2013高考试卷
- 格式:pdf
- 大小:339.96 KB
- 文档页数:4
2013年普通高等学校招生全国统一考试语文本试题卷共8页,六大题23小题。
全卷满分150分。
考试用时150分钟。
注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用统一提供的2B铅笔将答题卡上试卷类型A后的方框涂黑。
2.选择题的作答:每小题选出答案后,用统一提供的2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
答在试题卷、草稿纸上无效。
3.非选择题的作答:用统一提供的签字笔直接答在答题卡上对应的答题区域内。
答在试题卷、草稿纸上无效。
4.考生必须保持答题卡的整洁。
考试结束后,请将本试题卷和答题卡一并上交。
一、语文基础知识(共15分,共5小题,每小题3分)1.下列各组词语中,加点字的注音全都正确的一组是A.踹(chuài)水竞(jìnɡ)赛蘸(zhàn)酒擂(léi)鼓助威B.跋涉(shè)陡(dǒu)峭攀登(dēnɡ)餐霜饮雪(xiě)C.善(shàn)良谦逊(sùn)璞(pú)玉不事雕琢(zhuó)D.荆棘(jí)飘泊(bó)青苔(tāi)红漆(qī)雕花2.下列各组词语中,没有错别字的一组是A.彷徨愁怨寂寥静默凄婉惆伥B.顾盼精捍步履稳健风神潇洒C.睿智禀赋崇高品质趋善避恶D.辩难商榷典藉满架旁稽博采3.依次填入下列横线处的词语,最恰当的一组是①宋人画雪常不用铅粉,把背景用墨衬黑,一层层,留出山头的白,树梢的白,甚至花蕾上的白,虚实映衬,意境悠远。
②因为睡不着,打开窗帘,遥望夜空,满天,斜月晶莹,薄雾似轻纱漫卷,。
我思念那个小山村,那个让我魂牵梦绕的地方!A.而是点染星汉如梦如幻B.总是浸染星云如诗如画C.却是绘染星光诗意盎然D.只是渲染星斗诗意朦胧4.下列各项中,没有语病的一项是A.《美丽中国》以歌舞为主,融入京剧演唱、茶艺表演、少林武术等元素,加上奇幻的灯光,震撼的音响,一幅美丽中国的大写意,声光舞影流溢着浓郁的中国情。
1.2013年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第Ⅰ卷和第II 卷(非选择题)两部分,第Ⅰ卷第1至第2页,第II 卷第3至第4页。
全卷满分150分,考试时间为120分钟。
参考公式:如果事件A 与B 互斥,那么()()()P A B P A P B +=+如果事件A 与B 相互独立,那么()()()P AB P A P B =第Ⅰ卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 设i 是虚数单位,_z 是复数z 的共轭复数,若|()>0I x f x =+2=2z zi ,则z = (A )1+i (B )1i - (C )1+i - (D )1-i -【答案】A 【解析】设2bi2a 2)i b (a 2bi)i -a (bi)+a (22z bi.z -a =z .bi,+a =z 22+=++=+⋅⇒=+⋅z i 则i zb a a+=⇒⎩⎨⎧==⇒⎩⎨⎧==+⇒111222b b a 22所以选A(2) 如图所示,程序框图(算法流程图)的输出结果是(A )16 (B )2524 (C )34 (D )1112【答案】D【解析】.1211,1211122366141210=∴=++=+++=s s ,所以选D(3)在下列命题中,不是公理..的是 (A )平行于同一个平面的两个平面相互平行(B )过不在同一条直线上的三点,有且只有一个平面(C )如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内(D )如果两个不重合的平面有一个公共点, 那么他们有且只有一条过该点的公共直线【答案】A【解析】B,C,D 说法均不需证明,也无法证明,是公理;C 选项可以推导证明,故是定理。
所以选A(4)"0"a ≤“是函数()=(-1)f x ax x 在区间(0,+)∞内单调递增”的 (A ) 充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既不充分也不必要条件 【答案】C【解析】 当a=0 时,,时,且上单调递增;当,在x ax x f x a x f y x x f )1()(00)0()(||)(+-=><∞+=⇒= .)0()(0所以a .)0()(上单调递增的充分条件,在是上单调递增,在∞+=≤∞+=x f y x f y 0a )0()(≤⇒∞+=上单调递增,在相反,当x f y ,.)0()(0a 上单调递增的必要条件,在是∞+=≤⇒x f y故前者是后者的充分必要条件。
2013高考数学试卷及答案一、选择题1.若函数 $f(x)=\\frac{\\sqrt{1-x^2}}{\\sqrt{1+x^2}}$,则f(−1)+f(0)+f(1)的值为A. 0B. 1C. 2D. 3答案: C. 22.已知函数 $y=\\log_2{x}$,则 $y^2-4y-5 \\leq 0$ 的解集为A. (-∞, -1] ∪ [5, +∞)B. [-1, 5]C. [-1, 1]D. (1, 5)答案: B. [-1, 5]3.如图所示,在ΔABC 中,$AD \\perp BC$,则 $\\frac{BD}{CD} =$imageimageA. $\\frac{2}{3}$B. $\\frac{3}{7}$C. $\\frac{5}{3}$D. $\\frac{3}{2}$答案: A. $\\frac{2}{3}$二、填空题4.设a1=3,$a_2=\\frac{7}{4}$,a n+2=2a n+1+a n,则a10=答案: $\\frac{535}{64}$5.设 $f(x)=\\sin^3{x}-\\cos^3{x}$,则 $f(\\frac{\\pi}{6})=$答案: $\\frac{1}{4}$三、解答题1. 计算题6.已知数列 $\\{a_n\\}$,a1=2,$a_{n+1}=2a_n+3(n\\geq1)$,求a n 的通项公式。
解答:首先我们观察数列的前几项,可以发现:a1=2 $a_2 = 2 \\cdot 2 + 3 \\cdot 1 = 7$ $a_3 = 2 \\cdot 7 + 3 \\cdot 2 = 20$定义数列 $\\{b_n\\}$,$b_n = a_n + \\frac{3}{2} \\cdot n$,我们来观察数列 $\\{b_n\\}$: $b_1 = 2 + \\frac{3}{2} \\cdot 1 = \\frac{7}{2}$ $b_2 = 7 + \\frac{3}{2} \\cdot 2 = 12$ $b_3 = 20 + \\frac{3}{2} \\cdot 3 =\\frac{29}{2}$我们可以发现数列 $\\{b_n\\}$ 是一个等差数列,公差为$\\frac{3}{2}$。
绝密★启用前2013年普通高等学校招生全国统一考试(福建卷)语文本试卷共20题,共150分。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、古代诗文阅读(27分)(一)默写常见的名句名篇(6分)1、补写出下列名句名篇中的空缺部分。
(6分)(1)狗吠深巷中,。
(陶渊明《归园田居(其一)》)(2)潦水尽而寒潭清,。
(王勃《滕王阁序》)(3)?只是当时已惘然。
(李商隐《锦瑟》)(4)四十三年,望中犹记,。
(辛弃疾《永遇乐·京口北固亭怀古》)(5),零丁洋里叹零丁。
(文天祥《过零丁洋》)(6)余立侍左右,,俯身倾耳以请。
(宋濂《送东阳马生序》)(二)文言文阅读(15分)阅读下面的文言文,完成2-5题。
龙洞山记【元】张养浩历下多名山水,龙洞尤为胜。
洞距城东南三十里,旧名禹登山。
按《九域志》,禹治水至其上,故云。
中有潭,时出云气,旱祷辄雨,胜国①尝封其神曰灵惠公。
其前,层峰云矗,曰锦屏,曰独秀,曰三秀,释家者流居之。
由锦屏抵佛刹山,巉岩环合,飞鸟劣②及其半。
即山有龛屋,深广可容十数人,周镌佛象甚夥。
世兵,逃乱在多此焉。
依上下有二穴,下者居傍,可逶迤东出,其曰龙洞,即此穴也。
望之窅然。
窃欲偕同来数人入观。
或曰是中极暗,非烛不能往,即遣仆燃束茭前导。
初焉,若高阔可步;未几,俯首焉;未几,磐折③焉;又未几,膝行焉;又未几,则蒲伏焉;又未几,则全体覆地蛇进焉。
会.所导火灭,烟郁勃满洞中。
欲退,身不容;引进,则其前隘,且重以烟,遂缄吻、抑鼻、潜息。
心骇乱恐甚,自谓命当尽死此,不复出矣。
绝密★启用前2013年普通高等学校招生全国统一考试(全国卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页.考试时间120分钟.满分150分.答题前,考生务必用0.5毫米的黑色签字笔将自己的姓名、座号、考号填写在第Ⅰ卷答题卡和第Ⅱ卷答题纸规定的位置. 参考公式:样本数据n x x x ,,21的标准差nx x x x x x s n 22221)()()(-++-+-=其中x 为样本平均数球的面积公式24R S π=第Ⅰ卷(选择题 共60分)注意事项:1.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上. 2.第Ⅰ卷只有选择题一道大题.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数ii++121(i 是虚数单位)的虚部是 A .23 B .21C .3D .1 2.已知R 是实数集,{}11,12+-==⎭⎬⎫⎩⎨⎧<=x y y N x xM ,则=M C N R A .)2,1(B .[]2,0C .∅D .[]2,13.现有10个数,其平均数是4,且这10个数的平方和是200,那么这个数组的标准差是 A .1 B .2 C .3 D .44.设n S 为等比数列{}n a 的前n 项和,0852=-a a ,则=24S S A .5 B .8 C .8- D .155.已知函数)62sin()(π-=x x f ,若存在),0(π∈a ,使得)()(a x f a x f -=+恒成立,则a的值是 A .6π B .3π C .4π D .2π(想不到更好的方法时,不妨逐项代入)6.已知m 、n 表示直线,γβα,,表示平面,给出下列四个命题,其中真命题为 (1)βααβα⊥⊥⊂=则,,,m n n m (2)m n n m ⊥==⊥则,,,γβγαβα (3),,βα⊥⊥m m 则α∥β (4)βαβα⊥⊥⊥⊥则,,,n m n mA .(1)、(2)B .(3)、(4)C .(2)、(3)D .(2)、(4)7.已知平面上不共线的四点C B A O ,,,,若||,23BC -=等于()(20OC OB B OA →→→→-=-)A .1B .2C .3D .48.已知三角形ABC ∆的三边长成公差为2的等差数列,且最大角的正弦值为23,则这个三角形的周长是A .18B .21C .24D .15(余弦定理) 9.函数xx x f 1lg )(-=的零点所在的区间是(根的存在性定理) A .(]1,0 B .(]10,1 C .(]100,10 D .),100(+∞ 10.过直线y x =上一点P 引圆22670x y x +-+=的切线,则切线长的最小值为A .22 B . 223 C .210 D .2(解题前应多想想几何定理)11.已知函数b ax x x f 2)(2-+=.若b a ,都是区间[]4,0内的数,则使0)1(>f 成立的概率是A .43 B .41 C .83D .85题图第1312.已知双曲线的标准方程为116922=-y x ,F 为其右焦点,21,A A 是实轴的两端点,设P 为双曲线上不同于21,A A 的任意一点,直线P A P A 21,与直线a x =分别交于两点N M ,,若0=⋅,则a 的值为(_此题若画图像,有两种情况。
2013年普通高等学校招生全国统一考试(新课标II卷)语文注意事项:1.本试卷分第Ⅰ卷(阅读题)和第Ⅱ卷(表达题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷阅读题一、现代文阅读(9分,每小题3分)阅读下面的文字,完成1-3题20世纪后期,陕西凤雏村出土了刻有“凤”字的甲骨四片,这些“凤”字的形体大致相同,均为头上带有象征神权或王权的抽象化了的毛角的短尾鸟。
东汉许筷《说文解字》云:“公耸,凤属,神鸟也。
……江中有公耸,似兔而大,赤目。
”据此,古代传说中鸣于岐山、兆示周王朝兴起的神鸟凤凰,其原型应该是一种形象普通、类似水鸭的短尾水鸟。
那么,普通的短尾鸟“凤”为何在周代变为华冠长尾、祥瑞美丽的神鸟了呢?我们看到,在商代早期和中期的青铜器纹饰中,只有鸟纹而没有凤纹,真正的凤形直到殷商晚期才出现,而且此时是华冠短尾鸟和华丽而饰有眼翎的长尾鸟同时出现,可见“凤”是由鸟演变而来的。
综观甲骨文和商代青铜器,凤鸟的演变应该是鸟在先,凤在后,贯穿整个商代的不是凤而是鸟。
“天命玄鸟,降而生商”,在商人的历史中鸟始终扮演着图腾始祖的重要角色。
《左传》记载郯子说:“我高祖少暤挚之立也,凤鸟适至,故纪于鸟,为鸟师而鸟名。
凤鸟氏历正也,……九扈为九农正。
”凤鸟氏成为“历正”之官,是由于它知天时,九扈成为“九农正”,也是由于它们带来了耕种、耘田和收获的信息。
殷人先祖之所以“鸟师而鸟名”,应该是由于这些随着信风迁批的鸟,给以少暤为首的商人的农业生产带来了四季节令的消息。
对凤鸟的崇拜起于商代,其鼎盛却在周代。
正是在周代,“凤”完成了其发展程序中最后也是最重要的环节:变为神鸟凤凰。
许多历史资料记载了周王室在克商前后对“天命”的重视。
《尚书》“周书”十二篇中大量出现的“命”字多指天命,“殷革夏命”也是常见的语句。
武王在甲子日牧野之战结束后,紧接着就“不革服,“格于庙”(来不及换衣服就到神庙参拜),这个“庙”自然不可能是周庙,而是商人的神庙。
2013年普通高等学校招生全国统一考试(新课标Ⅰ卷)理科综合能力测试可能用到的相对原子质量:H 1 C 12 N 14 O 16 Mg24 S 32 K39 Mn55第Ⅰ卷一、选择题:本卷共13小题。
每小题6分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
1.关于蛋白质生物合成的叙述,正确的是()A.一种tRNA可以携带多种氨基酸B.DNA聚合酶是在细胞核中合成的C.反密码子是位于mRNA上相邻的三个碱基D.线粒体中的DNA能控制某些蛋白质的合成【答案】D【解析】tRNA的一端有三个碱基外露为反密码子,与mRNA上的密码子进行碱基互补配对,另一端携带一种氨基酸到达核糖体上,通过发生脱水缩合形成肽健,合成多肽链。
所以A、C错误。
DNA聚合酶是蛋白质,在核糖体上合成,而细胞核内无核糖体,不能合成蛋白质,因而DNA聚合酶是在细胞质中合成的蛋白质类酶,通过核孔进入细胞核发挥作用。
B错。
线粒体中不仅具有自己的DNA,而且还有核糖体,能够通过转录和翻译控制一部分蛋白质的合成,所以核糖体具有一定的独立性。
D正确。
【试题点评】本题不偏不难,正面考查了有关蛋白质合成的基础知识,DNA聚合酶是在细胞核内起催化作用的,部分考生可能会误选B。
本题主要涉及的知识点是化合物的本质及合成,基因控制蛋白质合成过程中有关概念及特点。
旨在考查考生对蛋白质合成过程中相关知识点的识记及初步分析问题的能力。
2.关于同一个体中细胞有丝分裂和减数第一次分裂的叙述,正确的是()A.两者前期染色体数目相同,染色体行为和DNA分子数目不同B.两者中期染色体数目不同,染色体行为和DNA分子数目相同C.两者后期染色体行为和数目不同,DNA分子数目相同D.两者后期染色体行为和数目相同,DNA分子数目不同【答案】C【解析】有丝分裂和减数分裂分裂期过程的最大区别是染色体的行为不同。
有丝分裂前期有同源染色体但不联会,中期染色体的着丝点被纺锤丝拉到赤道板位置排列整齐,后期着丝点分裂,姐妹染色单体分离并分别移向细胞的两极,此时染色体数目暂时性加倍,DNA分子数不变,分裂的结果是分裂前后染色体数与DNA分子数与分裂前一样。
2013年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知集合A={x|x2﹣2x>0},B={x|﹣<x<},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B2.(5分)若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为()A.﹣4B.C.4D.3.(5分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样4.(5分)已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y=B.y=C.y=±x D.y=5.(5分)执行程序框图,如果输入的t∈[﹣1,3],则输出的s属于()A.[﹣3,4]B.[﹣5,2]C.[﹣4,3]D.[﹣2,5] 6.(5分)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为()A.B.C.D.7.(5分)设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3B.4C.5D.68.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π9.(5分)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=()A.5B.6C.7D.810.(5分)已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.11.(5分)已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0] 12.(5分)设△A n B n C n的三边长分别为a n,b n,c n,△A n B n C n的面积为S n,n=1,2,3…若b1>c1,b1+c1=2a1,a n+1=a n,,,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列二.填空题:本大题共4小题,每小题5分.13.(5分)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则t=.14.(5分)若数列{a n}的前n项和为S n=a n+,则数列{a n}的通项公式是a n=.15.(5分)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ=.16.(5分)若函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,则f(x)的最大值为.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)如图,在△ABC中,∠ABC=90°,AB=,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=,求PA;(2)若∠APB=150°,求tan∠PBA.18.(12分)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.19.(12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.(Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.20.(12分)已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P 的半径最长时,求|AB|.21.(12分)已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.四、请考生在第22、23、24题中任选一道作答,并用2B铅笔将答题卡上所选的题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分,不涂,按本选考题的首题进行评分.22.(10分)(选修4﹣1:几何证明选讲)如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D.(Ⅰ)证明:DB=DC;(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.23.已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).24.已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)的解集;(Ⅱ)设a>﹣1,且当x∈[﹣,]时,f(x)≤g(x),求a的取值范围.2013年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知集合A={x|x2﹣2x>0},B={x|﹣<x<},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B【考点】1D:并集及其运算;73:一元二次不等式及其应用.【专题】59:不等式的解法及应用;5J:集合.【分析】根据一元二次不等式的解法,求出集合A,再根据的定义求出A∩B和A∪B.【解答】解:∵集合A={x|x2﹣2x>0}={x|x>2或x<0},∴A∩B={x|2<x<或﹣<x<0},A∪B=R,故选:B.【点评】本题考查一元二次不等式的解法,以及并集的定义,属于基础题.2.(5分)若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为()A.﹣4B.C.4D.【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】由题意可得z==,再利用两个复数代数形式的乘除法法则化简为+i,由此可得z的虚部.【解答】解:∵复数z满足(3﹣4i)z=|4+3i|,∴z====+i,故z的虚部等于,故选:D.【点评】本题主要考查复数的基本概念,两个复数代数形式的乘除法法则的应用,属于基础题.3.(5分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样【考点】B3:分层抽样方法.【专题】21:阅读型.【分析】若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.【解答】解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.了解某地区中小学生的视力情况,按学段分层抽样,这种方式具有代表性,比较合理.故选:C.【点评】本小题考查抽样方法,主要考查抽样方法,属基本题.4.(5分)已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y=B.y=C.y=±x D.y=【考点】KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】由离心率和abc的关系可得b2=4a2,而渐近线方程为y=±x,代入可得答案.【解答】解:由双曲线C:(a>0,b>0),则离心率e===,即4b2=a2,故渐近线方程为y=±x=x,故选:D.【点评】本题考查双曲线的简单性质,涉及的渐近线方程,属基础题.5.(5分)执行程序框图,如果输入的t∈[﹣1,3],则输出的s属于()A.[﹣3,4]B.[﹣5,2]C.[﹣4,3]D.[﹣2,5]【考点】3B:分段函数的解析式求法及其图象的作法;EF:程序框图.【专题】27:图表型;5K:算法和程序框图.【分析】本题考查的知识点是程序框图,分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算一个分段函数的函数值,由条件为t<1我们可得,分段函数的分类标准,由分支结构中是否两条分支上对应的语句行,我们易得函数的解析式.【解答】解:由判断框中的条件为t<1,可得:函数分为两段,即t<1与t≥1,又由满足条件时函数的解析式为:s=3t;不满足条件时,即t≥1时,函数的解析式为:s=4t﹣t2故分段函数的解析式为:s=,如果输入的t∈[﹣1,3],画出此分段函数在t∈[﹣1,3]时的图象,则输出的s属于[﹣3,4].故选:A.【点评】要求条件结构对应的函数解析式,要分如下几个步骤:①分析流程图的结构,分析条件结构是如何嵌套的,以确定函数所分的段数;②根据判断框中的条件,设置分类标准;③根据判断框的“是”与“否”分支对应的操作,分析函数各段的解析式;④对前面的分类进行总结,写出分段函数的解析式.6.(5分)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为()A.B.C.D.【考点】LG:球的体积和表面积.【专题】11:计算题;5F:空间位置关系与距离.【分析】设正方体上底面所在平面截球得小圆M,可得圆心M为正方体上底面正方形的中心.设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,而圆M的半径为4,由球的截面圆性质建立关于R的方程并解出R=5,用球的体积公式即可算出该球的体积.【解答】解:设正方体上底面所在平面截球得小圆M,则圆心M为正方体上底面正方形的中心.如图.设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,而圆M的半径为4,由球的截面圆性质,得R2=(R﹣2)2+42,解出R=5,∴根据球的体积公式,该球的体积V===.故选:A.【点评】本题给出球与正方体相切的问题,求球的体积,着重考查了正方体的性质、球的截面圆性质和球的体积公式等知识,属于中档题.7.(5分)设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3B.4C.5D.6【考点】83:等差数列的性质;85:等差数列的前n项和.【专题】11:计算题;54:等差数列与等比数列.【分析】由a n与S n的关系可求得a m+1与a m,进而得到公差d,由前n项和公式及S m=0可求得a1,再由通项公式及a m=2可得m值.【解答】解:a m=S m﹣S m﹣1=2,a m+1=S m+1﹣S m=3,所以公差d=a m﹣a m=1,+1S m==0,m﹣1>0,m>1,因此m不能为0,得a1=﹣2,所以a m=﹣2+(m﹣1)•1=2,解得m=5,另解:等差数列{a n}的前n项和为S n,即有数列{}成等差数列,则,,成等差数列,可得2•=+,即有0=+,解得m=5.又一解:由等差数列的求和公式可得(m﹣1)(a1+a m﹣1)=﹣2,m(a1+a m)=0,(m+1)(a1+a m+1)=3,可得a1=﹣a m,﹣2a m+a m+1+a m+1=+=0,解得m=5.故选:C.【点评】本题考查等差数列的通项公式、前n项和公式及通项a n与S n的关系,考查学生的计算能力.8.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π【考点】L!:由三视图求面积、体积.【专题】16:压轴题;27:图表型.【分析】三视图复原的几何体是一个长方体与半个圆柱的组合体,依据三视图的数据,得出组合体长、宽、高,即可求出几何体的体积.【解答】解:三视图复原的几何体是一个长方体与半个圆柱的组合体,如图,其中长方体长、宽、高分别是:4,2,2,半个圆柱的底面半径为2,母线长为4.∴长方体的体积=4×2×2=16,半个圆柱的体积=×22×π×4=8π所以这个几何体的体积是16+8π;故选:A.【点评】本题考查了几何体的三视图及直观图的画法,三视图与直观图的关系,柱体体积计算公式,空间想象能力9.(5分)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=()A.5B.6C.7D.8【考点】DA:二项式定理.【专题】5P:二项式定理.【分析】根据二项式系数的性质求得a和b,再利用组合数的计算公式,解方程13a=7b求得m的值.【解答】解:∵m为正整数,由(x+y)2m展开式的二项式系数的最大值为a,以及二项式系数的性质可得a=,同理,由(x+y)2m+1展开式的二项式系数的最大值为b,可得b==.再由13a=7b,可得13=7,即13×=7×,即13=7×,即13(m+1)=7(2m+1),解得m=6,故选:B.【点评】本题主要考查二项式系数的性质的应用,组合数的计算公式,属于中档题.10.(5分)已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.【考点】K3:椭圆的标准方程.【专题】5D:圆锥曲线的定义、性质与方程.【分析】设A(x1,y1),B(x2,y2),代入椭圆方程得,利用“点差法”可得.利用中点坐标公式可得x1+x2=2,y1+y2=﹣2,利用斜率计算公式可得==.于是得到,化为a2=2b2,再利用c=3=,即可解得a2,b2.进而得到椭圆的方程.【解答】解:设A(x1,y1),B(x2,y2),代入椭圆方程得,相减得,∴.∵x1+x2=2,y1+y2=﹣2,==.∴,化为a2=2b2,又c=3=,解得a2=18,b2=9.∴椭圆E的方程为.故选:D.【点评】熟练掌握“点差法”和中点坐标公式、斜率的计算公式是解题的关键.11.(5分)已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0]【考点】7E:其他不等式的解法.【专题】16:压轴题;59:不等式的解法及应用.【分析】由函数图象的变换,结合基本初等函数的图象可作出函数y=|f(x)|的图象,和函数y=ax的图象,由导数求切线斜率可得l的斜率,进而数形结合可得a的范围.【解答】解:由题意可作出函数y=|f(x)|的图象,和函数y=ax的图象,由图象可知:函数y=ax的图象为过原点的直线,当直线介于l和x轴之间符合题意,直线l为曲线的切线,且此时函数y=|f(x)|在第二象限的部分解析式为y=x2﹣2x,求其导数可得y′=2x﹣2,因为x≤0,故y′≤﹣2,故直线l的斜率为﹣2,故只需直线y=ax的斜率a介于﹣2与0之间即可,即a∈[﹣2,0]故选:D.【点评】本题考查其它不等式的解法,数形结合是解决问题的关键,属中档题.12.(5分)设△A n B n C n的三边长分别为a n,b n,c n,△A n B n C n的面积为S n,n=1,2,3…若b1>c1,b1+c1=2a1,a n+1=a n,,,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列【考点】82:数列的函数特性;8H:数列递推式.【专题】16:压轴题;54:等差数列与等比数列;55:点列、递归数列与数学归纳法.=a n可知△A n B n C n的边B n C n为定值a1,由b n+1+c n+1﹣【分析】由a n+12a1=及b1+c1=2a1得b n+c n=2a1,则在△A n B n C n中边长B n C n=a1为定值,另两边A n C n、A n B n的长度之和b n+c n=2a1为定值,由此可知顶点A n在以B n、C n为焦点的椭圆上,根据b n+1﹣c n+1=,得b n﹣c n=,可知n→+∞时b n→c n,据此可判断△A n B n C n的边B nC n的高h n随着n的增大而增大,再由三角形面积公式可得到答案.【解答】解:b1=2a1﹣c1且b1>c1,∴2a1﹣c1>c1,∴a1>c1,∴b1﹣a1=2a1﹣c1﹣a1=a1﹣c1>0,∴b1>a1>c1,又b1﹣c1<a1,∴2a1﹣c1﹣c1<a1,∴2c1>a1,∴,由题意,+a n,∴b n+1+c n+1﹣2a n=(b n+c n﹣2a n),∴b n+c n﹣2a n=0,∴b n+c n=2a n=2a1,∴b n+c n=2a1,由此可知顶点A n在以B n、C n为焦点的椭圆上,﹣c n+1=,∴=a1﹣b n,又由题意,b n+1﹣a1=,∴b n﹣a1=,∴b n+1∴,c n=2a1﹣b n=,∴[][]=[﹣]单调递增(可证当n=1时>0)故选:B.【点评】本题主要考查由数列递推式求数列通项、三角形面积海伦公式,综合考查学生分析解决问题的能力,有较高的思维抽象度,是本年度全国高考试题中的“亮点”之一.二.填空题:本大题共4小题,每小题5分.13.(5分)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则t=2.【考点】9H:平面向量的基本定理;9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】由于•=0,对式子=t+(1﹣t)两边与作数量积可得=0,经过化简即可得出.【解答】解:∵,,∴=0,∴tcos60°+1﹣t=0,∴1=0,解得t=2.故答案为2.【点评】熟练掌握向量的数量积运算是解题的关键.14.(5分)若数列{a n}的前n项和为S n=a n+,则数列{a n}的通项公式是a n=(﹣2)n﹣1.【考点】88:等比数列的通项公式.【专题】54:等差数列与等比数列.【分析】把n=1代入已知式子可得数列的首项,由n≥2时,a n=S n﹣S n﹣1,可得数列为等比数列,且公比为﹣2,代入等比数列的通项公式分段可得答案.【解答】解:当n=1时,a1=S1=,解得a1=1当n≥2时,a n=S n﹣S n﹣1=()﹣()=,整理可得,即=﹣2,故数列{a n}从第二项开始是以﹣2为首项,﹣2为公比的等比数列,故当n≥2时,a n=(﹣2)n﹣1,经验证当n=1时,上式也适合,故答案为:(﹣2)n﹣1【点评】本题考查等比数列的通项公式,涉及等比数列的判定,属基础题.15.(5分)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ=﹣.【考点】GP:两角和与差的三角函数;H4:正弦函数的定义域和值域.【专题】16:压轴题;56:三角函数的求值.【分析】f(x)解析式提取,利用两角和与差的正弦函数公式化为一个角的正弦函数,由x=θ时,函数f(x)取得最大值,得到sinθ﹣2cosθ=,与sin2θ+cos2θ=1联立即可求出cosθ的值.【解答】解:f(x)=sinx﹣2cosx=(sinx﹣cosx)=sin(x﹣α)(其中cosα=,sinα=),∵x=θ时,函数f(x)取得最大值,∴sin(θ﹣α)=1,即sinθ﹣2cosθ=,又sin2θ+cos2θ=1,联立得(2cosθ+)2+cos2θ=1,解得cosθ=﹣.故答案为:﹣【点评】此题考查了两角和与差的正弦函数公式,同角三角函数间的基本关系,以及正弦函数的定义域与值域,熟练掌握公式是解本题的关键.16.(5分)若函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,则f(x)的最大值为16.【考点】57:函数与方程的综合运用;6E:利用导数研究函数的最值.【专题】11:计算题;16:压轴题;51:函数的性质及应用;53:导数的综合应用.【分析】由题意得f(﹣1)=f(﹣3)=0且f(1)=f(﹣5)=0,由此求出a=8且b=15,由此可得f(x)=﹣x4﹣8x3﹣14x2+8x+15.利用导数研究f(x)的单调性,可得f(x)在区间(﹣∞,﹣2﹣)、(﹣2,﹣2+)上是增函数,在区间(﹣2﹣,﹣2)、(﹣2+,+∞)上是减函数,结合f(﹣2﹣)=f(﹣2+)=16,即可得到f(x)的最大值.【解答】解:∵函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,∴f(﹣1)=f(﹣3)=0且f(1)=f(﹣5)=0,即[1﹣(﹣3)2][(﹣3)2+a•(﹣3)+b]=0且[1﹣(﹣5)2][(﹣5)2+a•(﹣5)+b]=0,解之得,因此,f(x)=(1﹣x2)(x2+8x+15)=﹣x4﹣8x3﹣14x2+8x+15,求导数,得f′(x)=﹣4x3﹣24x2﹣28x+8,令f′(x)=0,得x1=﹣2﹣,x2=﹣2,x3=﹣2+,当x∈(﹣∞,﹣2﹣)时,f′(x)>0;当x∈(﹣2﹣,﹣2)时,f′(x)<0;当x∈(﹣2,﹣2+)时,f′(x)>0;当x∈(﹣2+,+∞)时,f′(x)<0∴f(x)在区间(﹣∞,﹣2﹣)、(﹣2,﹣2+)上是增函数,在区间(﹣2﹣,﹣2)、(﹣2+,+∞)上是减函数.又∵f(﹣2﹣)=f(﹣2+)=16,∴f(x)的最大值为16.故答案为:16.【点评】本题给出多项式函数的图象关于x=﹣2对称,求函数的最大值.着重考查了函数的奇偶性、利用导数研究函数的单调性和函数的最值求法等知识,属于中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)如图,在△ABC中,∠ABC=90°,AB=,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=,求PA;(2)若∠APB=150°,求tan∠PBA.【考点】HP:正弦定理;HR:余弦定理.【专题】58:解三角形.【分析】(I)在Rt△PBC,利用边角关系即可得到∠PBC=60°,得到∠PBA=30°.在△PBA中,利用余弦定理即可求得PA.(II)设∠PBA=α,在Rt△PBC中,可得PB=sinα.在△PBA中,由正弦定理得,即,化简即可求出.【解答】解:(I)在Rt△PBC中,=,∴∠PBC=60°,∴∠PBA=30°.在△PBA中,由余弦定理得PA2=PB2+AB2﹣2PB•ABcos30°==.∴PA=.(II)设∠PBA=α,在Rt△PBC中,PB=BCcos(90°﹣α)=sinα.在△PBA中,由正弦定理得,即,化为.∴.【点评】熟练掌握直角三角形的边角关系、正弦定理和余弦定理是解题的关键.18.(12分)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.【考点】LW:直线与平面垂直;LY:平面与平面垂直;MI:直线与平面所成的角.【专题】5F:空间位置关系与距离;5G:空间角.【分析】(Ⅰ)取AB的中点O,连接OC,OA1,A1B,由已知可证OA1⊥AB,AB ⊥平面OA1C,进而可得AB⊥A1C;(Ⅱ)易证OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立坐标系,可得,,的坐标,设=(x,y,z)为平面BB1C1C的法向量,则,可解得=(,1,﹣1),可求|cos <,>|,即为所求正弦值.【解答】解:(Ⅰ)取AB的中点O,连接OC,OA1,A1B,因为CA=CB,所以OC⊥AB,由于AB=AA1,∠BAA1=60°,所以△AA1B为等边三角形,所以OA1⊥AB,又因为OC∩OA1=O,所以AB⊥平面OA1C,又A1C⊂平面OA1C,故AB⊥A1C;(Ⅱ)由(Ⅰ)知OC⊥AB,OA1⊥AB,又平面ABC⊥平面AA1B1B,交线为AB,所以OC⊥平面AA1B1B,故OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立如图所示的坐标系,可得A(1,0,0),A1(0,,0),C(0,0,),B(﹣1,0,0),则=(1,0,),=(﹣1,,0),=(0,﹣,),设=(x,y,z)为平面BB1C1C的法向量,则,即,可取y=1,可得=(,1,﹣1),故cos<,>==,又因为直线与法向量的余弦值的绝对值等于直线与平面的正弦值,故直线A1C与平面BB1C1C所成角的正弦值为:.【点评】本题考查直线与平面所成的角,涉及直线与平面垂直的性质和平面与平面垂直的判定,属难题.19.(12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.(Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.【考点】CG:离散型随机变量及其分布列;CH:离散型随机变量的期望与方差.【专题】5I:概率与统计.【分析】(Ⅰ)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品全是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,由概率得加法公式和条件概率,代入数据计算可得;(Ⅱ)X可能的取值为400,500,800,分别求其概率,可得分布列,进而可得期望值.【解答】解:(Ⅰ)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品全是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,所以P(A)=P(A1B1)+P(A2B2)=P(A1)P(B1|A1)+P(A2)P(B2|A2)==(Ⅱ)X可能的取值为400,500,800,并且P(X=800)=,P(X=500)=,P(X=400)=1﹣﹣=,故X的分布列如下:X 400 500 800P故EX=400×+500×+800×=506.25【点评】本题考查离散型随机变量及其分布列涉及数学期望的求解,属中档题.20.(12分)已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P 的半径最长时,求|AB|.【考点】J3:轨迹方程;J9:直线与圆的位置关系.【专题】5B:直线与圆.【分析】(I)设动圆的半径为R,由已知动圆P与圆M外切并与圆N内切,可得|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,求出即可;(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤4﹣2=2,所以R ≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.分①l的倾斜角为90°,此时l与y轴重合,可得|AB|.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,根据,可得Q(﹣4,0),所以可设l:y=k(x+4),与椭圆的方程联立,得到根与系数的关系利用弦长公式即可得出.【解答】解:(I)由圆M:(x+1)2+y2=1,可知圆心M(﹣1,0);圆N:(x﹣1)2+y2=9,圆心N(1,0),半径3.设动圆的半径为R,∵动圆P与圆M外切并与圆N内切,∴|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,∴a=2,c=1,b2=a2﹣c2=3.∴曲线C的方程为(x≠﹣2).(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤3﹣1=2,所以R≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.①l的倾斜角为90°,则l与y轴重合,可得|AB|=.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,则,可得Q(﹣4,0),所以可设l:y=k(x+4),由l于M相切可得:,解得.当时,联立,得到7x2+8x﹣8=0.∴,.∴|AB|===由于对称性可知:当时,也有|AB|=.综上可知:|AB|=或.【点评】本题综合考查了两圆的相切关系、直线与圆相切问题、椭圆的定义及其性质、直线与椭圆相交问题转化为方程联立得到根与系数的关系、弦长公式等基础知识,需要较强的推理能力和计算能力及其分类讨论的思想方法.21.(12分)已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.【考点】3R:函数恒成立问题;6H:利用导数研究曲线上某点切线方程.【专题】16:压轴题;53:导数的综合应用.【分析】(Ⅰ)对f(x),g(x)进行求导,已知在交点处有相同的切线及曲线y=f (x)和曲线y=g(x)都过点P(0,2),从而解出a,b,c,d的值;(Ⅱ)由(I)得出f(x),g(x)的解析式,再求出F(x)及它的导函数,通过对k的讨论,判断出F(x)的最值,从而判断出f(x)≤kg(x)恒成立,从而求出k的范围.【解答】解:(Ⅰ)由题意知f(0)=2,g(0)=2,f′(0)=4,g′(0)=4,而f′(x)=2x+a,g′(x)=e x(cx+d+c),故b=2,d=2,a=4,d+c=4,从而a=4,b=2,c=2,d=2;(Ⅱ)由(I)知,f(x)=x2+4x+2,g(x)=2e x(x+1)设F(x)=kg(x)﹣f(x)=2ke x(x+1)﹣x2﹣4x﹣2,则F′(x)=2ke x(x+2)﹣2x﹣4=2(x+2)(ke x﹣1),由题设得F(0)≥0,即k≥1,令F′(x)=0,得x1=﹣lnk,x2=﹣2,①若1≤k<e2,则﹣2<x1≤0,从而当x∈(﹣2,x1)时,F′(x)<0,当x∈(x1,+∞)时,F′(x)>0,即F(x)在(﹣2,x1)上减,在(x1,+∞)上是增,故F(x)在[﹣2,+∞)上的最小值为F(x1),而F(x1)=﹣x1(x1+2)≥0,x≥﹣2时F(x)≥0,即f(x)≤kg(x)恒成立.②若k=e2,则F′(x)=2e2(x+2)(e x﹣e﹣2),从而当x∈(﹣2,+∞)时,F′(x)>0,即F(x)在(﹣2,+∞)上是增,而F(﹣2)=0,故当x≥﹣2时,F(x)≥0,即f(x)≤kg(x)恒成立.③若k>e2时,F′(x)>2e2(x+2)(e x﹣e﹣2),而F(﹣2)=﹣2ke﹣2+2<0,所以当x>﹣2时,f(x)≤kg(x)不恒成立,综上,k的取值范围是[1,e2].【点评】此题主要考查利用导数研究曲线上某点切线方程,函数恒成立问题,考查分类讨论思想,解题的关键是能够利用导数工具研究函数的性质,此题是一道中档题.四、请考生在第22、23、24题中任选一道作答,并用2B铅笔将答题卡上所选的题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分,不涂,按本选考题的首题进行评分.22.(10分)(选修4﹣1:几何证明选讲)如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D.(Ⅰ)证明:DB=DC;(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.【考点】NC:与圆有关的比例线段.【专题】5B:直线与圆.【分析】(I)连接DE交BC于点G,由弦切角定理可得∠ABE=∠BCE,由已知角平分线可得∠ABE=∠CBE,于是得到∠CBE=∠BCE,BE=CE.由已知DB⊥BE,可知DE为⊙O的直径,Rt△DBE≌Rt△DCE,利用三角形全等的性质即可得到DC=DB.(II)由(I)可知:DG是BC的垂直平分线,即可得到BG=.设DE的中点为O,连接BO,可得∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.得到CF⊥BF.进而得到Rt△BCF的外接圆的半径=.【解答】(I)证明:连接DE交BC于点G.由弦切角定理可得∠ABE=∠BCE,而∠ABE=∠CBE,∴∠CBE=∠BCE,BE=CE.又∵DB⊥BE,∴DE为⊙O的直径,∠DCE=90°.∴△DBE≌△DCE,∴DC=DB.(II)由(I)可知:∠CDE=∠BDE,DB=DC.故DG是BC的垂直平分线,∴BG=.设DE的中点为O,连接BO,则∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.∴CF⊥BF.∴Rt△BCF的外接圆的半径=.【点评】本题综合考查了圆的性质、弦切角定理、等边三角形的性质、三角形全等、三角形的外接圆的半径等知识,需要较强的推理能力、分析问题和解决问题的能力.23.已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【专题】11:计算题;35:转化思想;4R:转化法;5S:坐标系和参数方程.【分析】(1)曲线C1的参数方程消去参数t,得到普通方程,再由,能求出C1的极坐标方程.(2)曲线C2的极坐标方程化为直角坐标方程,与C1的普通方程联立,求出C1与C2交点的直角坐标,由此能求出C1与C2交点的极坐标.【解答】解:(1)将,消去参数t,化为普通方程(x﹣4)2+(y﹣5)2=25,即C1:x2+y2﹣8x﹣10y+16=0,将代入x2+y2﹣8x﹣10y+16=0,得ρ2﹣8ρcosθ﹣10ρsinθ+16=0.∴C1的极坐标方程为ρ2﹣8ρcosθ﹣10ρsinθ+16=0.(2)∵曲线C2的极坐标方程为ρ=2sinθ.∴曲线C2的直角坐标方程为x2+y2﹣2y=0,。
2013年普通高等学校招生考试(安徽卷)理科数学一、选择题1.设i 是虚数单位,z 是复数z 的共轭复数,若z ·z i +2=2z ,则z =( )(A)1+i(B)1−i(C)−1+i(D)−1−i2.如图所示,程序框图(算法流程图)的输出结果是( )(A)16(B)2524(C)34(D)11123.在下列命题中,不是公理的是( )(A)平行于同一个平面的两个平面相互平行(B)过不在同一条直线上的三点,有且只有一个平面(C)如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内(D)如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线4.“a ⩽0”是“函数f (x )=|(ax −1)x |在区间(0,+∞)内单调递增”的( )(A)充分不必要条件(B)必要不充分条件(C)充分必要条件(D)既不充分也不必要条件5.某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86、94、88、92、90,五名女生的成绩分别为88、93、93、88、93.下列说法一定正确的是( )(A)这种抽样方法是一种分层抽样(B)这种抽样方法是一种系统抽样(C)这五名男生成绩的方差大于这五名女生成绩的方差(D)该班男生成绩的平均数小于该班女生成绩的平均数6.已知一元二次不等式f (x )<0的解集为{x |x <−1或x >12},则f (10x )>0的解集为( )(A){x |x <−1或x >−lg 2}(B){x |−1<x <−lg 2}(C){x |x >−lg 2}(D){x |x <−lg 2}7.在极坐标系中,圆ρ=2cos θ的垂直于极轴的两条切线方程分别为( )(A)θ=0(ρ∈R )和ρcos θ=2(B)θ=π2(ρ∈R )和ρcos θ=2(C)θ=π2(ρ∈R )和ρcos θ=1(D)θ=0(ρ∈R )和ρcos θ=18.函数y =f (x )的图象如图所示,在区间[a,b ]上可找到n (n ⩾2)个不同的数x 1,x 2,···,x n ,使得f (x 1)x 1=f (x 2)x 2=···=f (x n )x n,则n 的取值范围为( )(A){2,3}(B){2,3,4}(C){3,4}(D){3,4,5}9.在平面直角坐标系中,O 是坐标原点,两定点A ,B 满足# »OA = # »OB=# »OA ·# »OB =2,则点集{P |# »OP =λ# »OA +µ# »OB,|λ|+|µ|⩽1,λ,µ∈R }所表示的区域的面积是( )(A)2√2(B)2√3(C)4√2(D)4√310.若函数f (x )=x 3+ax 2+bx +c 有极值点x 1,x 2,且f (x 1)=x 1,则关于x 的方程3(f (x ))2+2af (x )+b =0的不同实根个数是( )(A)3(B)4(C)5(D)6二、填空题11.若(x +a3√x )8的展开式中x 4的系数为7,则实数a =.12.设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c .若b +c =2a ,3sin A =5sin B ,则角C =.13.已知直线y =a 交抛物线y =x 2于A ,B 两点.若该抛物线上存在点C ,使得∠ACB 为直角,则a 的取值范围为.14.如图,互不相同的点A 1,A 2,···,A n ,···和B 1,B 2,···,B n ,···分别在角O 的两条边上,所有A n B n 相互平行,且所有梯形A n B n B n +1A n +1的面积均相等.设OA n =a n .若a 1=1,a 2=2,则数列{a n }的通项公式是.O A 1A 2A 3B 1B 2B 315.如图,正方体ABCD −A 1B 1C 1D 1的棱长为1,P 为BC 中点,Q 为线段CC 1上的动点,过A 、P 、Q 的平面截该正方体所得的截面记为S ,则下列命题正确的是.(写出所有正确命题的编号)A BPQ CDA 1B 1C 1D 1••①当0<CQ <12时,S 为四边形;②当CQ =12时,S 为等腰梯形;③当CQ =34时,S 与C 1D 1交点R 满足C 1R 1=13;④当34<CQ <1时,S 为六边形;⑤当CQ =1时,S 的面积为√62.三、解答题16.已知函数f (x )=4cos ωx ·sin (ωx +π4)(ω>0)的最小正周期为π.(1)求ω的值;(2)讨论f (x )在区间[0,π2]上的单调性.17.设函数f (x )=ax −(1+a 2)x 2,其中a >0,区间I ={x |f (x)>0},(1)求I 的长度(注:区间(α,β)的长度定义为β−α);(2)给定常数k ∈(0,1),当1−k ⩽a ⩽1+k 时,求I 长度的最小值.18.设椭圆E :x 2a 2+y 21−a 2=1的焦点在x 轴上.(1)若椭圆E 的焦距为1,求椭圆E 的方程;(2)设F 1,F 2分别是椭圆E 的左、右焦点,P 为椭圆E 上第一象限内的点,直线F 2P 交y 轴于点Q ,并且F 1P ⊥F 1Q ,证明:当a 变化时,点P 在某定直线上.19.如图,圆锥顶点为P .底面圆心为O ,其母线与底面所成的角为22.5◦.AB和CD 是底面圆O 上的两条平行的弦,轴OP 与平面P CD 所成的角为60◦.(1)证明:平面P AB 与平面P CD 的交线平行于底面;(2)求cos ∠COD .O CD PB A•20.设函数f n (x )=−1+x +x 222+x 332+···+x nn2(x ∈R ,n ∈N ∗).证明:(1)对每个n ∈N ∗,存在唯一的x n ∈[23,1],满足f n (x n )=0;(2)对任意p ∈N ∗,由(1)中x n 构成的数列{x n }满足0<x n −x n +p <1n.21.某高校数学系计划在周六和周日各举行一次主题不同的心理测试活动,分别由李老师和张老师负责,已知该系共有n 位学生,每次活动均需该系k 位学生参加(n 和k 都是固定的正整数).假设李老师和张老师分别将各自活动通知的信息独立、随机地发给该系k 位学生,且所发信息都能收到.记该系收到李老师或张老师所发活动通知信息的学生人数为X .(1)求该系学生甲收到李老师或张老师所发活动通知信息的概率;(2)求使P (X =m )取得最大值的整数m .2013年普通高等学校招生考试(安徽卷)文科数学一、选择题1.设i是虚数单位,若复数a−103−i(a∈R)是纯虚数,则a的值为( )(A)−3(B)−1(C)1(D)32.已知A={x|x+1>0},B={−2,−1,0,1},则(∁R A)∩B=( )(A){−2,−1}(B){−2}(C){−1,0,1}(D){0,1}3.如图所示,程序框图(算法流程图)的输出结果是( )(A)34(B)16(C)1112(D)25244.“(2x−1)x=0”是“x=0”的( )(A)充分不必要条件(B)必要不充分条件(C)充分必要条件(D)既不充分也不必要条件5.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( )(A)23(B)25(C)35(D)9106.直线x+2y−5+√5=0被圆x2+y2−2x−4y=0截得的弦长为( )(A)1(B)2(C)4(D)4√67.设S n为等差数列{a n}的前n项和,S8=4a3,a7=−2,则a9=( )(A)−6(B)−4(C)−2(D)28.函数y=f(x)的图象如图所示,在区间[a,b]上可找到n(n⩾2)个不同的数x1,x2,···,x n,使得f(x1)x1=f(x2)x2=···=f(x n)x n,则n的取值范围为( )(A){2,3}(B){2,3,4}(C){3,4}(D){3,4,5}9.设△ABC的内角A,B,C所对边的长分别为a,b,c,若b+c=2a,3sin A=5sin B,则角C=( )(A)π3(B)2π3(C)3π4(D)5π610.已知函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,若f(x1)=x1<x2,则关于x的方程3(f(x))2+2af(x)+b=0的不同实根个数为( )(A)3(B)4(C)5(D)6二、填空题11.函数y=ln(1+1x)+√1−x2的定义域为.12.若非负变量x,y满足约束条件x−y⩾−1x+2y⩽4,则x+y的最大值为.13.若非零向量a,b满足|a|=3|b|=|a+2b|,则a与b夹角的余弦值为.14.定义在R上的函数f(x)满足f(x+1)=2f(x).若当0⩽x⩽1时,f(x)=x(1−x),则当−1⩽x⩽0时,f(x)=.15.如图,正方体ABCD−A1B1C1D1的棱长为1,P为BC中点,Q为线段CC1上的动点,过A、P、Q的平面截该正方体所得的截面记为S,则下列命题正确的是.(写出所有正确命题的编号)A BPQCDA1B1C1D1••①当0<CQ<12时,S为四边形;②当CQ=12时,S为等腰梯形;③当CQ=34时,S与C1D1交点R满足C1R1=13;④当34<CQ<1时,S为六边形;⑤当CQ=1时,S的面积为√62.三、解答题16.设函数f(x)=sin x+sin(x+π3).(1)求f(x)的最小值,并求使f(x)取得最小值的x的集合;(2)不画图,说明函数y=f(x)的图象可由y=sin x的图象经过怎样的变化得到.17.为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如图:甲乙745533253385543331006000112233586622110070022233669754428115582090(1)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);(2)设甲、乙两校高三年级学生这次联考数学平均成绩分别为¯x1,¯x2,估计¯x1−¯x2的值.18.如图,四棱锥P −ABCD 的底面ABCD 是边长为2的菱形,∠BAD =60◦.已知P B =P D =2,P A =√6.(1)证明:P C ⊥BD ;(2)若E 为P A 的中点,求三棱锥P −BCE 的体积.APEBCD19.设数列{a n }满足a 1=2,a 2+a 4=8,且对任意n ∈N ∗,函数f (x )=(a n −a n +1+a n +2)x +a n +1cos x −a n +2sin x 满足f ′(π2)=0.(1)求数列{a n }的通项公式;(2)若b n =2(a n +12a n ),求数列{b n }的前n 项和S n .20.设函数f (x )=ax −(1+a 2)x 2,其中a >0,区间I ={x |f (x )>0}.(1)求I 的长度(注:区间(α,β)的长度定义为β−α);(2)给定常数k ∈(0,1),当1−k ⩽a ⩽1+k 时,求I 长度的最小值.21.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的焦距为4,且过点P (√2,√3).(1)求椭圆C 的方程;(2)设Q (x 0,y 0)(x 0y 0=0)为椭圆C 上一点,过点Q 作x 轴的垂线,垂足为E .取点A (0,2√2),连接AE .过点A 作AE 的垂线交x 轴于点D .点G 是点D 关于y 轴的对称点,作直线QG ,问这样作出的直线QG 是否与椭圆C 一定有唯一的公共点?并说明理由.。
2013年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本大题共12小题.每小题5分,在每个小题给出的四个选项中,只有一项是符合要求的.1.(5分)(2013•新课标Ⅱ)已知集合M={x|﹣3<x<1,x∈R},N={﹣3,﹣2,﹣1,0,1},则M∩N=()A.{﹣2,﹣1,0,1}B.{﹣3,﹣2,﹣1,0}C.{﹣2,﹣1,0}D.{﹣3,﹣2,﹣1}2.(5分)(2013•新课标Ⅱ)=()A.2B.2C.D.13.(5分)(2013•新课标Ⅱ)设x,y满足约束条件,则z=2x﹣3y的最小值是()A.﹣7B.﹣6C.﹣5D.﹣34.(5分)(2013•新课标Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c,已知b=2,B =,C=,则△ABC的面积为()A.2+2B.C.2﹣2D.﹣15.(5分)(2013•新课标Ⅱ)设椭圆C:=1(a>b>0)的左、右焦点分别为F1、F2,P是C上的点PF2⊥F1F2,∠PF1F2=30°,则C的离心率为()A.B.C.D.6.(5分)(2013•新课标Ⅱ)已知sin2α=,则cos2(α+)=()A.B.C.D.7.(5分)(2013•新课标Ⅱ)执行如图的程序框图,如果输入的N=4,那么输出的S=()A.1+++B.1+++C.1++++D.1++++8.(5分)(2013•新课标Ⅱ)设a=log32,b=log52,c=log23,则()A.a>c>b B.b>c>a C.c>a>b D.c>b>a 9.(5分)(2013•新课标Ⅱ)一个四面体的顶点在空间直角坐标系O﹣xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为()A.B.C.D.10.(5分)(2013•新课标Ⅱ)设抛物线C:y2=4x的焦点为F,直线l过F且与C交于A,B两点.若|AF|=3|BF|,则l的方程为()A.y=x﹣1或y=﹣x+1B.y=(x﹣1)或y=﹣(x﹣1)C.y=(x﹣1)或y=﹣(x﹣1)D.y=(x﹣1)或y=﹣(x﹣1)11.(5分)(2013•新课标Ⅱ)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是()A.∃x0∈R,f(x0)=0B.函数y=f(x)的图象是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(﹣∞,x0)上单调递减D.若x0是f(x)的极值点,则f′(x0)=012.(5分)(2013•新课标Ⅱ)若存在正数x使2x(x﹣a)<1成立,则a的取值范围是()A.(﹣∞,+∞)B.(﹣2,+∞)C.(0,+∞)D.(﹣1,+∞)二、填空题:本大题共4小题,每小题4分.13.(4分)(2013•新课标Ⅱ)从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是.14.(4分)(2013•新课标Ⅱ)已知正方形ABCD的边长为2,E为CD的中点,则•=.15.(4分)(2013•新课标Ⅱ)已知正四棱锥O﹣ABCD的体积为,底面边长为,则以O为球心,OA为半径的球的表面积为.16.(4分)(2013•新课标Ⅱ)函数y=cos(2x+φ)(﹣π≤φ<π)的图象向右平移个单位后,与函数y=sin(2x+)的图象重合,则φ=.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)(2013•新课标Ⅱ)已知等差数列{a n}的公差不为零,a1=25,且a1,a11,a13成等比数列.(Ⅰ)求{a n}的通项公式;(Ⅱ)求a1+a4+a7+…+a3n﹣2.18.(12分)(2013•新课标Ⅱ)如图,直三棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点(Ⅰ)证明:BC1∥平面A1CD;(Ⅱ)AA1=AC=CB=2,AB=,求三棱锥C﹣A1DE的体积.19.(12分)(2013•新课标Ⅱ)经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(Ⅰ)将T表示为X的函数;(Ⅱ)根据直方图估计利润T不少于57000元的概率.20.(12分)(2013•新课标Ⅱ)在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为2,在y轴上截得线段长为2.(Ⅰ)求圆心P的轨迹方程;(Ⅱ)若P点到直线y=x的距离为,求圆P的方程.21.(12分)(2013•新课标Ⅱ)已知函数f(x)=x2e﹣x(Ⅰ)求f(x)的极小值和极大值;(Ⅱ)当曲线y=f(x)的切线l的斜率为负数时,求l在x轴上截距的取值范围.选做题.请考生在第22、23、24题中任选择一题作答,如果多做,则按所做的第一部分,作答时请写清题号.22.(2013•新课标Ⅱ)【选修4﹣1几何证明选讲】如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E、F分别为弦AB 与弦AC上的点,且BC•AE=DC•AF,B、E、F、C四点共圆.(1)证明:CA是△ABC外接圆的直径;(2)若DB=BE=EA,求过B、E、F、C四点的圆的面积与△ABC外接圆面积的比值.23.(2013•新课标Ⅱ)已知动点P、Q都在曲线(β为参数)上,对应参数分别为β=α与β=2α(0<α<2π),M为PQ的中点.(1)求M的轨迹的参数方程;(2)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.24.(14分)(2013•新课标Ⅱ)【选修4﹣﹣5;不等式选讲】设a,b,c均为正数,且a+b+c=1,证明:(Ⅰ)(Ⅱ).2013年全国统一高考数学试卷(文科)(新课标Ⅱ)参考答案与试题解析一、选择题:本大题共12小题.每小题5分,在每个小题给出的四个选项中,只有一项是符合要求的.1.(5分)(2013•新课标Ⅱ)已知集合M={x|﹣3<x<1,x∈R},N={﹣3,﹣2,﹣1,0,1},则M∩N=()A.{﹣2,﹣1,0,1}B.{﹣3,﹣2,﹣1,0}C.{﹣2,﹣1,0}D.{﹣3,﹣2,﹣1}【分析】找出集合M与N的公共元素,即可求出两集合的交集.【解答】解:∵集合M={x|﹣3<x<1,x∈R},N={﹣3,﹣2,﹣1,0,1},∴M∩N={﹣2,﹣1,0}.故选:C.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)(2013•新课标Ⅱ)=()A.2B.2C.D.1【分析】通过复数的分子与分母同时求模即可得到结果.【解答】解:===.故选:C.【点评】本题考查复数的模的求法,考查计算能力.3.(5分)(2013•新课标Ⅱ)设x,y满足约束条件,则z=2x﹣3y的最小值是()A.﹣7B.﹣6C.﹣5D.﹣3【分析】先画出满足约束条件:,的平面区域,求出平面区域的各角点,然后将角点坐标代入目标函数,比较后,即可得到目标函数z=2x﹣3y的最小值.【解答】解:根据题意,画出可行域与目标函数线如下图所示,由得,由图可知目标函数在点A(3,4)取最小值z=2×3﹣3×4=﹣6.故选:B.【点评】用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.4.(5分)(2013•新课标Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c,已知b=2,B =,C=,则△ABC的面积为()A.2+2B.C.2﹣2D.﹣1【分析】由sin B,sin C及b的值,利用正弦定理求出c的值,再求出A的度数,由b,c 及sin A的值,利用三角形的面积公式即可求出三角形ABC的面积.【解答】解:∵b=2,B=,C=,∴由正弦定理=得:c===2,A=,∴sin A=sin(+)=cos=,=bc sin A=×2×2×=+1.则S△ABC故选:B.【点评】此题考查了正弦定理,三角形的面积公式,以及两角和与差的余弦函数公式,熟练掌握正弦定理是解本题的关键.5.(5分)(2013•新课标Ⅱ)设椭圆C:=1(a>b>0)的左、右焦点分别为F1、F2,P是C上的点PF2⊥F1F2,∠PF1F2=30°,则C的离心率为()A.B.C.D.【分析】设|PF2|=x,在直角三角形PF1F2中,依题意可求得|PF1|与|F1F2|,利用椭圆离心率的性质即可求得答案.【解答】解:|PF2|=x,∵PF2⊥F1F2,∠PF1F2=30°,∴|PF1|=2x,|F1F2|=x,又|PF1|+|PF2|=2a,|F1F2|=2c∴2a=3x,2c=x,∴C的离心率为:e==.故选:D.【点评】本题考查椭圆的简单性质,求得|PF1|与|PF2|及|F1F2|是关键,考查理解与应用能力,属于中档题.6.(5分)(2013•新课标Ⅱ)已知sin2α=,则cos2(α+)=()A.B.C.D.【分析】所求式子利用二倍角的余弦函数公式化简,再利用诱导公式变形,将已知等式代入计算即可求出值.【解答】解:∵sin2α=,∴cos2(α+)=[1+cos(2α+)]=(1﹣sin2α)=×(1﹣)=.故选:A.【点评】此题考查了二倍角的余弦函数公式,以及诱导公式的作用,熟练掌握公式是解本题的关键.7.(5分)(2013•新课标Ⅱ)执行如图的程序框图,如果输入的N=4,那么输出的S=()A.1+++B.1+++C.1++++D.1++++【分析】由程序中的变量、各语句的作用,结合流程图所给的顺序可知当条件满足时,用S+的值代替S得到新的S,并用k+1代替k,直到条件不能满足时输出最后算出的S 值,由此即可得到本题答案.【解答】解:根据题意,可知该按以下步骤运行第一次:S=1,第二次:S=1+,第三次:S=1++,第四次:S=1+++.此时k=5时,符合k>N=4,输出S的值.∴S=1+++故选:B.【点评】本题主要考查了直到型循环结构,循环结构有两种形式:当型循环结构和直到型循环结构,以及表格法的运用,属于基础题.8.(5分)(2013•新课标Ⅱ)设a=log32,b=log52,c=log23,则()A.a>c>b B.b>c>a C.c>a>b D.c>b>a【分析】判断对数值的范围,然后利用换底公式比较对数式的大小即可.【解答】解:由题意可知:a=log32∈(0,1),b=log52∈(0,1),c=log23>1,所以a=log32,b=log52=,所以c>a>b,故选:C.【点评】本题考查对数值的大小比较,换底公式的应用,基本知识的考查.9.(5分)(2013•新课标Ⅱ)一个四面体的顶点在空间直角坐标系O﹣xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为()A.B.C.D.【分析】由题意画出几何体的直观图,然后判断以zOx平面为投影面,则得到正视图即可.【解答】解:因为一个四面体的顶点在空间直角坐标系O﹣xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),几何体的直观图如图,是正方体的顶点为顶点的一个正四面体,所以以zOx平面为投影面,则得到正视图为:故选:A.【点评】本题考查几何体的三视图的判断,根据题意画出几何体的直观图是解题的关键,考查空间想象能力.10.(5分)(2013•新课标Ⅱ)设抛物线C:y2=4x的焦点为F,直线l过F且与C交于A,B两点.若|AF|=3|BF|,则l的方程为()A.y=x﹣1或y=﹣x+1B.y=(x﹣1)或y=﹣(x﹣1)C.y=(x﹣1)或y=﹣(x﹣1)D.y=(x﹣1)或y=﹣(x﹣1)【分析】根据题意,可得抛物线焦点为F(1,0),由此设直线l方程为y=k(x﹣1),与抛物线方程联解消去x,得﹣y﹣k=0.再设A(x1,y1),B(x2,y2),由根与系数的关系和|AF|=3|BF|,建立关于y1、y2和k的方程组,解之可得k值,从而得到直线l的方程.【解答】解:法一:∵抛物线C方程为y2=4x,可得它的焦点为F(1,0),∴设直线l方程为y=k(x﹣1)由消去x,得﹣y﹣k=0设A(x1,y1),B(x2,y2),可得y1+y2=,y1y2=﹣4…(*)∵|AF|=3|BF|,∴y1+3y2=0,可得y1=﹣3y2,代入(*)得﹣2y2=且﹣3y22=﹣4,消去y2得k2=3,解之得k=∴直线l方程为y=(x﹣1)或y=﹣(x﹣1)法二:做出抛物线的准线,以及A、B到准线的垂线段AA'、BB',并设直线l交准线与M,设|BF|=m,由抛物线的定义可知|BB'|=m,|AA'|=|AF|=3m,由BB'∥AA'可知,,即,所以|MB|=2m,则|MA|=6m,故∠AMA'=30°,根据斜率与角度的关系可得选C选项.故选:C.【点评】本题给出抛物线的焦点弦AB被焦点F分成1:3的两部分,求直线AB的方程,着重考查了抛物线的标准方程、简单几何性质和直线与圆锥曲线的位置关系等知识,属于中档题.11.(5分)(2013•新课标Ⅱ)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是()A.∃x0∈R,f(x0)=0B.函数y=f(x)的图象是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(﹣∞,x0)上单调递减D.若x0是f(x)的极值点,则f′(x0)=0【分析】对于A,对于三次函数f(x)=x3+ax2+bx+c,由于当x→﹣∞时,y→﹣∞,当x→+∞时,y→+∞,故在区间(﹣∞,+∞)肯定存在零点;对于B,根据对称变换法则,求出对应中心坐标,可以判断;对于C:采用取特殊函数的方法,若取a=﹣1,b=﹣1,c=0,则f(x)=x3﹣x2﹣x,利用导数研究其极值和单调性进行判断;D:若x0是f(x)的极值点,根据导数的意义,则f′(x0)=0,正确.【解答】解:A、对于三次函数f(x)=x3+ax2+bx+c,A:由于当x→﹣∞时,y→﹣∞,当x→+∞时,y→+∞,故∃x0∈R,f(x0)=0,故A正确;B、∵f(﹣﹣x)+f(x)=(﹣﹣x)3+a(﹣﹣x)2+b(﹣﹣x)+c+x3+ax2+bx+c=﹣+2c,f (﹣)=(﹣)3+a (﹣)2+b (﹣)+c =﹣+c ,∵f (﹣﹣x )+f (x )=2f (﹣),∴点P (﹣,f (﹣))为对称中心,故B 正确.C 、若取a =﹣1,b =﹣1,c =0,则f (x )=x 3﹣x 2﹣x ,对于f (x )=x 3﹣x 2﹣x ,∵f ′(x )=3x 2﹣2x ﹣1∴由f ′(x )=3x 2﹣2x ﹣1>0得x ∈(﹣∞,﹣)∪(1,+∞)由f ′(x )=3x 2﹣2x ﹣1<0得x ∈(﹣,1)∴函数f (x )的单调增区间为:(﹣∞,﹣),(1,+∞),减区间为:(﹣,1),故1是f (x )的极小值点,但f (x )在区间(﹣∞,1)不是单调递减,故C 错误;D :若x 0是f (x )的极值点,根据导数的意义,则f ′(x 0)=0,故D 正确.由于该题选择错误的,故选:C .【点评】本题考查了导数在求函数极值中的应用,利用导数求函数的单调区间,及导数的运算.12.(5分)(2013•新课标Ⅱ)若存在正数x 使2x (x ﹣a )<1成立,则a 的取值范围是()A .(﹣∞,+∞)B .(﹣2,+∞)C .(0,+∞)D .(﹣1,+∞)【分析】转化不等式为,利用x 是正数,通过函数的单调性,求出a 的范围即可.【解答】解:因为2x (x ﹣a )<1,所以,函数y=是增函数,x>0,所以y>﹣1,即a>﹣1,所以a的取值范围是(﹣1,+∞).故选:D.【点评】本题考查不等式的解法,函数单调性的应用,考查分析问题解决问题的能力.二、填空题:本大题共4小题,每小题4分.13.(4分)(2013•新课标Ⅱ)从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是0.2.【分析】由题意结合组合数公式可得总的基本事件数,再找出和为5的情形,由古典概型的概率公式可得答案.【解答】解:从1,2,3,4,5中任意取出两个不同的数共有=10种情况,和为5的有(1,4)(2,3)两种情况,故所求的概率为:=0.2故答案为:0.2【点评】本题考查古典概型及其概率公式,属基础题.14.(4分)(2013•新课标Ⅱ)已知正方形ABCD的边长为2,E为CD的中点,则•=2.【分析】根据两个向量的加减法的法则,以及其几何意义,可得要求的式子为()•(),再根据两个向量垂直的性质,运算求得结果.【解答】解:∵已知正方形ABCD的边长为2,E为CD的中点,则=0,故=()•()=()•()=﹣+﹣=4+0﹣0﹣=2,故答案为2.【点评】本题主要考查两个向量的加减法的法则,以及其几何意义,两个向量垂直的性质,属于中档题.15.(4分)(2013•新课标Ⅱ)已知正四棱锥O﹣ABCD的体积为,底面边长为,则以O为球心,OA为半径的球的表面积为24π.【分析】先直接利用锥体的体积公式即可求得正四棱锥O﹣ABCD的高,再利用直角三角形求出正四棱锥O﹣ABCD的侧棱长OA,最后根据球的表面积公式计算即得.【解答】解:如图,正四棱锥O﹣ABCD的体积V=sh=(×)×OH=,∴OH=,在直角三角形OAH中,OA===所以表面积为4πr2=24π;故答案为:24π.【点评】本题考查锥体的体积、球的表面积计算,考查学生的运算能力,属基础题.16.(4分)(2013•新课标Ⅱ)函数y=cos(2x+φ)(﹣π≤φ<π)的图象向右平移个单位后,与函数y=sin(2x+)的图象重合,则φ=.【分析】根据函数图象平移的公式,可得平移后的图象为y=cos[2(x﹣)+φ]的图象,即y=cos(2x+φ﹣π)的图象.结合题意得函数y=sin(2x+)=的图象与y=cos(2x+φ﹣π)图象重合,由此结合三角函数的诱导公式即可算出φ的值.【解答】解:函数y=cos(2x+φ)(﹣π≤φ<π)的图象向右平移个单位后,得平移后的图象的函数解析式为y=cos[2(x﹣)+φ]=cos(2x+φ﹣π),而函数y=sin(2x+)=,由函数y=cos(2x+φ)(﹣π≤φ<π)的图象向右平移个单位后,与函数y=sin (2x+)的图象重合,得2x+φ﹣π=,解得:φ=.符合﹣π≤φ<π.故答案为.【点评】本题给出函数y=cos(2x+φ)的图象平移,求参数φ的值.着重考查了函数图象平移的公式、三角函数的诱导公式和函数y=A sin(ωx+φ)的图象变换等知识,属于基础题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)(2013•新课标Ⅱ)已知等差数列{a n}的公差不为零,a1=25,且a1,a11,a13成等比数列.(Ⅰ)求{a n}的通项公式;(Ⅱ)求a1+a4+a7+…+a3n﹣2.【分析】(I)设等差数列{a n}的公差为d≠0,利用成等比数列的定义可得,,再利用等差数列的通项公式可得,化为d(2a1+25d)=0,解出d即可得到通项公式a n;=﹣2(3n﹣2)+27=﹣6n+31,可知此数列是以25为首项,﹣6(II)由(I)可得a3n﹣2为公差的等差数列.利用等差数列的前n项和公式即可得出a1+a4+a7+…+a3n﹣2.【解答】解:(I)设等差数列{a n}的公差为d≠0,由题意a1,a11,a13成等比数列,∴,∴,化为d(2a1+25d)=0,∵d≠0,∴2×25+25d=0,解得d=﹣2.∴a n=25+(n﹣1)×(﹣2)=﹣2n+27.=﹣2(3n﹣2)+27=﹣6n+31,可知此数列是以25为首项,﹣6(II)由(I)可得a3n﹣2为公差的等差数列.∴S n=a1+a4+a7+…+a3n﹣2===﹣3n2+28n.【点评】熟练掌握等差数列与等比数列的通项公式及其前n项和公式是解题的关键.18.(12分)(2013•新课标Ⅱ)如图,直三棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点(Ⅰ)证明:BC1∥平面A1CD;(Ⅱ)AA1=AC=CB=2,AB=,求三棱锥C﹣A1DE的体积.【分析】(Ⅰ)连接AC1交A1C于点F,则DF为三角形ABC1的中位线,故DF∥BC1.再根据直线和平面平行的判定定理证得BC1∥平面A1CD.(Ⅱ)由题意可得此直三棱柱的底面ABC为等腰直角三角形,由D为AB的中点可得CD ⊥平面ABB1A1.求得CD的值,利用勾股定理求得A 1D、DE和A1E的值,可得A1D⊥DE.进而求得的值,再根据三棱锥C﹣A1DE的体积为••CD,运算求得结果.【解答】解:(Ⅰ)证明:连接AC1交A1C于点F,则F为AC1的中点.∵直棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点,故DF为三角形ABC1的中位线,故DF∥BC1.由于DF⊂平面A1CD,而BC1不在平面A1CD中,故有BC1∥平面A1CD.(Ⅱ)∵AA1=AC=CB=2,AB=2,故此直三棱柱的底面ABC为等腰直角三角形.由D为AB的中点可得CD⊥平面ABB1A1,∴CD==.∵A1D==,同理,利用勾股定理求得DE=,A1E=3.再由勾股定理可得+DE2=,∴A1D⊥DE.∴==,∴=••CD=1.【点评】本题主要考查直线和平面平行的判定定理的应用,求三棱锥的体积,体现了数形结合的数学思想,属于中档题.19.(12分)(2013•新课标Ⅱ)经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(Ⅰ)将T表示为X的函数;(Ⅱ)根据直方图估计利润T不少于57000元的概率.【分析】(I)由题意先分段写出,当X∈[100,130)时,当X∈[130,150)时,和利润值,最后利用分段函数的形式进行综合即可.(II)由(I)知,利润T不少于57000元,当且仅当120≤X≤150.再由直方图知需求量X∈[120,150]的频率为0.7,利用样本估计总体的方法得出下一个销售季度的利润T 不少于57000元的概率的估计值.【解答】解:(I)由题意得,当X∈[100,130)时,T=500X﹣300(130﹣X)=800X﹣39000,当X∈[130,150]时,T=500×130=65000,∴T=.(II)由(I)知,利润T不少于57000元,当且仅当120≤X≤150.由直方图知需求量X∈[120,150]的频率为0.7,所以下一个销售季度的利润T不少于57000元的概率的估计值为0.7.【点评】本题考查用样本的频率分布估计总体分布及识图的能力,求解的重点是对题设条件及直方图的理解,了解直方图中每个小矩形的面积的意义.20.(12分)(2013•新课标Ⅱ)在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为2,在y轴上截得线段长为2.(Ⅰ)求圆心P的轨迹方程;(Ⅱ)若P点到直线y=x的距离为,求圆P的方程.【分析】(Ⅰ)由题意,可直接在弦心距、弦的一半及半径三者组成的直角三角形中利用勾股定理建立关于点P的横纵坐标的方程,整理即可得到所求的轨迹方程;(Ⅱ)由题,可先由点到直线的距离公式建立关于点P的横纵坐标的方程,将此方程与(I)所求的轨迹方程联立,解出点P的坐标,进而解出圆的半径即可写出圆P的方程.【解答】解:(Ⅰ)设圆心P(x,y),由题意得圆心到x轴的距离与半径之间的关系为2=﹣y2+r2,同理圆心到y轴的距离与半径之间的关系为3=﹣x2+r2,由两式整理得x2+3=y2+2,整理得y2﹣x2=1即为圆心P的轨迹方程,此轨迹是等轴双曲线(Ⅱ)由P点到直线y=x的距离为得,=,即|x﹣y|=1,即x=y+1或y =x+1,分别代入y2﹣x2=1解得P(0,﹣1)或P(0,1)若P(0,﹣1),此时点P在y轴上,故半径为,所以圆P的方程为(y+1)2+x2=3;若P(0,1),此时点P在y轴上,故半径为,所以圆P的方程为(y﹣1)2+x2=3;综上,圆P的方程为(y+1)2+x2=3或(y﹣1)2+x2=3【点评】本题考查求轨迹方程的方法解析法及点的直线的距离公式、圆的标准方程与圆的性质,解题的关键是理解圆的几何特征,将几何特征转化为方程21.(12分)(2013•新课标Ⅱ)已知函数f(x)=x2e﹣x(Ⅰ)求f(x)的极小值和极大值;(Ⅱ)当曲线y=f(x)的切线l的斜率为负数时,求l在x轴上截距的取值范围.【分析】(Ⅰ)利用导数的运算法则即可得出f′(x),利用导数与函数单调性的关系及函数的极值点的定义,即可求出函数的极值;(Ⅱ)利用导数的几何意义即可得到切线的斜率,得出切线的方程,利用方程求出与x 轴交点的横坐标,再利用导数研究函数的单调性、极值、最值即可.【解答】解:(Ⅰ)∵f(x)=x2e﹣x,∴f′(x)=2xe﹣x﹣x2e﹣x=e﹣x(2x﹣x2),令f′(x)=0,解得x=0或x=2,令f′(x)>0,可解得0<x<2;令f′(x)<0,可解得x<0或x>2,故函数在区间(﹣∞,0)与(2,+∞)上是减函数,在区间(0,2)上是增函数.∴x=0是极小值点,x=2极大值点,又f(0)=0,f(2)=.故f(x)的极小值和极大值分别为0,.(Ⅱ)设切点为(),则切线方程为y﹣=(x﹣x0),令y=0,解得x==,∵曲线y=f(x)的切线l的斜率为负数,∴(<0,∴x0<0或x0>2,令,则=.①当x0<0时,0,即f′(x0)>0,∴f(x0)在(﹣∞,0)上单调递增,∴f(x0)<f(0)=0;②当x 0>2时,令f′(x0)=0,解得.当时,f′(x0)>0,函数f(x0)单调递增;当时,f′(x0)<0,函数f(x0)单调递减.故当时,函数f(x 0)取得极小值,也即最小值,且=.综上可知:切线l在x轴上截距的取值范围是(﹣∞,0)∪.【点评】本题考查利用导数求函数的极值与利用导数研究函数的单调性、切线、函数的值域,综合性强,考查了推理能力和计算能力.选做题.请考生在第22、23、24题中任选择一题作答,如果多做,则按所做的第一部分,作答时请写清题号.22.(2013•新课标Ⅱ)【选修4﹣1几何证明选讲】如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E、F分别为弦AB 与弦AC上的点,且BC•AE=DC•AF,B、E、F、C四点共圆.(1)证明:CA是△ABC外接圆的直径;(2)若DB=BE=EA,求过B、E、F、C四点的圆的面积与△ABC外接圆面积的比值.【分析】(1)已知CD为△ABC外接圆的切线,利用弦切角定理可得∠DCB=∠A,及BC•AE=DC•AF,可知△CDB∽△AEF,于是∠CBD=∠AFE.利用B、E、F、C四点共圆,可得∠CFE=∠DBC,进而得到∠CFE=∠AFE=90°即可证明CA是△ABC外接圆的直径;(2)要求过B、E、F、C四点的圆的面积与△ABC外接圆面积的比值.只需求出其外接圆的直径的平方之比即可.由过B、E、F、C四点的圆的直径为CE,及DB=BE,可得CE=DC,利用切割线定理可得DC2=DB•DA,CA2=CB2+BA2,都用DB表示即可.【解答】(1)证明:∵CD为△ABC外接圆的切线,∴∠DCB=∠A,∵BC•AE=DC•AF,∴.∴△CDB∽△AEF,∴∠CBD=∠AFE.∵B、E、F、C四点共圆,∴∠CFE=∠DBC,∴∠CFE=∠AFE=90°.∴∠CBA=90°,∴CA是△ABC外接圆的直径;(2)连接CE,∵∠CBE=90°,∴过B、E、F、C四点的圆的直径为CE,由DB=BE,得CE=DC,又BC2=DB•BA=2DB2,∴CA2=4DB2+BC2=6DB2.而DC2=DB•DA=3DB2,故过B、E、F、C四点的圆的面积与△ABC面积的外接圆的面积比值==.【点评】熟练掌握弦切角定理、相似三角形的判定与性质、四点共圆的性质、直径的判定、切割线定理、勾股定理等腰三角形的性质是解题的关键.23.(2013•新课标Ⅱ)已知动点P、Q都在曲线(β为参数)上,对应参数分别为β=α与β=2α(0<α<2π),M为PQ的中点.(1)求M的轨迹的参数方程;(2)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.【分析】(1)利用参数方程与中点坐标公式即可得出;(2)利用两点之间的距离公式、三角函数的单调性即可得出.【解答】解:(1)依题意有P(2cosα,2sinα),Q(2cos2α,2sin2α),因此M(cosα+cos2α,sinα+sin2α).M的轨迹的参数方程为为参数,0<α<2π).(2)M点到坐标原点的距离d=(0<α<2π).当α=π时,d=0,故M的轨迹过坐标原点.【点评】本题考查了参数方程与中点坐标公式、两点之间的距离公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.24.(14分)(2013•新课标Ⅱ)【选修4﹣﹣5;不等式选讲】设a,b,c均为正数,且a+b+c=1,证明:(Ⅰ)(Ⅱ).【分析】(Ⅰ)依题意,由a+b+c=1⇒(a+b+c)2=1⇒a2+b2+c2+2ab+2bc+2ca=1,利用基本不等式可得3(ab+bc+ca)≤1,从而得证;(Ⅱ)利用基本不等式可证得:+b ≥2a ,+c ≥2b ,+a ≥2c ,三式累加即可证得结论.【解答】证明:(Ⅰ)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca 得:a 2+b 2+c 2≥ab +bc +ca ,由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1,所以3(ab +bc +ca )≤1,即ab +bc +ca ≤.(Ⅱ)因为+b ≥2a ,+c ≥2b ,+a ≥2c ,故+++(a +b +c )≥2(a +b +c ),即++≥a +b +c .所以++≥1.【点评】本题考查不等式的证明,突出考查基本不等式与综合法的应用,考查推理论证能力,属于中档题.2013年全国统一高考数学试卷(文科)(大纲版)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•大纲版)设集合U={1,2,3,4,5},集合A={1,2},则∁U A=()A.{1,2}B.{3,4,5}C.{1,2,3,4,5}D.∅2.(5分)(2013•大纲版)若α为第二象限角,sinα=,则cosα=()A.B.C.D.3.(5分)(2013•大纲版)已知向量=(λ+1,1),=(λ+2,2),若(+)⊥(﹣),则λ=()A.﹣4B.﹣3C.﹣2D.﹣14.(5分)(2013•大纲版)不等式|x2﹣2|<2的解集是()A.(﹣1,1)B.(﹣2,2)C.(﹣1,0)∪(0,1)D.(﹣2,0)∪(0,2)5.(5分)(2013•大纲版)(x+2)8的展开式中x6的系数是()A.28B.56C.112D.2246.(5分)(2013•大纲版)函数f(x)=log2(1+)(x>0)的反函数f﹣1(x)=()A.B.C.2x﹣1(x∈R)D.2x﹣1(x>0)7.(5分)(2013•大纲版)已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)8.(5分)(2013•大纲版)已知F1(﹣1,0),F2(1,0)是椭圆C的两个焦点,过F2且垂直于x轴的直线交椭圆于A、B两点,且|AB|=3,则C的方程为()A.B.C.D.9.(5分)(2013•大纲版)若函数y=sin(ωx+φ)(ω>0)的部分图象如图,则ω=()A.5B.4C.3D.210.(5分)(2013•大纲版)已知曲线y=x4+ax2+1在点(﹣1,a+2)处切线的斜率为8,a =()A.9B.6C.﹣9D.﹣611.(5分)(2013•大纲版)已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则CD与平面BDC1所成角的正弦值等于()A.B.C.D.12.(5分)(2013•大纲版)已知抛物线C:y2=8x的焦点为F,点M(﹣2,2),过点F且斜率为k的直线与C交于A,B两点,若,则k=()A.B.C.D.2二、填空题:本大题共4小题,每小题5分.13.(5分)(2013•大纲版)设f(x)是以2为周期的函数,且当x∈[1,3)时,f(x)=x ﹣2,则f(﹣1)=.14.(5分)(2013•大纲版)从进入决赛的6名选手中决出1名一等奖,2名二等奖,3名三等奖,则可能的决赛结果共有种.(用数字作答)15.(5分)(2013•大纲版)若x、y满足约束条件,则z=﹣x+y的最小值为.16.(5分)(2013•大纲版)已知圆O和圆K是球O的大圆和小圆,其公共弦长等于球O的半径,,则球O的表面积等于.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(10分)(2013•大纲版)等差数列{a n}中,a7=4,a19=2a9,(Ⅰ)求{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和S n.18.(12分)(2013•大纲版)设△ABC的内角A,B,C的内角对边分别为a,b,c,满足(a+b+c)(a﹣b+c)=ac.(Ⅰ)求B.(Ⅱ)若sin A sin C=,求C.19.(12分)(2013•大纲版)如图,四棱锥P﹣ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB与△PAD都是边长为2的等边三角形.(Ⅰ)证明:PB⊥CD;(Ⅱ)求点A到平面PCD的距离.20.(12分)(2013•大纲版)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为,各局比赛的结果都相互独立,第1局甲当裁判.(Ⅰ)求第4局甲当裁判的概率;(Ⅱ)求前4局中乙恰好当1次裁判概率.21.(12分)(2013•大纲版)已知函数f(x)=x3+3ax2+3x+1.(Ⅰ)求a=时,讨论f(x)的单调性;(Ⅱ)若x∈[2,+∞)时,f(x)≥0,求a的取值范围.22.(12分)(2013•大纲版)已知双曲线C:=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为3,直线y=2与C的两个交点间的距离为.(I)求a,b;(II)设过F2的直线l与C的左、右两支分别相交于A、B两点,且|AF1|=|BF1|,证明:|AF2|、|AB|、|BF2|成等比数列.2013年全国统一高考数学试卷(文科)(大纲版)参考答案与试题解析一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•大纲版)设集合U={1,2,3,4,5},集合A={1,2},则∁U A=()A.{1,2}B.{3,4,5}C.{1,2,3,4,5}D.∅【分析】由题意,直接根据补集的定义求出∁U A,即可选出正确选项【解答】解:因为U={1,2,3,4,5,},集合A={1,2}所以∁U A={3,4,5}故选:B.【点评】本题考查补集的运算,理解补集的定义是解题的关键2.(5分)(2013•大纲版)若α为第二象限角,sinα=,则cosα=()A.B.C.D.【分析】由α为第二象限角,得到cosα小于0,根据sinα的值,利用同角三角函数间的基本关系即可求出cosα的值.【解答】解:∵α为第二象限角,且sinα=,∴cosα=﹣=﹣.故选:A.【点评】此题考查了同角三角函数间的基本关系,熟练掌握基本关系是解本题的关键.3.(5分)(2013•大纲版)已知向量=(λ+1,1),=(λ+2,2),若(+)⊥(﹣),则λ=()A.﹣4B.﹣3C.﹣2D.﹣1【分析】利用向量的运算法则、向量垂直与数量积的关系即可得出.【解答】解:∵,.∴=(2λ+3,3),.∵,∴=0,∴﹣(2λ+3)﹣3=0,解得λ=﹣3.故选:B.【点评】熟练掌握向量的运算法则、向量垂直与数量积的关系是解题的关键.4.(5分)(2013•大纲版)不等式|x2﹣2|<2的解集是()A.(﹣1,1)B.(﹣2,2)C.(﹣1,0)∪(0,1)D.(﹣2,0)∪(0,2)【分析】直接利用绝对值不等式的解法,去掉绝对值后,解二次不等式即可.【解答】解:不等式|x2﹣2|<2的解集等价于,不等式﹣2<x2﹣2<2的解集,即0<x2<4,解得x∈(﹣2,0)∪(0,2).故选:D.【点评】本题考查绝对值不等式的解法,考查转化思想与计算能力.5.(5分)(2013•大纲版)(x+2)8的展开式中x6的系数是()A.28B.56C.112D.224【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为6求出x6的系数.【解答】解:(x+2)8展开式的通项为T r+1=x8﹣r2r令8﹣r=6得r=2,∴展开式中x6的系数是22C82=112.故选:C.【点评】本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工具.6.(5分)(2013•大纲版)函数f(x)=log2(1+)(x>0)的反函数f﹣1(x)=()A.B.C.2x﹣1(x∈R)D.2x﹣1(x>0)【分析】把y看作常数,求出x:x=,x,y互换,得到y=log2(1+)的反函数.注意反函数的定义域.【解答】解:设y=log2(1+),把y看作常数,求出x:。