, 设BAD θ∠=,则CAD θ∠=,2BAC θ∠=, 因为BAD CAD ABC S S S +=△△△,设AB x =, 所以111sin sin sin 2222x x θθθ+=, 所以,sin sin 2sin cos x x θθθθ+=, 因为sin 0θ≠,所以12cos x x θ+=,即1cos 2x xθ+=, 在ABD △中,212cos 2x x θ+-=,所以21122x x x x-+=, 可得220x x --=,解得:2x =,所以3cos cos 4BAD θ∠==,所以sin BAD ∠==,3sin 2sin cos 24BAC θθ∠===,所以1sin 28ABC S AC AB BAC =⋅∠=,【点睛】 关键点点睛:本题解题的关键是将BAD CAD ABC S S S +=△△△用面积公式表示出来可得边角之间的关系,再结合余弦定理即求出边和角即可求面积.14.【分析】首先设中利用正弦定理表示的值【详解】设因为三角形互为全等三角形且是等边三角形所以且在中根据正弦定理有所以所以即故答案为:【点睛】本题主要考查正弦定理三角函数恒等变换属于中档题型【分析】首先设AE x =,CBD ACE θ∠=∠=,CBD 中,CD AE x ==,3BD x =,6060BCE ACE θ∠=-∠=-,利用正弦定理表示tan ACE ∠的值.【详解】设AE x =,22EF AE x ==,因为三角形ABF ,BCD ,CAE 互为全等三角形,且ABC 是等边三角形, 所以CBD ACE θ∠=∠=,CD AE x ==,3BD AF AE EF x ==+=,且6060BCE ACE θ∠=-∠=-,在CDB △中,根据正弦定理有sin sin CD BD CBD BCD=∠∠, 所以()3sin sin 60x x θθ=-,所以()13sin sin 60sin 2θθθθ=-=-,即7sin 2θθ=,sin tan cos θθθ==.【点睛】本题主要考查正弦定理,三角函数恒等变换,属于中档题型.15.【分析】不妨令易知然后在中利用正弦定理求出的值最后在中利用正弦定理可求出的值【详解】解:在中角的平分线交于且设则即整理得所以:结合得即显然是锐角所以再由得:解得故答案为:【点睛】本题考查正弦定理三角【分析】不妨令A α∠=,易知ACD BCD α∠==,3B πα∠=-,然后在ABC 中,利用正弦定理,求出sin α,cos α的值,最后在ABC 中,利用正弦定理,可求出AB 的值.【详解】解:在ABC 中,角C 的平分线交AB 于D ,且CD AD =.设A α∠=,则ACD BCD α∠==,3B πα∠=-, ∴sin sin AC BC B A =∠∠,即32sin(3)sin παα=-, 整理得2sin33sin αα=,所以:2(sin cos2cos sin 2)3sin ααααα+=,结合sin 0α≠得222(2cos 12cos )3αα-+=, 即258cos α=,显然α是锐角,所以cos αα=∴sin 22sin cos ααα==. 再由ABC 得:2sin sin 2AB αα=,∴= 解得10AB .【点睛】本题考查正弦定理,三角恒等变换的知识方法在解题中的作用,属于中档题.16.【分析】由根据正弦定理边化角可得根据余弦定理结合已知联立方程组即可求得角【详解】根据正弦定理:根据余弦定理:又故可联立方程:解得:故答案为:【点睛】本题主要考查了求三角形的一个内角解题关键是掌握由正【分析】由sin C B =,根据正弦定理“边化角”,可得=c ,根据余弦定理2222cos a b c bc A =+-,结合已知联立方程组,即可求得角cos A .【详解】sin C B=,根据正弦定理:sin sinb cB C=,∴=c,根据余弦定理:2222cosa b c bc A=+-,又222a b=,故可联立方程:222222cos2ca b c bc Aa b⎧=⎪=+-⎨⎪=⎩,解得:cos A=..【点睛】本题主要考查了求三角形的一个内角,解题关键是掌握由正弦定理“边化角”的方法和余弦定理公式,考查了分析能力和计算能力,属于中档题.17.【分析】由与求出的度数根据以及的长利用正弦定理即可求出的长【详解】解:在中即则由正弦定理得:故答案为:【点睛】本题考查正弦定理以及特殊角的三角函数值熟练掌握正弦定理是解本题的关键解析:【分析】由ACB∠与BAC∠,求出ABC∠的度数,根据sin ACB∠,sin ABC∠,以及AC的长,利用正弦定理即可求出AB的长.【详解】解:在ABC∆中,50AC m=,45ACB∠=︒,105CAB∠=︒,即30ABC∠=︒,则由正弦定理sin sinAB ACACB ABC=∠∠,得:50sin21sin2AC ACBABABC∠===∠.故答案为:.【点睛】本题考查正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.18.【分析】由题意利用正弦定理边化角求得∠B的值然后结合数量积的定义求解的值即可【详解】根据正弦定理得:故答案为【点睛】本题主要考查正弦定理余弦定理的应用等知识意在考查学生的转化能力和计算求解能力解析:3-【分析】由题意利用正弦定理边化角,求得∠B的值,然后结合数量积的定义求解AB BC⋅的值即可.【详解】()2a c cosB bcosC -=根据正弦定理得:()2sinA sinC cosB sinBcosC -=2sinAcosB sinBcosC sinCcosB =+()2sinAcosB sin B C =+2sinAcosB sinA =12cosB ∴=, 60B ∴=1||2332AB BC AB BC cosB ⎛⎫∴⋅=-⋅=-⨯⨯=- ⎪⎝⎭ 故答案为3-【点睛】本题主要考查正弦定理、余弦定理的应用等知识,意在考查学生的转化能力和计算求解能力.19.【分析】先由余弦定理可将条件整理得到利用正弦定理得到;结合二倍角公式;再由和差化积公式得:代入①整理得;求出和的关系求出角的范围即可求解【详解】解:由余弦定理可知则整理得即由正弦定理可得即①由和差化解析:,1) 【分析】先由余弦定理可将条件整理得到22c a ab -=,利用正弦定理得到22sin sin sin sin C A A B -=;结合二倍角公式1cos21cos2cos2cos2sin sin 222C A A C A B ----==;再由和差化积公式得:cos2cos22sin()sin()A C A C A C -=-+-代入①整理得sin sin()sin()A A C C A =--=-;求出A 和C 的关系,求出角的范围即可求解.【详解】解:由余弦定理可知222cos 2a b c C ab+-=,则22222a b c b a ab a +--=, 整理得2222a b c b ab +-=-,即22c a ab -=,由正弦定理可得,22sin sin sin sin C A A B -=,即1cos21cos2cos2cos2sin sin 222C A A C A B ----==①, 由和差化积公式得:cos2cos22sin()sin()A C A C A C -=-+-代入①得sin()sin()sin sin A C A C A B -+-=;因为sin()sin 0A C B +=≠;sin sin()sin()A A C C A ∴=--=-;在锐角ABC ∆中,C A A -=即2C A =,则3B A C A ππ=--=-, 因为02022032A A A ππππ⎧<<⎪⎪⎪<<⎨⎪⎪<-<⎪⎩, ∴64A ππ<<,tan A ∴的取值范围是,1);故答案为:,1). 【点睛】 本题主要考查正弦定理、余弦定理以及和差化积公式的应用,特殊角的三角函数值,属于中档题.20.【分析】由余弦定理可求出角再根据正弦定理即可表示出然后利用消元思想和辅助角公式即可求出的最大值【详解】因为所以而∴∵∴∴其中所以的最大值为当时取得故答案为:【点睛】本题主要考查正余弦定理在解三角形中解析:【分析】由余弦定理可求出角B ,再根据正弦定理即可表示出2a c +,然后利用消元思想和辅助角公式,即可求出2a c +的最大值.【详解】因为222a cb ac +-=,所以2221cos 222a c b ac B ac ac +-===,而0B π<<,∴3B π=.∵2sin sin sin sin 3a b c A B C π====,∴2sin ,2sin a A c C ==.∴222sin 4sin 2sin 4sin 4sin 3a c A C A A A A π⎛⎫+=+=+-=+ ⎪⎝⎭()A ϕ=+,其中tan 2ϕ=.所以2a c +的最大值为2A πϕ=-时取得.故答案为:【点睛】 本题主要考查正余弦定理在解三角形中的应用,以及利用三角函数求解三角形中的最值问题,意在考查学生的转化能力和数学运算能力,属于中档题.三、解答题21.(1)7;(2 【分析】(1)分别在△ABD 、△ABC 中,由余弦定理求BD ,BC ,即可求DC 的长度; (2)记DAC ∠θ=,则2BAD θ∠=,在△ABD 中由余弦定理求sin 2θ、sin θ、cos θ,法一:即可求sin3θ、cos3θ,由已知求sin B ,又()sin sin 3C B πθ=--即可求值;法二:由余弦定理求cos BDA ∠,sin BDA ∠,又()sin sin C BDA θ=∠-即可求值.【详解】(1)在△ABD 中,由余弦定理得22223616312co 24s AB BD AD B AB B BD D BD +-⋅⋅=+-==, ∴5BD =或4BD =.当4BD =时,161636cos 0244ADB +-∠=<⨯⨯,则2ADB π∠>,不合题意,舍去; 当5BD =时,162536cos 0245ADB +-∠=>⨯⨯,则2ADB π∠<,符合题意. ∴5BD =. 在△ABC 中,22223672312co 24s AB BC AC B AB B BC C BC +-⋅⋅=+-==, ∴12BC =或3BC =-(舍).∴7DC BC BD =-=.(2)记DAC ∠θ=,则2BAD θ∠=.在△ABD 中,2229cos cos2216AB AD BD BAD AB AD θ+-∠===⋅,∴2θ为锐角,得21cos27sin 232θθ-==,sin 2θ=sin θ=,cos θ=,法一:sin3sin 2cos cos2sin θθθθθ=+=,同理cos3θ=由3cos 4B =知:sin B =,∴()()sin sin 3sin 3sin cos3cos sin3C B B B B πθθθθ=--=+=+法二:2221625361cos 22458AD BD AB BDA AD BD +-+-∠===⋅⨯⨯,sin BDA ∠.∴()sin sin sin cos cos sin C BDA BDA BDA θθθ=∠-=∠-∠=【点睛】关键点点睛:(1)应用余弦定理求三角形的边长,根据边的数量关系求DC ;(2)由余弦定理,利用诱导公式及两角和或差的正弦公式,求角的正弦值即可.22.(1)π4A =;(2)a =3AD =. 【分析】(1()sin sin sin tan cos C B A C A C -=-,再化简计算即可求出cos A =(2)由余弦定理求得a =,求得cos B =3a BD ==,再由余弦定理即可求出AD .【详解】解:(1()sin sin sin tan cos C B A C A C -=-,()()sin sin sin tan cos C A C A C A C -+=-,∴2sin sin cos cos sin sin sin cos cos A C A C A C C A C A--=-,∵sin 0C ≠,∴2sin cos cos A A A+=∴cos 2A =0πA <<,∴π4A =. (2)由余弦定理可得:2222cos 1841210a b c bc A =+-=+-=, ∴a =∵点D 在边BC 上,且2CD DB =,∴33a BD ==,又222cos 2a c b B ac +-==∴222582cos 9AD AB BD AB BD B =+-⋅⋅=,∴3AD =. 【点睛】关键点睛:本题考查正余弦定理的应用,解题的关键是正确利用正弦定理化边为角处理条件,再结合三角恒等变换化简运算.23.(1)45-;(2 【分析】 (1)利用正弦定理边化角,结合两角和的正弦公式、余弦公式,化简整理,即可求得答案.(2)由(1)可得4cos 5A =-,根据余弦定理,可得25()92bc b c ⎡⎤=+-⎣⎦,根据基本不等式,即可求得b c +的最大值.【详解】(1)由题意得5cos cos 4cos 4cos 5sin sin a C B b C c B c A B -=+, 正弦定理边化角得:5sin cos cos 4sin cos 4sin cos 5sin sin sin A C B B C C B C A B -=+,所以5sin (cos cos sin sin )4(sin cos sin cos )A C B C B C B B C -=+,所以5sin cos()4sin()A B C B C +=+,又A B C π++=,所以sin()sin()sin ,cos()cos()cos B C A A B C A A ππ+=-=+=-=-,所以5sin cos 4sin A A A -=,又因为(0,)A π∈,所以sin 0A ≠, 所以4cos 5A =-. (2)由(1)可得4cos 5A =-, 由余弦定理得2222()294cos 225b c a b c bc A bc bc +-+--===-, 所以25()92bc b c ⎡⎤=+-⎣⎦, 由基本不等式可得22b c bc +⎛⎫≤ ⎪⎝⎭,所以225()922b c b c +⎛⎫⎡⎤+-≤ ⎪⎣⎦⎝⎭,解得b c +≤ 当且仅当b c =时等号成立,所以b c +【点睛】解题的关键是熟练掌握正余弦定理、基本不等式等知识,并灵活应用,考查计算化简的能力,属中档题.24.(1)证明见解析;(2)2. 【分析】(1)解法一:用正弦定理化边为角,得到2sin sin sin B A C =,再变成2b ac =,运用基本不等式可证明解法二:用余弦定理化角为边,得到关系式2b ac =,再用基本不等式求解即可. (2)用余弦定理求出3cos 4B =,再用三角形面积公式求解即可. 【详解】(1)解法一:由已知及正弦定理,得cos cos 1sin sin sin A C A C B += 因为cos cos cos sin cos sin sin()sin sin sin sin sin sin sin sin sin +++===A C A C C A A C B A C A C A c A c所以sin 1sin sin sin =B A c B,2sin sin sin B A C =由正弦定理得2b ac =,即4ac =.4a c +≥=. 解法二:由已知及余弦定理,得222221222+-+-+=b c a a b c abc abc ,得24==ac b ,所以4a c +≥=.(2)因为ABC 的周长为2+a c +=因为22222cos ()22cos b a c ac B a c ac ac B =+-⋅=+--⋅又因为4ac =,所以3cos 4B =得sin B =.所以1sin 2sin 2===ABC S ac B B 【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.25.(1)π3A =;(2)6. 【分析】(1)由正弦定理把条件cos cos 2cos b C c B a A +=转化为角的关系,再由两角和的正弦公式及诱导公式得A 的关系式,从而可得结论;(2)首先可根据解三角形面积公式得出8bc =,然后根据余弦定理计算出6b c +=.【详解】(1)因为cos cos 2cos b C c B a A +=由正弦定理得,sin cos sin cos 2sin cos B C C B A A +=所以()sin sin 2sin cos B C A A A +==因为0πA <<所以,sin 0A ≠所以1cos 2A =,所以π3A =(2)因为ABC 的面积为所以1sin 2bc A =因为π3A =,所以1πsin 23bc =, 所以8bc =.由余弦定理得,2222cos a b c bc A =+-,因为a =,π3A =, 所以()()2222π122cos 3243b c bc b c bc b c =+-=+-=+-, 所以6b c +=.【点睛】关键点点睛:解题时要注意边角关系的转化.求“角”时,常常把已知转化为角的关系,求“边”时,常常把条件转化为边的关系式,然后再进行转化变形.26.4【分析】根据题意,在ABC 中,因为sin cos 3cos sin A C A C =,由正弦定理及余弦定理可得:2222223,22a b c b c a a c ab bc+-+-⋅=⋅ 化简并整理得:2222()a c b -=,结合已知条件222a c b -=,联立即可得解.【详解】在ABC 中,因为sin cos 3cos sin A C A C =,由正弦定理及余弦定理可得:2222223,22a b c b c a a c ab bc+-+-⋅=⋅ 化简并整理得:2222()a c b -=,又由已知222a c b -=,所以24b b =,解得4b =或0b =,由0b ≠,所以4b =.。
绝密★启用前高中数学必修五综合考试卷第I卷(选择题)一、单选题1.数列的一个通项公式是()A. B.C. D.2.不等式的解集是()A.B.C.D.3.若变量满足,则的最小值是()A. B. C. D. 44.在实数等比数列{a n}中,a2,a6是方程x2-34x+64=0的两根,则a4等于( ) A. 8 B.-8 C.±8 D.以上都不对5.己知数列为正项等比数列,且,则()A. 1 B. 2 C. 3 D. 46.数列11111,2,3,4,24816L前n项的和为()A.2122nn n++ B.21122nn n+-++ C.2122nn n+-+ D.21122nn n+--+7.若的三边长成公差为的等差数列,最大角的正弦值为,则这个三角形的面积为()A. B. C. D.8.在△ABC中,已知,则B等于( )A.30° B.60° C.30°或150° D.60°或120°9.下列命题中正确的是( )A.a>b⇒ac2>bc2 B.a>b⇒a2>b2 C.a>b⇒a3>b3 D.a2>b2⇒a>b 10.满足条件,的的个数是 ( )A. 1个 B. 2个 C.无数个 D.不存在11.已知函数满足:则应满足()A. B. C.D.12.已知数列{a n}是公差为2的等差数列,且成等比数列,则为()A. -2 B. -3 C. 2 D. 313.等差数列的前10项和,则等于()A. 3 B. 6 C. 9 D. 1014.等差数列的前项和分别为,若,则的值为()A. B. C. D.第II卷(非选择题)二、填空题15.已知为等差数列,且-2=-1,=0,则公差=16.在中,,,面积为,则边长=_________.17.已知中,,,,则面积为_________. 18.若数列的前n项和,则的通项公式____________19.直线下方的平面区域用不等式表示为________________.20.函数的最小值是 _____________.21.已知,且,则的最小值是______.三、解答题22.解一元二次不等式(1)(2)23.△的角、、的对边分别是、、。
(1)求边上的中线的长;(2)求△的面积。
24.在中,角所对的边分别为,且.(1)求的大小.(2)若,求的最大值.25.数列{a n}的前n项和S n=33n-n2.(1)求数列{a n}的通项公式; (2) 求证:{a n}是等差数列.26.已知公差不为零的等差数列{a n}中, S2=16,且成等比数列.(1)求数列{a n}的通项公式;(2)求数列{|a n|}的前n项和T n.27.已知数列是公差不为0的等差数列,,成等比数列.(1)求;(2)设,数列的前项和为,求.28.某化工厂生产甲、乙两种肥料,生产1车皮甲种肥料能获得利润10000元,需要的主要原料是磷酸盐4吨,硝酸盐8吨;生产1车皮乙种肥料能获得利润5000元,需要的主要原料是磷酸盐1吨,硝酸盐15吨.现库存有磷酸盐10吨,硝酸盐66吨,在此基础上生产这两种肥料.问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?29.已知正项数列{a n}的前n项和为S n,且a1=1,=S n+1+S n.(1)求{a n}的通项公式;(2)设,求数列{b n}的前n项和T n.参考答案1.C【解析】【分析】观察数列分子为以0为首项,2为公差的等差数列,分母是以1为首项,2为公差的等差数列,故可得数列的通项公式.【详解】观察数列分子为以0为首项,2为公差的等差数列,分母是以1为首项,2为公差的等差数列,故可得数列的通项公式a n=(n∈Z*).故选:C.【点睛】本题考查了数列的概念及简单表示法,考查了数列的通项公式的求法,是基础题.2.C【解析】【分析】根据分式不等式的意义可转化为整式不等式且,即可求解.【详解】原不等式等价于且,解得,所以原不等式的解集是.【点睛】本题主要考查了分式不等式的解法,属于中档题.3.A【解析】【分析】画出可行域,令目标函数,即,做出直线,平移该直线当直线过可行域且在y轴上截距最大时,即过点时,z有最小值.【详解】可行域为如图所示的四边形及其内部,令目标函数,即,过点时,所在直线在y 轴上的截距取最大值,此时取得最小值,且.【点睛】本题主要考查了简单的线性规划,数形结合的思想方法,属于中档题. 4.A 【解析】 【分析】利用根与系数的关系、等比数列的性质即可得出. 【详解】等比数列{a n }中,a 2,a 6是方程x 2﹣34x+64=0的两根, ∴a 2+a 6=34>,a 2•a 6=64=,又偶数项的符号相同,∴a 4>0. 则a 4=8. 故选:A . 【点睛】本题考查了等比数列的性质、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于中档题. 5.B【解析】∵数列为等比数列,且∴,即,又,∴.选B . 6.B 【解析】()()()11111111112212311248222212n n n nn n n n S n ⎛⎫-⎪++⎛⎫⎝⎭=+++++++++=+=+- ⎪⎝⎭-L L ,故选B.7.B【解析】试题分析:根据题意设三角形的三边最大角为,,则由三角形两边之和大于第三边知即,由余弦定理得,即,计算得出:.三角形的三边分别为该三角形的面积为:所以选项是正确的.考点:等差数列,余弦定理,三角形面积.【思路点晴】本题给出三角形中三条边成公差为的等差数列,利用等差中项巧设三边这样只引入了一个变量,根据三角形中大边对大角,则最大角为边所对的角,根据,得到,从而得到三边分别为8.A【解析】【分析】由正弦定理知,所以得或,根据三角形边角关系可得。
【详解】由正弦定理得,,所以或,又因为在三角形中,,所以有,故,答案选A。
【点睛】本题主要考查正弦定理在解三角形中的应用,较简单基础。
9.C【解析】试题分析:对于选项A,根据不等式的性质,只有c>0时,能成立,故错误选项B中,当a=0,b=-1,时,此时a>b,但是不满足平方后的a2>b2,成立,故错误。
选项D中,因为当a2>b2时,比如a=-2,b=0,的不满足a>b,故错误,排除法只有选C.考点:本试题主要考查了不等式的性质的运用。
点评:解决该试题的关键是注意可乘性的运用。
只有同时乘以正数不等号方向不变。
10.B【解析】解:因为满足条件,利用余弦定理可知得到关于c的一元二次方程,即,可知有两个不等的正根,因此有两解,选B 11.C【解析】【分析】列出不等式组,作出其可行域,利用线性规划求出f(3)的最值即可.【详解】:∵﹣4≤f(1)≤﹣1,﹣1≤f(2)≤5,∴,作出可行域如图所示:令z=f(3)=9a﹣c,则c=9a﹣z,由可行域可知当直线c=9a﹣z经过点A时,截距最大,z取得最小值,当直线c=9a﹣z经过点B时,截距最小,z取得最大值.联立方程组可得A(0,1),∴z的最小值为9×0﹣1=﹣1,联立方程组,得B(3,7),∴z的最大值为9×3﹣7=20.∴﹣1≤f(3)≤20.故选:C.【点睛】本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.12.D【解析】【分析】由等差数列知,,又三数成等比数列,所以,求解即可.【详解】因为,又成等比数列,所以,解得,故选D.【点睛】本题主要考查了等差数列通项公式及等比中项,属于中档题.13.A【解析】【分析】由题意结合等差数列前n项和公式和等差数列的性质整理计算即可求得最终结果.【详解】由题意可得:,则,由等差数列的性质可得:.本题选择A选项.【点睛】本题主要考查等差数列的性质,等差数列前n项和公式及其应用等知识,意在考查学生的转化能力和计算求解能力.14.C【解析】【分析】根据等差数列的求和公式进行变形可得,结合条件代入后可得所求的值.【详解】由等差数列的求和公式可得,故选C.【点睛】本题考查等差数列的求和公式和项的下标和的性质,解题时要注意等差数列的项与和之间的联系,关键是等差数列中项的下标和性质的灵活运用,考查变化和应用能力.15.B【解析】【分析】利用等差数列的通项公式,结合已知条件列出关于a1,d的方程组,求解即可.【详解】设等差数列{a n}的首项为a1,公差为d,由等差数列的通项公式以及已知条件得,即,解得d=-,故选:B.【点睛】本题考查了等差数列的通项公式,熟记公式是解题的关键,同时注意方程思想的应用.16.4【解析】【分析】由已知利用三角形面积公式可求c【详解】∵A=60∘,b=1,面积为=bc sin A=×1×c×,∴解得:c=4,【点睛】在解三角形面积时有三个公式可选择,但是题上已知角A,所以我们需抓取S=bc sin A 17.【解析】【分析】由已知及正弦定理可得sin(A﹣B)=0,结合A,B的范围,可求﹣π<A﹣B<π,进而求得A﹣B=0,可得a=b=1,利用余弦定理可求cosA,同角三角函数基本关系式可求sinA,根据三角形面积公式即可计算得解.∵acosB=bcosA,∴由正弦定理可得:sinAcosB=sinBcosA,可得:sin(A﹣B)=0,∵0<A<π,0<B<π,可得:﹣π<A﹣B<π,∴A﹣B=0,可得:a=b=1,∴cosA===,可得:sinA=,∴S△ABC=bcsinA==.故答案为:.【点睛】本题主要考查了正弦定理,余弦定理,同角三角函数基本关系式,三角形面积公式在解三角形中的应用,考查了转化思想,属于基础题.18.【解析】【分析】把的式子代入已知中得到数列的首项,再由时,,推得,得到数列表示首项为,公比为的等比数列,即可求解.【详解】由题意,当时,,解得,当时,,即,所以,所以数列表示首项为,公比为的等比数列,所以数列的通项公式为.【点睛】本题主要考查了等比数列的通项公式,及数列与的关系的应用,其中熟记数列的与的关系式,合理推理是解答的关键,着重考查了推理与运算能力,属于基础题.19.【分析】作出直线,判断O所在的平面区域,即可得到结论.【详解】点在直线的下方,应使不等式成立,所以直线下方的平面区域用不等式表示为.故答案为:【点睛】本题主要考查二元一次不等式表示平面区域,先判断原点对应的不等式是解决本题的关键,比较基础.20.5【解析】【分析】先对函数的解析式变形,再利用基本不等式求最小值.【详解】由题得+1.(当且仅当即x=2时取等)故答案为:5【点睛】(1)本题主要考查基本不等式求最值,意在考查学生对这些知识的掌握水平和分析推理计算能力.(2) 使用基本不等式求最值时,要注意观察收集题目中的数学信息(正数、定值等),然后变形,配凑出基本不等式的条件.本题解题的关键是变形+1.21.9【解析】【分析】直接将代数式4x+y与相乘,利用基本不等式可求出的最小值.【详解】由基本不等式可得,当且仅当,等号成立,因此的最小值为9,故答案为:9.【点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.22.(1)(-3,1);(2)R.【解析】【分析】利用因式分解即可利用判别式即可得到答案【详解】(1)由,得,解得。