梯形概念及例题
- 格式:doc
- 大小:438.79 KB
- 文档页数:5
梯形题型归纳
1. 定义梯形
梯形是一个四边形,它有两个平行的边称为梯形的底边和顶边,而其余的两条边称为梯形的腰。
2. 梯形的性质
- 梯形的底边和顶边平行。
- 梯形的对边相等。
- 梯形的两对邻边互相平行。
- 梯形的两个底角之和等于180度。
- 梯形的两个顶角之和等于180度。
3. 梯形题型
- 计算梯形的面积:
梯形的面积可以通过以下公式计算:$S = \frac{h(b_1 +
b_2)}{2}$,其中$S$表示梯形的面积,$h$表示梯形的高,$b_1$和$b_2$分别表示梯形的底边和顶边的长度。
- 计算梯形的周长:
梯形的周长可以通过将底边、顶边和两条腰的长度相加来计算。
4. 解题技巧
- 在计算梯形的面积时,可以根据题目给出的信息先确定梯形
的底边、顶边和高的长度,然后代入公式计算即可。
- 在计算梯形的周长时,同样需要根据题目给出的信息确定底边、顶边和腰的长度,然后将它们相加即可。
以上是关于梯形题型的一些基本知识和解题技巧的归纳。
通过
理解和掌握这些知识和技巧,我们可以更好地解决与梯形相关的数
学题目。
第12讲梯形及中位线本章节主要讲述了两部分内容,梯形和中位线,从直角梯形和等腰梯形的性质出发,求解相关的边与角的关系,在求解的过程中,部分题目需要添加辅助线.中位线主要包括两个方面,三角形和梯形,在解题的过程中,要做到灵活应用.模块一:梯形及等腰梯形知识精讲一、梯形及梯形的有关概念(1)梯形:一组对边平行而另一组对边不平行的四边形叫做梯形.底:平行的两边叫做底,其中较长的是下底,较短的叫上底.腰:不平行的两边叫做腰.高:梯形两底之间的距离叫做高.(2)特殊梯形直角梯形:一腰垂直于底的梯形叫做直角梯形.特殊梯形等腰梯形:两腰相等的梯形叫做等腰梯形.思考讨论:若上面两个条件同时成立是否是梯形?交流:如果同时具备直角梯形和等腰梯形的特征,那么该图形是矩形.【等腰梯形性质】等腰梯形性质定理1等腰梯形在同一底上的两个内角相等.等腰梯形性质定理2等腰梯形的两条对角线相等.另外:等腰梯形是轴对称图形;【等腰梯形判定】等腰梯形判定定理1在同一底边上的两个内角相等的梯形是等腰梯形.等腰梯形判定定理2对角线相等的梯形是等腰梯形.例题解析例1.(2019·上海八年级课时练习)如图,梯形ABCD中,AD∥BC,∠B=30°,∠BCD=60°,AD=2,AC平分∠BCD,则BC长为( ).A.4 B.6 C.4√3D.3√3【答案】B【分析】过点A作AE∥DC,可判断出△ABE是直角三角形,四边形ADCE是菱形,从而求出CE、BE即可得出BC的长度.【详解】过点A作AE∥DC,∵AD∥BC,∴四边形ADCE是平行四边形,又∵AC平分∠BCD,∴∠DAC=∠ACE=∠DCA,∴AD=CD,∴四边形ADCE是菱形,∴CE=AD=AE=2,∵AE∥CD,∴∠AEB=∠BCD=60°,又∵∠B=30°,∴∠BAE=90°,∴BE=2AE=4,∴BC=BE+CE=6.故答案为:6.【点睛】本题考查等腰三角形的判定与性质、含30度角的直角三角形和梯形,解题的关键是掌握等腰三角形的判定与性质、含30度角的直角三角形和梯形.例2.(2018·上海市清流中学八年级月考)若等腰梯形两底角为30°,腰长为8,高和上底相等,则梯形中位线长为()A.B.10 C.4D.【答案】C【分析】分析题意画出图形,则DE=CD=CF,AD=8,∠A=30°,由DE⊥AB,∠A=30°,AD=8,即可得出DE=4,进而求出CD的长度;运用勾股定理得出AE和BF的长度,易证四边形CDEF是平行四边形,得出EF的长度,进而得出AB+CD的长度,由梯形中位线的性质,即可解答本题.【详解】根据题意画出图形,则DE=CD=CF ,AD=8,∠A=30°.因为DE ⊥AB ,∠A=30°,AD=8, 所以DE=12AD=4,所以CD=4,因为DE ⊥AB ,CF ⊥AB , 所以DE ∥CF. 因为CD ∥EF ,所以四边形CDEF 是平行四边形, 所以EF=CD=4.因为CD=4cm ,,所以,所以梯形的中位线长为12故选C.【点睛】此题考查等腰梯形的性质,解题关键在于需结合梯形中位线的性质,勾股定理等知识进行求解.例3.(2018·上海市清流中学八年级月考)一个等腰梯形的两底之差为12,高为6,则等腰梯形的锐角为( ) A .30° B .45°C .60°D .75°【答案】B【分析】作梯形的两条高线,证明△ABE ≌△DCF ,则有BE=FC ,然后判断△ABE 为等腰直角三角形求解.【详解】如图,作AE ⊥BC 、DF ⊥BC,四边形ABCD 为等腰梯形,AD ∥BC ,BC −AD=12,AE=6,∵四边形ABCD 为等腰梯形, ∴AB=DC ,∠B=∠C , ∵AD ∥BC ,AE ⊥BC ,DF ⊥BC ,∴AEFD为矩形,∴AE=DF,AD=EF,∴△ABE≌△DCF,∴BE=FC,∴BC−AD=BC−EF=2BE=12,∴BE=6,∵AE=6,∴△ABE为等腰直角三角形,∴∠B=∠C=45°.故选B.【点睛】此题考查等腰梯形的性质,解题关键在于画出图形.例4.(2018·上海市清流中学八年级月考)下到关于梯形的叙述中,不正确的是()A.等腰梯形的两底平行且相等B.等腰梯形的两条对角线相等C.等腰梯形在同一底上的两个角相等D.等腰梯形是轴对称图形【答案】A【分析】本题考查对等腰梯形性质的理解.等腰梯形的性质如下:等腰梯形两腰相等;等腰梯形两底平行;等腰梯形的两条对角线相等;等腰梯形同一底上的两个内角相等;等腰梯形是轴对称图形.【详解】由等腰梯形的性质可知,等腰梯形的对角线相等,其在同一底上的两个角相等,可知B、C不符合题意;同时等腰梯形关于两底中点的连线成轴对称,即可得到D不符合题意,而等腰梯形两底平行但不相等,因此A符合题意.故选A.【点睛】此题考查等腰梯形性质,解题关键在于对性质的掌握.例5.(2017·上海八年级期末)一组对边相等,另一组对边平行的四边形是()A.梯形 B.等腰梯形 C.平行四边形 D.等腰梯形或平行四边形【答案】D【解析】根据特殊四边形的性质,分析所给条件,选择正确答案.解:A 、一组对边相等,另一组对边平行,可以是等腰梯形,也可以是平行四边形,故A 不正确;B 、一组对边相等,另一组对边平行,可以是等腰梯形,也可以是平行四边形,故B 不正确;C 、一组对边相等,另一组对边平行,可以是等腰梯形,也可以是平行四边形,故C 不正确;D 、一组对边相等,另一组对边平行,可以是等腰梯形,也可以是平行四边形,故D 正确. 故选D .“点睛”本题考查了平行四边形和等腰梯形的性质. 考虑问题时应该全面考虑,不能漏掉任何一种情况,要求培养严谨的态度.例6.(2019·上海上外附中)判断:一组邻角相等的梯形是等腰梯形(______) 【答案】错误【分析】根据题设画出反例图形即可.【详解】解:反例:如图,已知梯形ABCD ,//AD BC ,90C D ∠=∠=︒,而梯形ABCD 不是等腰梯形.故该命题是假命题, 故答案为:错误.【点睛】本题考查了等腰梯形的概念,熟悉等腰梯形的性质,举出反例是解题的关键. 例7.(2020·上海杨浦区·八年级期末)已知在梯形ABCD 中,//AD BC ,,AC AB ⊥,那么梯形ABCD 的周长等于__________. 【答案】20【分析】根据等腰三角形的性质得到DAC DCA ∠=∠,根据平行线的性质得到DAC ACB ∠=∠,得到DCA ACB ∠=∠,根据直角三角形的性质列式求出,根据直角三角形的性质求出BC ,根据梯形的周长公式计算,得到答案. 【详解】解:,DAC DCA ∴∠=∠,//AD BC ,, ,//AD BC ,AB DC =,2B BCD ACB ∴∠=∠=∠,AC AB ⊥,,即390BCA ∠=︒, ,28BC AB ∴==,,8BC =,梯形的周长444820=+++=, 故答案为:20.【点睛】本题考查的是梯形的性质、直角三角形的性质、等腰三角形的性质,掌握含30的直角三角形的性质是解题的关键.例8.(2020·上海嘉定区·八年级期末)已知一个梯形的中位线长为5cm ,其中一条底边的长为6cm ,那么该梯形的另一条底边的长是__________cm . 【答案】4【分析】根据梯形中位线定理解答即可.【详解】解:设该梯形的另一条底边的长是x cm ,根据题意得:()1652x +=,解得:x =4,即该梯形的另一条底边的长是4cm . 故答案为:4.【点睛】本题考查了梯形中位线定理,属于基本题目,熟练掌握该定理是解题关键. 例9.(2018·上海市民办扬波中学八年级期末)如图,在等腰梯形ABCD 中,AB ∥CD ,AD AB =,BD ⊥BC ,则∠C =________.【答案】60°【分析】利用平行线及AB ∥CD ,证明,再证明,再利用直角三角形两锐角互余可得答案.【详解】解:因为:AB ∥CD ,所以:,ADB ABD ∠=∠ 因为:AD AB =,所以:BDC ABD ∠=∠ , 所以;,因为:等腰梯形ABCD , 所以:,设:BDC x ∠=︒ ,所以2BCD x ∠=︒, 因为:BD ⊥BC ,所以:290x x +=,解得: 所以:60C ∠=°. 故答案为:60︒.【点睛】本题考查等腰梯形的性质,等腰三角形的性质及平行线的性质,掌握相关性质是解题关键.例10.(2019·上海上外附中八年级期中)在梯形ABCD 中,AB CD ∥,对角线AC BD ⊥,6AC =,8BD =,则梯形ABCD 的面积为__________.【答案】24【分析】根据对角线互相垂直的四边形的面积公式即可求得答案. 【详解】解:如图所示,梯形对角线垂直,则11682422ABCD S AC BD =⋅⋅=⨯⨯=.故答案是:24【点睛】本题考查对角线互相垂直的四边形的面积公式;对角线垂直时,四边形可看成四个直角三角形的面积之和,可得对角线互相垂直的四边形面积为对角线乘积的一半. 例11.(2020·上海浦东新区·八年级月考)如图,在梯形ABCD 中,AD ∥BC ,BC =12,AB =DC =8.∠B =60°. (1)求梯形的中位线长. (2)求梯形的面积.【答案】(1)8(2)【分析】(1)过A 作AE ∥CD 交BC 于E ,则四边形AECD 是平行四边形,得AD =EC ,AE =DC ,证出△ABE 是等边三角形,得BE =AB =8,则AD =EC =4,即可得出答案;(2)作AF ⊥BC 于F ,则∠BAF =90°﹣∠B =30°,由含30°角的直角三角形的性质得出BF =12AB =4,AF =. 【详解】解:(1)过A 作AE ∥CD 交BC 于E ,∵AD ∥BC ,∴四边形AECD 是平行四边形, ∴AD =EC ,AE =DC , ∵AB =DC , ∴AB =AE , ∵∠B =60°,∴△ABE 是等边三角形, ∴BE =AB =8,∴AD =EC =BC ﹣BE =12﹣8=4, ∴梯形ABCD 的中位线长=12(AD +BC )=12(4+12)=8; (2)作AF ⊥BC 于F , 则∠BAF =90°﹣∠B =30°,∴BF =12AB =4,AF =∴梯形ABCD 的面积=12(AD +BC )×AF =12(4+12)×【点睛】此题考查了平行四边形的判定及性质,等边三角形的判定及性质,梯形中位线的性质,直角三角形30度角的性质.例12.(2020·上海浦东新区·八年级期末)如图,等腰三角形ABC 中,AB=AC ,点E 、F 分别是AB 、AC 的中点,CE ⊥BF 于点O . (1)求证:四边形EBCF 是等腰梯形; (2)EF=1,求四边形EBCF 的面积.【答案】(1)见解析;(2)94. 【分析】(1)根据三角形的中位线定理和等腰梯形的判定定理即可得到结论;(2)如图,延长BC 至点G ,使CG=EF ,连接FG ,根据平行四边形的性质得到FG=EC=BF ,根据全等三角形的性质和三角形中位线定理即可得到结论. 【详解】(1)∵点E 、F 分别是AB 、AC 的中点, ∴EF//BC ,BE=12AB=12AC=CF ,∴四边形EBCF 是等腰梯形;(2)如图,延长BC 至点G ,使CG=EF ,连接FG ,∵EF//BC ,即EF//CG ,且CG=EF , ∴四边形EFGC 是平行四边形, 又∵四边形EBCF 是等腰梯形, ∴FG=EC=BF , ∵EF=CG ,FC=BE , ∴△EFB ≌△CGF (SSS ), ∴BFG EBCF S S=四边形,∵GC=EF=1,且EF=12BC , ∴BC=2,∴BG=BC+CG=1+2=3. ∵FG//EC ,∴∠GFB=∠BOC=90°, ∴FH=12BG=32, ∴BFGEBCF 1393224S S==⨯⨯=四边形. 【点睛】本题考查了等腰梯形的判定,全等三角形的判定和性质,平行四边形的性质,正确的作出辅助线是解题的关键.例13.如图,已知梯形ABCD 中,BC 是下底,∠ABC =60°,BD 平分∠ABC ,且BD ⊥CD ,若梯形周长是30cm ,求此梯形的面积.【难度】★★【答案】2cm .【解析】∵BD 平分∠ABC , ∴∠ABD =∠DBC =12∠ABC =30°. ∵AD //BC ,∴∠ADB =∠DBC =30°,∴AB =AD∵BD ⊥CD ,∴∠DCB =60°,∴∠ABC =∠DCB , ∴AB =CD . 设AB = CD = AD = x ,Rt △BCD 中,∵∠DBC =30°,∴BC = 2CD = 2x ,∴30 = x +x +x +2x ,解得:x =6. 作AE ⊥BC ,Rt △ABE 中,∵∠BAE =30°, ∴BE =3,AE =∴S =12(AD +BC )AE =2cm . 【总结】本题考查梯形面积公式及等腰梯形性质的综合运用.例14.如图,直角梯形ABCD 中,∠A =90°,AD ∥BC ,AD =5,∠D =45°,CD 的垂直平分线交AD 于点E ,交BA 的延长线于点F ,求BF 的长.【难度】★★ 【答案】5 【解析】联结CE∵EG 垂直平分CD ,∴EC =ED ,∠ECD =∠D =45°,∴∠CED =90°, ∵∠A =90°,AD ∥BC , ∴四边形BAEC 是矩形, ∴BC = AE .设BC =x =AE ,∴ED =EC =AB =5-x∵∠FEA =∠GED =45°,∴△AEF 是等腰直角三角形, ∴AF =AE =x∴BF =BA +AF =5-x +x =5.【总结】本题考查中垂线的性质,等腰直角三角形,直角梯形的性质的综合运用,注意用整体思想求出线段BF 的长.例15.如图,在梯形ABCD 中,AD ∥BC ,AB =AD =DC ,∠B =60°, (1) 求证:AB ⊥AC ;(2) 若DC =6,求梯形ABCD 的面积.【难度】★★【答案】(1)见解析;(2)【解析】(1)∵AB =CD ,∴∠B =∠DCB =60°,∠BAD =∠D =120°∵AD =DC ,∴∠DAC =∠DCA =30°∴∠BAC =∠BAD -∠DAC =120°- 30°=90°∴BA ⊥AC ;(2)∵AB =AD =DC ,DC =6, ∴CD =AD =AB =6在直角三角形ABC 中,∵∠ACB =30°, ∴BC =2AB =12作AE ⊥BC ,则AE =∴S 梯ABCD =1()2AD BC AE +=【总结】本题主要考查含30°的直角三角形性质与梯形面积公式的综合运用.例16.如图,在梯形ABCD 中,AD ∥BC ,CA 平分∠BCD ,DE ∥AC ,交BC 的延长线于点E ,∠B =2∠E .求证:AB =DC .【难度】★★【解析】∵AC 平分∠BCD∴∠BCA =∠ACD =12∠DCB∵DE //AC ,∴∠E =∠ACB =12∠DCB ∵∠B =2∠E ,∴∠B =∠DCB ∵梯形ABCD 中,AD ∥BC , ∴AB =CD【总结】本题考查等腰梯形性质与角平分线的综合运用,注意对基本模型的总结运用. 例17.如图,在等腰三角形ABC 中,点D 、E 分别是两腰AC 、BC 上的点,联结BE 、CD 相交于点O ,∠1=∠2.求证:梯形BDEC 是等腰梯形.【难度】★★【解析】∵AB AC =, ∴∠DBC =∠ECB在△BCD 与△ECB 中,∠1=∠2,BC =BC ∴△BCD ≌△ECB ,∴BD =CE∵AB =AC , ∴AD =AE ,∴∠ADE =∠AED =1(180)2A ︒-∠=∠ABC =∠ACB∴DE //BC , 又∵BD 与CE 不平行∴四边形BDEC 是梯形,且BD =CE ,∴梯形BDEC 是等腰梯形【总结】本题考查等腰梯形判定定理的运用,注意证明梯形的方法的总结.例18.如图,梯形OABC 中,O 为直角坐标系的原点,A 、B 、C 的坐标分别为(14,0)、 (14,3)、(4,3).点P 、Q 同时从原点出发,分别作匀速运动,点P 沿OA 以每秒1个单位向终点A 运动,点Q 沿OC 、CB 以每秒2个单位向终点B 运动.当这两点中有一点到达自己的终点时,另一点也停止运动.(1)设从出发起运动了x 秒,当x 等于多少时,四边形OPQC 为平行四边形? (2)四边形OPQC 能否成为等腰梯形?说明理由.【难度】★★【答案】(1)x =5; (2)不能.【解析】(1)由题可知:OC =5,BC =10,OA =14.∵BC //OA∴当Q 点在BC 上,且OP =CQ 时,四边形OPQC 是平行四边形 即2x -5= x ,解得:x = 5;(2)作点C 作CE ⊥OA 于点E ,过点Q 作QF ⊥OP 与点F∵AO //BC ,∴CE =QF当OE =PF =4时,△OCE ≌△PQF ,此时四边形OPQC 为等腰梯形, 即OP =OE +CQ +PF ,∴x =4+(2x -5)+4,解得:x =-3(舍), ∴四边形OPQC 不能成为等腰梯形.【总结】本题考查梯形的性质,平行四边形的判定与性质以及等腰梯形的判定与性质的综合运用,注意掌握辅助线的做法,以及数形结合思想与方程思想的综合运用.例19.如图,等腰梯形花圃ABCD 的底边AD 靠墙,另三边用长为40米的铁栏杆围成,设该花圃的腰AB 的长为x 米.(1)请求出底边BC 的长(用含x 的代数式表示);(2)若∠BAD =60°,该花圃的面积为S 米²,求S 与x 之间的函数关系式,指出自变量x 的取值范围,并求当S =x 的值.【难度】★★★【答案】(1)BC =40-2x ;(2)2S =+(020x <<),x =4. 【解析】(1)等腰梯形ABCD 中,AB =CD =x ,∴BC =40-x -x =40-2x ;(2)作BE ⊥AD ,CF ⊥AD在Rt △ABE 中,∵∠ABE =30°, ∴AE =12x .同理FD =AE =12x , ∴BE =CF .∴EF =BC =40-2x , ∴AD =40-x∴()1(4024022BC AD BE S x x +==-+-=+(020x <<),当S =x =4或683x =(舍)∴当S =x 的值为4.【总结】本题考查等腰梯形性质与函数解析式的结合,注意面积公式中各个量的含义.例20.已知,一次函数144y x =-+的图像与x 轴,y 轴,分别交于A 、B 两点,梯形AOBC(O 是原点)的边AC =5,(1)求点C 的坐标;(2)如果一个一次函数y kx b =+(k 、b 为常数,且k ≠0)的图像经过A 、C 两点,求这个一次函数的解析式. 【难度】★★★【答案】(1)C (13,4)或(19,4)或(16,5); (2)46433y x =-+或46433y x =-.【解析】由题可知:A (16,0),B (0,4).当OB ∥AC 时,点C 坐标为(16,5),当BC ∥AO 时,点C 坐标为(13,4)或(19,4);(2)∵一次函数的图像经过A 、C 两点,∴C 点坐标不能为(16,5),当A (16,0),C (13,4)时,利用待定系数法可得解析式为:46433y x =-+;当A (16,0),C (19,4)时,利用待定系数法可得解析式为:46433y x =-. 【总结】本题考查直角梯形性质及一次函数的综合运用,注意分类讨论,综合性较强.例21.如图,直角梯形ABCD 中,AB //CD ,∠A =90°,AB =6,AD =4,DC =3,动点P 从点A 出发,沿A →D →C →B 方向移动,动点Q 从点A 出发,在AB 边上移动.设点P 移动的路程为x ,线段AQ 的长度为y ,线段PQ 平分梯形ABCD 的周长. (1)求y 与x 的函数关系式,并求出这个函数的定义域;(2)当P 不在BC 边上时,线段PQ 能否平分梯形ABCD 的面积?若能,求出此时x 的值;若不能,请说明理由.【难度】★★★ 【答案】(1);(2)x =3时,PQ 平分梯形面积.【解析】(1)过点C 作CE ⊥AB 于点E ,则CD =AE =3,CE =4, 可得:BC =5,所以梯形ABCD 的周长是18.∵PQ 平分梯形ABCD 的周长,∴x +y =9, ∵06y ≤≤, ∴39x ≤≤, ∴;(2)由题可知,梯形ABCD 的面积是18. 因为P 不在BC 上,所以37x ≤≤. 当3≤x <4时,P 在AD 上,此时12APQ S xy ∆=, ∵线段PQ 能平分梯形ABCD 的面积,则有192xy =可得方程组,解得:或(舍);可得方程组,方程组无解,∴当x =3时,线段PQ 能平分梯形ABCD 的面积.【总结】本题利用梯形的性质,三角形的面积公式,建立方程和方程组求解,注意针对不同情况讨论,利用数形结合的思想进行计算.模块二:辅助线 知识精讲解决梯形问题常用的方法① 作高法:使两腰在两个直角三角形中;②移腰法:使两腰在同一个三角形中,梯形两个下底角是互余的,那么一般会用到这种添辅助线的方式,构造直角三角形;③延腰法:构造具有公共角的两个等腰三角形;④等积变形法:联结梯形上底一端点和另一腰中点,并延长与下底延长线交于一点,构成三角形;⑤移对角线法:平移对角线,可以构造特殊的图形,如平行四边形,如果是对角线互相垂直的等腰梯形,那么在平移的过程中,还可构造等腰直角三角形,结合三线合一,求梯形的高 等.例题解析例1.如图,已知在梯形ABCD 中,//AD BC ,,AE BC ⊥,垂足为E ,12AE =,则BC 边的长等于( )A .20B .21C .22D .23【难度】★★ 【答案】D【解析】∵AE BC ⊥,13AB =,12AE =, ∴BE = 5.∵梯形ABCD 中,//AD BC ,,AE BC ⊥, ∴, 故选D .【总结】本题主要考查等腰梯形性质的综合运用.例2.已知梯形ABCD 中,//AD BC ,70B ∠=,40C ∠=,2AD =,10BC =.求DC 的长.【难度】★★ 【答案】CD = 8.【解析】作DE //AB ,则四边形ABED 是平行四边形.∴AD =BE =2,∠DEC =∠B =70°.在△DEC 中,∠C =40°,∴∠EDC =180°-40°-70°=70°,∴CD =CE =BC -BE =10-2=8. 【总结】本题考查辅助线——做一边的平行线,构造平行四边形.例3.如图,梯形ABCD 中,//AB CD ,90A B ∠+∠=,AB b =,CD a =,E 、F 分别为AB 、CD 的中点,则EF 的长等于( )A .B .C .D .【难度】★★ 【答案】C【解析】分别过点F 做FG //AD ,FH //BC ,分别交BA 于点G ,H可得平行四边形DFGA 与平行四边形FCBH∴AG =FD =CF =BH =1122CD a =,∴GH =b -a∵∠A +∠B =90°, ∴可得直角△FGH ,E 是GH 中点∴EF =11()22GH b a =-, 故选C .【总结】本题考查直角三角形中线性质与梯形辅助线的添加.例4.已知:如图,在梯形ABCD 中,AD ∥BC ,AB =AC ,∠BAC =90°,BD =BC ,BD 交AC 于O .求证:CO =CD .【难度】★★【解析】作AF ⊥BC ,DE ⊥BC ,∵AD //BC ,∴AF =DE .在Rt △ABC 中,AB =AC , ∴AF =12BC .∵BC =BD , ∴DE =12BD .∴在Rt△BDE中,∠DBC=30°,∴∠BCD=∠BDC=75°∴∠DOC=∠DBC+∠ACB=75°,∴∠CDO=∠COD=75°,∴CD=CO.【总结】本题考查梯形的常用辅助线—做梯形的高,把梯形问题转化成三角形,矩形的问题,然后根据已知条件和三角形性质解题.例5.在等腰梯形ABCD中,AD∥BC,AB=DC,对角线AC与BD相交于点O,∠BOC=60°,AC=10cm,求梯形的高DE的长.【难度】★★【答案】.【解析】等腰梯形ABCD中,∵OB=OC,∠BOC=60°,可得等边△OCB,∴∠DBC=∠ACB=60°∵AC=BD=10,∴在直角△BDE中,BE=152BD=,∴DE=cm.【总结】本题考查梯形的相关计算,注意方法的运用.例6.如图,在梯形ABCD中,,,若AE=10,则CE=__________.【难度】★★★【答案】4或6.【解析】过点B作DA的垂线交DA延长线于M,M为垂足,延长DM到G,使得MG=CE,联结BG,可得四边形BCDM是正方形.∴BC=BM,∠C=∠BMG=90°,EC=GM,∴△BEC≌△BMG,∴∠MBG=∠CBE∵∠ABE=45°,∴∠CBE+∠ABM=45°,∴∠GBM+∠ABM=45°,∴∠ABE=∠ABG=45°,∴△ABE≌△ABG,AG=AE=10设CE=x,则AM=10x,∴AD=12(10x)=2+x,DE=12x.在Rt△ADE中,由AE2=AD2+DE2,解得:x=4或x=6.故CE的长为4或6.【总结】本题考查了直角三角形中勾股定理的运用,考查了全等三角形的判定和对应边相等的性质,注意辅助线的添加方法,将问题转化为解直角三角形的问题.模块三:中位线知识精讲三角形中位线的定义和性质:1. 定义三角形的中位线:联结三角形两边中点的线段,(强调它与三角形的中线的区别);2. 三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半.3. 梯形中位线定理:梯形的中位线平行于底边,并且等于两底和的一半.【要点点拨】经过三角形的一边中点作另一边的平行线,也可以证明得到的平行线段为中位线.同样地,从梯形的一腰中点作底的平行线,可以证明得到的平行线段为中位线.如果把三角形看成是一个上底长度为零的特殊的梯形的话,那么三角形中位线定理就成为梯形中位线定理的特例了.例题解析例1(1)顺次联结四边形各边中点所组成的四边形是;(2)顺次联结平行四边形各边中点所组成的四边形是;(3)顺次联结矩形各边中点所得到的四边形是;(4)顺次联结正方形各边中点所得到的四边形是;(5)顺次联结菱形各边中点所得到的四边形是;(6)顺次联结对角线互相垂直的四边形各边中点所得到的四边形是;(7)顺次联结等腰梯形各边中点所得到的四边形是;(8)顺次联结对角线相等的四边形各边中点所得到的四边形是;(9)顺次联结对角线相等且互相垂直的四边形各边中点所得到的四边形是.【难度】★【答案】(1)平行四边形;(2)平行四边形;(3)菱形;(4)正方形;(5)矩形;(6)矩形;(7)菱形;(8)菱形;(9)正方形.【解析】利用三角形中位线性质可证明.【总结】本题考查中位线性质和四边形判定方法,注意对相关规律的总结.例2.(2019·上海浦东新区·八年级期中)如图,△ABC中,点D、E分别在AB、AC边上,AD=BD,AE=EC,BC=6,则DE=()A.4 B.3 C.2 D.5【答案】B【分析】根据三角形的中位线的定理即可求出答案.【详解】∵AD=BD,AE=EC,∴DE是△ABC的中位线,∴BC=2DE,∴DE=3,故选B.【点睛】此题考查三角形的中位线,解题的关键是熟练运用三角形的中位线定理,本题属于基础题型.例3.(2018·上海市清流中学八年级月考)顺次连接等腰梯形各边中点所围成的四边形是 ( ) A .平行四边形 B .矩形C .菱形D .等腰梯形【答案】C【分析】由E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,得出EF ,HG ,FG ,EH 是中位线,再得出四条边相等,根据“四条边都相等的四边形是菱形”进行证明.【详解】如图所示,因为E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,连接AC 、BD ,因为E 、F 分别是AB 、BC 的中点, 所以EF=12AC ,同理可得HG=12AC ,FG=12BD ,EH=12BD , 又因为等腰梯形的对角线相等,即AC=BD ,因此有EF=FG=GH=HE , 所以连接等腰梯形各中点所得四边形为菱形. 故选C.【点睛】此题考查三角形中位线的性质,解题关键在于画出图形.例4.(2019·上海上外附中)梯形两条对角线互相垂直,且长度分别为4,6,则梯形的中位线长为_________【分析】作//DE AC 交AC 延长线于点E ,得到直角三角形BDE ,和平行四边形,运用平行四边形的性质和勾股定理求得BE 的长度,依据梯形中位线等于上下底和的一半即可. 【详解】解:如图,梯形ABCD ,//AD BC ,6AC =,4BD =,90BOC ∠=°, 作//DE AC 交AC 延长线于点E ,∴四边形是平行四边形,, ∴CE AD =,6DE AC ==,, ∴,【点睛】本题考查了梯形的中位线的性质、平行四边形的判定和性质、勾股定理,解题的关键是通过作平行线把上下底的和看成一个整体.例5.(2019·上海上外附中)如图,四边形ABCD 中,E ,F 分别为AD ,BC 中点,且6AB =,8CD =,则EF 的长度a 的范围是___________【答案】17a <≤【分析】连接BD ,取BD 的中点G ,连接GE GF 、,得到EG 是DBA 的中位线,FG 是DBC △的中位线,依据三角形中位线的性质求出132GE AB ==,142GF DC ==,分//AB DC ,AB DC 、不平行时,两种情况讨论,依据三角形三边关系即可.【详解】解:连接BD ,取BD 的中点G ,连接GE GF 、,又∵E ,F 分别为AD ,BC 中点,∴EG 是DBA 的中位线,FG 是DBC △的中位线, ∴132GE AB ==,142GF DC ==, ①当//AB DC 时, ;②当AB DC 、不平行时, ∵GF GE EF GE GF -<<+, ∴17EF <<;综上所述:17EF <≤,即17a <≤. 故答案为:17a <≤.【点睛】本题考查了三角形三边大小关系,构造三角形的中位线、分类讨论是解题的关键. 例6.(2017·上海闵行区·八年级期末)如图,在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BD 、CD 、AC 的中点,要使四边形EFGH 是菱形,四边形ABCD 还应满足的一个条件是______.【答案】AD=BC.【解析】菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义;②四边相等;③对角线互相垂直平分.据此四边形ABCD还应满足的一个条件是AD=BC.等.答案不唯一.解:条件是AD=BC.∵EH、GF分别是△ABC、△BCD的中位线,∴EH∥=BC,GF∥=BC,∴EH∥=GF,∴四边形EFGH是平行四边形.要使四边形EFGH是菱形,则要使AD=BC,这样,GH=AD,∴GH=GF,∴四边形EFGH是菱形.例7.(2018·上海宝山区·八年级期末)如图,将▱ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF为_____.【答案】4【分析】由四边形ABCD是平行四边形,根据平行四边形的对边相等,可得BC=AD=8,又由点E、F分别是BD、CD的中点,利用三角形中位线的性质,即可求得答案.【详解】解:∵四边形ABCD是平行四边形,∴BC=AD=8,∵点E、F分别是BD、CD的中点,∴EF=12BC=12×8=4.故答案为:4.【点睛】本题主要考查了平行四边形的性质与三角形中位线的性质.例8.(2017·上海徐汇区·八年级期末)如图,在△ABC中,点D,E分别是边AB,BC的中点,若DE的长是6,则AC=____.【答案】12.【分析】根据三角形中位线定理计算即可.【详解】解:∵点D ,E 分别是边AB ,BC 的中点,∴AC=2DE=12,故答案为:12.【点睛】本题考查的是三角形中位线定理的应用,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.例9.(2019·上海上外附中)如图,矩形ABCD 中,6AB =,8AD =,点O 为对角线AC 中点,点M 为边AD 中点,则四边形ABOM 的周长为________【答案】18【分析】根据题意可知OM 是ADC 的中位线,所以OM 的长可求;根据勾股定理可求出AC 的长,利用直角三角形斜边上的中线等于斜边的一半可求出BO 的长,进而求出四边形ABOM 的周长.【详解】解:∵矩形ABCD 中,6AB =,8AD =,,O 为AC 的中点,M 为AD 的中点,OM ∴为ADC 的中位线,142AM AD ==, 116322OM DC ∴==⨯=, ,四边形ABOM 的周长346518OM AM AB BO =+++=+++=,故答案为:18.【点睛】本题考查了矩形的性质、三角形的中位线的性质以及直角三角形斜边上的中线等于斜边的一半这一性质,题目的综合性很好,难度不大.例10.(1)点D 、E 、F 分别是ABC 三边的中点,D EF 的周长为10cm ,则ABC 的周长为;(2)ABC 三条中位线的长为3cm 、4cm 、5cm ,则ABC 的面积为.【难度】★【答案】(1)20cm ;(2)242cm .【解析】(1)2()20ABC C AB BC AC DE EF DF ∆=++=++=cm .(2)∵三条中位线的长为3cm 、4cm 、5cm , 且2223+45=,∴可知△ABC 是直角三角形, ∴168242S =⨯⨯=2cm . 【总结】本题考查三角形中位线的性质的综合运用.例11.如图,在ABC 中,点D 是边BC 的中点,点E 在ABC 内,AE 平分BAC ∠,CE AE ⊥点F 在边AB 上,EF //BC .(1) 求证:四边形BDEF 是平行四边形;(2) 线段BF 、AB 、AC 之间有怎么样的数量关系?并证明.【难度】★★【答案】(1)见解析;(2)2BF +AC =AB .【解析】(1)延长CE 交AB 于点G∵AE ⊥CG ,AE 平分∠BAC∴△AEG 与△ACE 中,∠GAE =∠CAE ,AE =AE ,∠AEG =∠AEC∴△AGE ≌△ACE ∴AG =AC ,即△AGC 是等腰三角形,∴E 是GC 的中点.∵D 是CB 的中点,∴DE //BA , ∵EF //BD , ∴四边形BDEF 是平行四边形;(2)∵ED 是△BCG 的中位线, ∴ED =12BG . 又∵平行四边形BDEF ,∴ED =BF ,∴BF =12BG ,即BG =2BF . ∵AG =AC , ∴2BF +AC =BG +AG =BA .【总结】本题考查了平行四边形的判定和性质,全等三角形的判定与性质、中位线的性质等知识,解题的关键是作辅助线,构造全等三角形,用中位线的性质解题.例12.如图所示,在梯形ABCD 中,//AD BC ,对角线AC BD ⊥交于点O ,MN 是梯形ABCD 的中位线,30DBC ∠=,求证:AC =MN .【难度】★★【解析】∵AD //BC , ∴∠ADO =∠DBC =30°.∴在Rt △AOD 和Rt △BOC 中,OA =12AD ,OC =12BC , ∴AC =OA +OC =1()2AD BC +. ∵MN 是梯形ABCD 的中位线,∴MN =1()2AD BC +, ∴AC =MN .。
梯形(基础)知识点归纳及典型例题讲解【学习目标】1.理解梯形的有关概念,理解直角梯形和等腰梯形的概念.2.掌握等腰梯形的性质和判定.3.初步掌握研究梯形问题时添加辅助线的方法,使问题进行转化.4. 熟练运用所学的知识解决梯形问题.5. 掌握三角形,梯形的中位线定理.【要点梳理】知识点一、梯形的概念一组对边平行,另一组对边不平行的四边形叫梯形. 在梯形中,平行的两边叫做梯形的底,较短的底叫做上底,较长的底叫做下底,不平行的两边叫做梯形的腰,夹在两底之间的垂线段叫做梯形的高,一腰和底的夹角叫做底角.要点诠释:(1)定义需要满足三个条件:①四边形;②一组对边平行;③另一组对边不平行.(2)有一组对边平行的四边形有可能是平行四边形或梯形,关键在于另一组对边的位置或者数量关系的不同.梯形只有一组对边平行,而平行四边形两组对边都平行;平行四边形中平行的边必相等,梯形中平行的一组对边必不相等.(3)在识别梯形的两底时,不能仅由两底所处的位置决定,而是由两底的长度来决定梯形的上、下底.知识点二、等腰梯形的定义及性质1.定义:两腰相等的梯形叫等腰梯形.2.性质:(1)等腰梯形同一个底上的两个内角相等.(2)等腰梯形的两条对角线相等.要点诠释:(1)等腰梯形是特殊的梯形,它具有梯形的所有性质.(2)由等腰梯形的定义可知:等腰相等,两底平行.(3)等腰梯形同一底上的两个角相等,这是等腰梯形的重要性质,不仅是“下底角”相等,两个“上底角”也是相等的.知识点三、等腰梯形的判定1.用定义判定:两腰相等的梯形是等腰梯形.2.判定定理:(1)同一底边上两个内角相等的梯形是等腰梯形.(2)对角线相等的梯形是等腰梯形.知识点四、辅助线梯形问题常常是通过作辅助线转化为特殊的平行四边形及三角形问题加以研究,一些常用的辅助线做法是:知识点五、三角形、梯形的中位线联结三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.联结梯形两腰中点的线段叫梯形的中位线.梯形的中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.【典型例题】类型一、梯形的计算1、已知:如图,在梯形ABCD中,AD//BC,AB=DC=AD=2,BC=4.求∠B的度数及AC的长.【答案与解析】解:过A点作AE∥DC交BC于点E.∵ AD∥BC,∴四边形AECD是平行四边形.∴ AD=EC,AE=DC.∵ AB=DC=AD=2,BC=4,∴ AE=BE=EC=AB.可证△BAC是直角三角形,△ABE是等边三角形.∴∠BAC=90°,∠B=60°.在Rt△ABC中,2223=-=.AC BC AB∴ ∠B =60°,23=AC .【总结升华】平移一腰,把梯形分成一个平行四边形和三角形. 举一反三:【变式】如图所示,已知四边形ABCD 是梯形,AD ∥BC ,∠A =90°,BC =BD ,CE ⊥BD ,垂足为E . (1)求证:△ABD ≌△ECB ;(2)若∠DBC =50°,求∠DCE 的度数.【答案】证明:(1)∵ AD ∥BC , ∴ ∠ADB =∠EBC . 又∵ CE ⊥BD ,∠A =90°, ∴ ∠A =∠CEB . 在△ABD 和△ECB 中,A CEBADB EBC BD CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ △ABD ≌△ECB .(2)∵ ∠DBC =50°,BC =BD ,∴ ∠BCD =65°. 又∵ ∠BEC =90°,∴ ∠BCE =40°.∴∠DCE=∠BCD-∠BCE=25°.2、如图所示,等腰梯形ABCD中,AD∥BC,AB=CD,对角线AC⊥BD,AD=4,BC=10,求梯形的面积.【思路点拨】题目中有对角线互相垂直的条件,可通过平行移动对角线的方法,将两条对角线集中到一个直角三角形中,利用这个条件求出高.【答案与解析】解:如图所示,过D作DF∥AC交BC的延长线于F,作DE⊥BC于E,∴四边形ACFD为平行四边形,∴ DF=AC,CF =AD=4.∵ AC⊥BD,AC∥DF,∴ ∠BDF =∠BOC =90°. ∵ ABCD 是等腰梯形 ∴ AC =BD ,∴ BD =DF .∴ BF =BC +CF =14,∴ DE =12BF =7.∴ 1(410)7492ABCDS=+⨯=梯形. 【总结升华】作对角线的平行线(平移对角线),将上底平移与下底拼接在一起构造两底之和,把梯形转化成平行四边形是常见的辅助线方法. 类型二、梯形的证明3、如图,在平行四边形ABCD 中,∠BAD 、∠BCD 的平分线分别交BC 、AD 于点E 、F ,AE 、DC 的延长线交于点G ,试说明四边形AFCG 为等腰梯形.【思路点拨】先证明四边形AFCG为梯形,再通过证底角相等证明四边形AFCG为等腰梯形.【答案与解析】解:∵四边形ABCD为平行四边形,∴∠BAD=∠BCD,又AE、CF分别为∠BAD、∠BCD的平分线,∴∠1=∠2=∠4,又AD∥BC,∴∠1=∠3,∴∠2=∠3,∴CF∥AG,又AF不平行于CG,∴四边形AFCG为梯形;又∠G=∠BCD-∠3=∠2+∠4-∠3=∠1,∴四边形AFCG为等腰梯形(同一底上两个角相等).【总结升华】本题考查了平行四边形的性质,难度适中,解题关键是熟练掌握并灵活运用等腰梯形的判定方法.举一反三:【变式】如图,梯形ABCD中,AD∥BC,AB=DC,∠BAD、∠CDA的平分线AE、DF分别交直线BC于点E、F.求证:CE=BF.【答案】证明:在梯形ABCD中,AB=DC,∴∠ABC=∠DCB,∠BAD=∠CDA.∵AE、DF分别为∠BAD与∠CDA的平分线,∴∠BAE=12∠BAD,∠CDF=12∠CDA.∴∠BAE=∠CDF.∴△ABE≌△DCF.(ASA)∴BE=CF.∴BE-BC=CF-BC.即CE=BF.4、如图所示,在梯形ABCD中,AD ∥BC ,对角线AC =5,BD =12,两底AD 、BC 的和为13.(1)求证:AC ⊥BD ;(2)求梯形ABCD 的面积.【答案与解析】证明:(1)过D 作DE ∥AC 交BC 的延长线于E 点,又∵ AD ∥BC ,∴ 四边形ACED 为平行四边形.∴ DE =AC =5,CE =AD .在△BDE 中,BD =12,DE =5,BE =BC +CE =BC +AD =13,且22251213+=,即DE 2+BD 2=BE 2,∴ △BDE 为直角三角形,∴ ∠BDE =90°,则DE ⊥BD ,又DE ∥AC ,∴ AC ⊥BD .(2)111()222ABD CBD ABCD S S S BD OA BD OC BD OA OC =+=+=+g g △△梯形 115123022BD AC ==⨯⨯=g . 【总结升华】(1)对角线互相垂直的四边形的面积等于对角线长度乘积的一半.(2)通过辅助线将已知数据转化在同一个三角形内,然后由勾股定理的逆定理得到垂直关系,这是本题的关键.类型三、三角形、梯形的中位线5、如图,已知P、R分别是长方形ABCD的边BC、CD上的点,E、F分别是PA、PR的中点,点P在BC上从B向C移动,点R不动,那么下列结论成立的是()A .线段EF 的长逐渐增大B .线段EF 的长逐渐变小C .线段EF 的长不变D .无法确定【答案】C ;【解析】连AR ,由E 、F 分别为PA ,PR 的中点知EF 为△PAR 的中位线, 则12EF AR ,而AR 长不变,故EF 大小不变.【总结升华】当条件中含有中点的时候,要将它与中位线联系起来,进行联想,必要时添加辅助线,构造中位线图形.6、在直角梯形ABCD 中(如图所示),已知AB∥DC,∠DAB=90°,∠ABC=60°,EF 为中位线,且BC =EF =4,那么AB =( )A .3B .5C .6D .8【答案】B;【解析】解:作CG⊥AB于G点,∵∠ABC=60°BC=EF=4,∴BG=2,设AB=x,则CD=x-2,∵EF为中位线,∴AB+CD=2EF,即x+x-2=8,解得x=5,【总结升华】此题综合运用了梯形的中位线定理、直角三角形的性质.在该图中,最关键的地方是正确的构造直角三角形.。
一、相关概念定理1.定义:四边形中还有一类特殊的四边形,它们的一组对边平行而另一组对边不平行,这样的特殊四边形就叫做梯形.研究梯形主要是研究两类:等腰梯形和直角梯形.A B C D A B C D A D B C ⎫⇒⎬⎭∥ 叫做梯形. C B A D底角腰底高2.等腰梯形A B C D A D B C A D B C ⎫⎪=⇒⎬⎪⎭∥峛.A B C D D A B C B AA D CBCD A C B D∠=∠∠=∠=是等腰梯形,,, B CA D3. 直角梯形A B C D C B A B A B CD A D B C ⎫⎪⊥⇒⎬⎪⎭∥ 是直角梯形. CA B D4.平行线等分线段定理1234l l l l A B B C C D⎫⇒⎬==⎭∥∥∥11111A B B C C D ==.l 4l 3l 2l1D 1C 1B 1A 1DC B A5.中位线定理⑴ 三角形中位线定理 ABC ∆中:1122AM BM MN BC MN BC AN CN =⎫⇒=⎬=⎭∥,. BN C MA⑵ 梯形中位线定理 梯形ABCD 中:梯形AB CD AM DM BN CN ⎫⎪=⇒⎬⎪=⎭∥()12MN AB CD MN AB CD =+∥∥,B NC A MD二、等腰梯形1. 等腰梯形的性质①等腰梯形同一底边上的两个角相等; ②等腰梯形的两条对角线相等.③等腰梯形是轴对称图形,它只有一条对称轴,底边的垂直平分线是它的对称轴;2. 等腰梯形的判定①同一底上两个内角相等的梯形是等腰梯形. ②对角线相等的梯形是等腰梯形.三、梯形中常见的辅助线我们可以看到,梯形本身的性质并不多,所以实际解梯形的问题时,往往通过添加辅助线将梯形分成三角形或平行四边形,三角形是最简单的直线形,而平行四边形具有很好的对称性质.下面给出几个常见的添加辅助线的方法.1. 作梯形的高:一般是过梯形的一个顶点作高,其好处是将梯形分成一个直角三角形和一个直角梯形,从而可以用勾股定理,如果过梯形的两个顶点分别作高,则会出现矩形.2. 过梯形的一个顶点作另一腰的平行线:这样便将梯形分成了一个平行四边形和一个三角形,这样做的好处是可以将两条腰拉到同一个三角形中,并且三角形的另一条边恰好是梯形的两底之差,从而将问题集中到三角形中.3. 延长梯形的两腰交于一点:这样做可以同样地使问题转化为三角形的问题.4. 过梯形一腰的中点作另一腰的平行线:可以将梯形等积变换成一个平行四边形.5. 连接梯形一个顶点和另一腰上的中点并延长交另一底边:可以将梯形等积变换成一个三角形. 常见的辅助线添加方式如下:梯形中的辅助线较多,其实质是采用割补法将梯形问题划归为三角形、平行四边形问题处理.解题时要根据题目的条件和结论来确定作哪种辅助线.1、掌握梯形、等腰梯形、直角梯形等有关概念,并了解它们之间的关系.2、探索等腰梯形的有关性质和常用判别方法,并能运用它们进行有关的证明和计算.3、通过对梯形辅助线的探索,学会将未知问题转化为已知问题,培养化归意识.一、特殊梯形的性质和判定【例1】 已知: 如图, 在梯形ABCD 中,AD BC ∥, AB CD =, E 是底边BC 的中点, 连接AE DE ,. 求证:ADE ∆是等腰三角形.DE CAB【例2】 如图,等腰梯形ABCD 中,AB CD ∥,60DAB ∠=︒,AC 平分DAB ∠,且AC =则梯形ABCD 的周长等于________.DCBA【例3】 如图,在等腰梯形ABCD 中,AD BC ∥,BC =4AD=,B ∠=45°.直角三角板含45°角的顶点E 在边BC 上移动,一直角边始终经过点A ,斜边与CD 交于点F .若ABE △为等腰三角形,则CF 的长等于 .【例4】 如图,某校有一呈梯形状的运动场,现只测量出CDE ∆的面积为m ,ABE ∆的面积为n ,则梯形状运动场的面积为【例5】 如图,在等腰梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O ,以下四个结论:①DCB ABC ∠=∠ ,②OA =OD ,③BDC BCD ∠=∠,④S AOB ∆=S DOC ∆,其中正确的是( )A .①②B .①④C .②③④D .①②④ODCBA【例6】 有一水库大坝的横截面是梯形ABCD ,AD BC ∥,EF 为水库的水面,点E 在DC 上,某课题小组在老师的带领下想测量水的深度,他们测得背水坡AB 的长为12米,迎水坡上DE 的长为2米,135120BAD ADC ∠=︒∠=︒,,求水深.(精确到0.11.414 1.73=)【例7】 在等腰梯形ABCD 中,AD BC ∥, 3cm 4cm 60AD AB B ==∠=︒,, , 则下底BC 的长为 cm .【例8】 如图,在直角ABC ∆中, 90ABC ∠=︒,60C ∠=︒,2BC =,D 为AC 的中点,从D 作DE AC⊥与CB 的延长线相交于E ,以AB 、BE 为邻边作长方形ABEF ,连接DF ,则DF 的长为_________.ABC DEF【例9】 如图,在梯形ABCD 中,AD BC AB AD DC AC AB ==⊥∥,,,延长CB 至F ,使BF CD =.⑴求ABC ∠的度数⑵求证:CAF ∆为等腰三角形。
考复习:梯形的基本概念山东省平阴县刁山坡中学zhgzhgq@一、知识要点:1、知识框架图:2、中考知识梳理1)梯形的运用有关梯形问题, 常常用添加辅助线的方法把梯形转化成特殊四边形与三角形的问题来解决.如:作高、平移一腰、平移对角线、延长两腰交于一点、过一腰中点作另一腰的平行线等.2)三角形、梯形中位线的应用①注意三角形的中位线与三角形的中线的区别.②在实际问题中常过一边的中点作另一边的平行线从而运用中位线定理解决问题.3、完成概念填空:1、等腰梯形、直角梯形的性质及四边形是等腰梯形、直角梯形的条件;(1) 等腰梯形是指(2)等腰梯形的性质:1)边: 2)角:3)对角线:(3)直角梯形是指(4)直角梯形的性质:1)边: 2)角:3)对角线:(5)等腰梯形的判定:1)边: 2)角:EDCBAFE DCBA 3)对角线: (6)直角梯形的判定:1)边: 2)角: 3)对角线: (7)梯形的中位线: 二、典型例题:例1 (2003.潍坊)如图,在梯形ABCD 中,已知AB ∥CD, 点E 为BC 的中点, 设△DEA 的面积为1S ,梯形ABCD 的 面积为S 1,则S 1与S 2的关系为_______.练习:如图,在梯形ABCD 中,∠DCB=90°,AB ∥CD , AB=25,BC=24.将该梯形折叠,点A 恰好与点D 重合,BE 为折痕,那么AD 的长度为________. 例2.(2003.潍坊)已知:如图,等腰梯形ABCD 中, AD ∥BC,AD=3,AB=4, BC=7.求∠B 的度数.练习:如图,在等腰梯形ABCD 中,AD ∥BC ,AB ≠AD ,对角线AC ,BD 相交于点O , •如下四个结论:梯形ABCD 是轴对称图形; ②∠DAC=∠DCA ;③△AOB ≌△DOC ;④△AOD ∽△BOC .请把其中正确结论的序号填在横线上:________. 例3 (2004.上海)如图,等腰梯形ABCD 中,AD ∥BC,∠DBC=45°,翻折梯形ABCD,使点B 重合于D,折痕分别交边AB 、BC 于点F 、E,若AD=2,BC=8. 求:(1)BE 的长;(2)∠CDE 的正切值.S 1FED C B AD CBA练习:1、如图,在直角梯形ABCD 中,AB ∥DC ,∠ABC=90°,AB=2DC ,•对角线AC ⊥BD 于F ,过点F 作EF ∥AB ,交AD 于点E ,CF=4cm . (1)求证:四边形ABFE 为等腰梯形; (2)求AE 的长.2、如图,矩形ABCD 中,AC ,BD 交于O 点,BE ⊥AC 于E ,CF ⊥BD 于F ,且∠CDF =60°,CF = 3 cm 。
梯形是我们数学中非常基础的概念之一,它在几何学中具有广泛的应用。
笔者通过举例说明,并结合直角梯形,将从浅入深地展开叙述,以帮助读者更好地理解和把握梯形的概念。
1.什么是梯形?梯形是指一个四边形,其中两条边是平行的,且其他两条边不平行。
直角梯形是一种特殊的梯形,其中有一个直角。
梯形的名字来源于它形状的特点,就像梯子一样,两侧的边长逐渐变长或变短。
2.举直角梯形的例子为了更清晰地理解梯形是如何构成的,我们可以通过举例来说明。
假设有一块地,形状如下:||_____|_______________|在这个例子中,梯形的两条底边分别是上面较长的一边和下面较短的一边。
这两条底边是平行的。
斜边是两条底边之间的那条边,由于特点是直角,因此我们称这个梯形为直角梯形。
3.梯形的性质梯形的主要性质有以下几个方面:•梯形的两条底边平行。
•梯形的两侧边对应的角是相等的。
•直角梯形的斜边与底边的关系可以由勾股定理计算,即斜边的平方等于两直角边的平方和。
•梯形的面积可以通过底边长度、高度和两直角边的中较长边的长度来计算。
4.梯形的应用举例梯形在现实生活中有很多实际应用,例如:•斜坡:我们常见到的车辆爬坡或行人上下台阶的斜坡,其形状可以近似为直角梯形。
•算术平均数:算术平均数是一组数的总和除以数的个数,我们可以将这个概念应用到梯形上。
假设有一个数字序列,两个底边的长度分别代表序列中最小和最大的数,而斜边长度则代表序列数字的平均数。
5.个人观点与总结梯形作为一个基础的几何形状,存在于我们日常生活的许多场景中,并且其性质和应用也非常广泛。
通过学习和理解梯形的概念,我们可以更好地认识和应用数学,同时也可以培养逻辑思维和问题解决能力。
无论是在学术研究、工程设计还是生活实践中,梯形都占据着重要的地位。
我们通过引入直角梯形的例子,以浅显易懂的方式介绍和解释了梯形的概念。
我们还通过讨论梯形的性质和应用,展示了梯形的重要性和实用性。
希望读者通过这篇文章,能够更全面、深入地理解梯形,并将其应用于实际生活中。
专题21 梯形阅读与思考梯形是一类具有一组对边平行而另一组对边不平行的特殊四边形,梯形的主要内容是等腰梯形、直角梯形等相关概念及性质.解决梯形问题的基本思路是:通过适当添加辅助线,把梯形转化为三角形或平行四边形,常见的辅助线的方法有:(1)过一个顶点作一腰的平行线(平移腰);(2)过一个顶点作一条对角线的平行线(平移对角线);(3)过较短底的一个顶点作另一底的垂线;(4)延长两腰,使它们的延长线交于一点,将梯形还原为三角形.如图所示:例题与求解【例1】如图,在四边形ABCD中,AB//CD,∠D=2∠B,AD和CD的长度分别为a,b,那么AB的长是___________. (荆州市竞赛试题)解题思路:平移一腰,构造平行四边形、特殊三角形.ACD B【例2】如图1,四边形ABCD 是等腰梯形,AB//CD .由四个这样的等腰梯形可以拼出图2所示的平行四边形.(1)求四边形ABCD 四个内角的度数;(2)试探究四边形ABCD 四条边之间存在的等量关系,并说明理由;(3)现有图1中的等腰梯形若干个,利用它们你能拼出一个菱形吗?若能,请你画出大致的示意图.(山东省中考试题)解题思路:对于(1)、(2),在观察的基础上易得出结论,探寻上、下底和腰及上、下底之间的关系,从作出梯形的常见辅助线入手;对于(3),在(2)的基础上,展开想象的翅膀,就可设计出若干种图形.图2图1BA CD【例3】如图,在等腰梯形ABCD 中,AD//BC ,AB =DC ,且AC ⊥BD ,AF 是梯形的高,梯形的面积是49cm 2,求梯形的高.(内蒙古自治区东四盟中考试题)解题思路:由于题目条件中涉及对角线位置关系,不妨从平移对角线入手.F OA DCB【例4】如图,在等腰梯形ABCD中,AB//DC,AB=998,DC=1001,AD=1999,点P在线段AD上,问:满足条件∠BPC=900的点P有多少个?(全国初中数学联赛试题)解题思路:根据AB+DC=AD这一关系,可以在AD上取点构造等腰三角形.AD CB【例5】如图,在等腰梯形ABCD中,CD//AB,对角线AC,BD相交于O,∠ACD=600,点S,P,Q分别为OD,OA,BC的中点.(1)求证:△PQS是等边三角形;(2)若AB=5,CD=3,求△PQS的面积;(3)若△PQS的面积与△AOD的面积的比是7:8,求梯形上、下两底的比CD:AB.(“希望杯”邀请赛试题)解题思路:多个中点给人以广泛的联想:等腰三角形性质、直角三角形斜边中线、三角形中位线等.S P O QDCBA【例6】如图,分别以△ABC 的边AC 和BC 为一边,在△ABC 外作正方形ACDE 和CBFG ,点P 是EF 的中点,求证:点P 到边AB 的距离是AB 的一半.(山东省竞赛试题) 解题思路:本题考查了梯形中位线定理、全等三角形的判定与性质.关键是要构造能运用条件EP =PF 的图形.PFGDEA BC能力训练A 级1. 等腰梯形中,上底:腰:下底=1:2:3,则下底角的度数是__________.(天津市中考试题)2. 如图,直角梯形ABCD 中,AB ⊥BC ,AD =3,BC =5,将腰DC 绕点D 逆时针方向旋转900至DE ,连接AE ,则△ADE 的面积为______________. (宁波市中考试题)3.如图,在等腰梯形ABCD 中,AB//CD ,∠A =060,∠1=∠2,且梯形的周长为30cm ,则这个等腰梯形的腰长为______________.第3题图第4题图第2题图21FEADAD BCBADCBCEG4.如图,梯形ABCD 中,AD//BC ,EF 是中位线,G 是BC 边上任一点,如果222cm S GEF =∆,那么梯形ABCD 的面积为__________. (成都市中考试题)5.等腰梯形的两条对角线互相垂直,则梯形的高h 和中位线的长m 之间的关系是 ( )A .m >hB .m =hC .m <hD .无法确定 6. 梯形ABCD 中,AB//DC ,AB =5,BC =23,∠BCD =045,∠CDA =060,则DC 的长度是( )A .3327+B .8 C.219 D.38+ E.338+(美国高中考试题)7.如图,在等腰梯形ABCD 中,AC =BC +AD ,则∠DBC 的度数是 ( )A.300B.450C.600D.900(陕西省中考试第7题图第8题图ADC BBDACP第9题图FEG AD CBP8.如图,在直角梯形ABCD 中,AD//BC ,AB ⊥BC ,AD =2,BC =DC =5,点P 在BC 上移动,则当PA +PD 取最小值时,△APD 中边AP 上的高为( )A .17172B .17174C .17178 D .3(鄂州市中考试题)9.如图,在等腰梯形ABCD 中,AD //BC ,AB =CD ,点P 为BC 边上一点,PE ⊥AB ,PF ⊥CD ,BG ⊥CD ,垂足分别为E ,F ,G .求证 :PE +PF =BG .(哈尔滨市中考试题)10. 如图,在梯形ABCD 中,AD//BC ,E ,F 分别为AB ,AC 中点,BD 与EF 相交于G .求证:)(21AD BC GF -=.GEFA DBC11.如图,等腰三角形ABC 中,AB =AC ,点E 、F 分别是AB 、AC 的中点,CE ⊥BF 于点O .求证:(1)四边形EBCF 是等腰梯形;(2)2222BE BC EF =+. (深圳市中考试题)OFECB A12.如图1,在等腰梯形ABCD 中,AD//BC ,E 是AB 的中点,过点E 作EF//BC 交CD 于点F ,AB =4,BC =6,∠B =060.(1)求点E 到BC 的距离;(2)点P 为线段EF 上的一个动点,过P 作PM ⊥EF 交BC 于点M ,过M 作MN//AB 交折线ADC 于点N ,连接PN ,设EP =x .①当点N 在线段AD 上时(如图2),△PMN 的形状是否发生改变?若不变,求出△PMN 的周长;若改变,请说明理由. ②当点N 在线段DC 上时(如图3),是否存在点P ,使△PMN 为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由. (江西省中考试题)图5(备用图)图4(备用图)图2图1图3F EAFE A FEA F EA F E A BC DDC B BC D DC B DCBP MN PM NB 级1. 如图,在梯形ABCD 中,AB//DC ,AD =BC ,AB =10,CD =4,延长BD 到E ,使DE=DB ,作EF ⊥AB 交BA 的延长线于点F ,则AF =__________.(山东省竞赛试题)第2题图第1题图EGFADABCDC BEF2.如图,在梯形ABCD 中,AD//BC ,AB =DC =10cm ,AC 与BD 相交于G ,且∠AGD =060,设E 为CG 中点,F 是AB 中点,则EF 长为_________.(“希望杯”邀请赛试题)3.用四条线段:7,9,13,14====d c b a 作为四条边,构成一个梯形,则在所构成的梯形中,中位线的长的最大值为_________.(湖北赛区选拔赛试题)4.如图,梯形ABCD 的两条对角线AC ,BD 相交于O 点,且AO :CO =3:2,则两条对角线将梯形分成的四个小三角形面积之比为=∆∆∆∆AOB COB DOC AOD S S S S :::_________. (安徽省中考试题)。
中考数学专题复习第二十二讲梯形【基础知识回顾】一、 梯形的定义、分类、和面积:1、定义:一组对边平行,而另一组对边的四边形,叫做梯形。
其中,平行的两边叫做两底间的距离叫做梯形的2、分类:梯形3、梯形的面积:梯形= (上底+下底) X 高【赵老师提醒:要判定一个四边形是梯形,除了要注明它有一组对边外,还需注明另一组对边不平行或的这组对边不相等】二、等腰梯形的性质和判定:1、性质:⑴等腰梯形的两腰相等,相等⑵等腰梯形的对角线⑶等腰梯形是对称图形一般梯形特殊梯形等腰梯形:两腰 的梯形叫做等腰梯形直角梯形:一腰与底 的梯形叫做直角梯形2、判定:⑴用定义:先证明四边形是梯形,再证明其两腰相等⑵同一底上两个角的梯形是等腰梯形⑶对角线的梯形是等腰梯形【赵老师提醒:1、梯形的性质和判定中同一底上的两个角相等“不被成”两底角相等2、等腰梯形所有的判定方法都必须先证它是梯形3、解决梯形问题的基本思路是通过做辅助线将梯形转化为形式常见的辅助线作法有要注意根据题目的特点灵活选用辅助线】【重点考点例析】考点一:梯形的基本概念和性质例1 (2012•内江)如图,四边形ABCD是梯形,BD=AC且BD⊥AC,若AB=2,CD=4,则S梯形ABCD= 9.思路分析:过点B作BE∥AC交DC的延长线于点E,过点B 作BF⊥DC于点F,判断出△BDE是等腰直角三角形,求出BF,继而利用梯形的面积公式即可求解.解答:解:过点B作BE∥AC交DC的延长线于点E,过点B 作BF⊥DC于点F,则AC=BE,DE=DC+CE=DC+AB=6,又∵BD=AC 且BD⊥AC,∴△BDE是等腰直角三角形,∴BF=DE=3,故可得梯形ABCD的面积为(AB+CD)×BF=9.故答案为:9.点评:此题考查了梯形的知识,平移一条对角线是经常用到的一种辅助线的作法,同学们要注意掌握,解答本题也要熟练等腰直角三角形的性质,难度一般.对应训练1.(2012•无锡)如图,梯形ABCD中,AD∥BC,AD=3,AB=5,BC=9,CD的垂直平分线交BC于E,连接DE,则四边形ABED 的周长等于()A.17B.18C.19D.201.考点:;.分析:由CD的垂直平分线交BC于E,根据线段垂直平分线的性质,即可得DE=CE,即可得四边形ABED的周长为AB+BC+AD,继而求得答案.解答:解:∵CD的垂直平分线交BC于E,∴DE=CE,∵AD=3,AB=5,BC=9,∴四边形ABED的周长为:AB+BE+DE+AD=AB+BE+EC+AD=AB+BC+AD=5+9+3=17.故选A.点评:此题考查了线段垂直平分线的性质.此题比较简单,注意掌握数形结合思想与转化思想的应用是解此题的关键.考点二:等腰梯形的性质例2 (2012•呼和浩特)已知:在等腰梯形ABCD中,AD∥BC,AC⊥BD,AD=3,BC=7,则梯形的面积是()A.25B.50C.25 D.思路分析:过点D作DE∥AC交BC的延长线于点E,作DF⊥BC 于F,证平行四边形ADEC,推出AC=DE=BD,∠BDE=90°,根据等腰三角形性质推出BF=DF=EF= BE,求出DF,根据梯形的面积公式求出即可.解答:解:过点D作DE∥AC交BC的延长线于点E,∵AD∥BC (已知),即AD∥CE,∴四边形ACED是平行四边形,∴AD=CE=3,AC=DE,在等腰梯形ABCD中,AC=DB,∴DB=DE (等量代换),∵AC⊥BD,AC∥DE,∴DB⊥DE,∴△BDE是等腰直角三角形,作DF⊥BC于F,则DF=BE=5,S梯形ABCD=(AD+BC)•DF=(3+7)×5=25,故选A.点评:本题主要考查对等腰三角形性质,平行四边形的性质和判定,等腰梯形的性质,等腰直角三角形等知识点的理解和掌握,能求出高DF的长是解此题的关键.对应训练2.(2012•厦门)如图,在等腰梯形ABCD中,AD∥BC,对角线AC与BD相交于点O,若OB=3,则OC= 3.2.3考点:.分析:先根据梯形是等腰梯形可知,AB=CD,∠BCD=∠ABC,再由全等三角形的判定定理得出△ABC≌△DCB,由全等三角形的对应角相等即可得出∠DBC=∠ACB,由等角对等边即可得出OB=OC=3.解答:解:∵梯形ABCD是等腰梯形,∴AB=CD,∠BCD=∠ABC,在△ABC与△DCB中,∵,∴△ABC≌△DCB,∴∠DBC=∠ACB,∴OB=OC=3.故答案为:3.点评:本题考查的是等腰梯形的性质及全等三角形的判定与性质,熟知在三角形中,等角对等边是解答此题的关键.考点三:等腰梯形的判定例3 (2012•襄阳)如图,在梯形ABCD中,AD∥BC,E为BC的中点,BC=2AD,EA=ED=2,AC与ED相交于点F.(1)求证:梯形ABCD是等腰梯形;(2)当AB与AC具有什么位置关系时,四边形AECD是菱形?请说明理由,并求出此时菱形AECD的面积.考点:;;.分析:(1)由AD∥BC,由平行线的性质,可证得∠DEC=∠EDA,∠BEA=∠EAD,又由EA=ED,由等腰三角形的性质,可得∠EAD=∠EDA,则可得∠DEC=∠AEB,继而证得△DEC≌△AEB,即可得梯形ABCD是等腰梯形;(2)由AD∥BC,BE=EC=AD,可得四边形ABED和四边形AECD均为平行四边形,又由AB⊥AC,AE=BE=EC,易证得四边形AECD是菱形;过A作AG⊥BE 于点G,易得△ABE是等边三角形,即可求得答案AG的长,继而求得菱形AECD的面积.解答:(1)证明:∵AD∥BC,∴∠DEC=∠EDA,∠BEA=∠EAD,又∵EA=ED,∴∠EAD=∠EDA,∴∠DEC=∠AEB,又∵EB=EC,∴△DEC≌△AEB,∴AB=CD,∴梯形ABCD是等腰梯形.(2)当AB⊥AC时,四边形AECD是菱形.证明:∵AD∥BC,BE=EC=AD,∴四边形ABED和四边形AECD均为平行四边形.∴AB=ED,∵AB⊥AC,∴AE=BE=EC,∴四边形AECD是菱形.过A作AG⊥BE于点G,∵AE=BE=AB=2,∴△ABE是等边三角形,∴∠AEB=60°,∴AG=,∴S菱形AECD=EC•AG=2×=2。
梯形一.选择题(共7小题)1.()的四边形叫做梯形。
A.两组对边分别平行B.只有一组对边平行C.有一组对边平行2.梯形有()条高。
A.1B.2C.无数D.43.在一个梯形中,最多有()个角是直角。
A.1B.2C.34.梯形的四个角中不可能出现的角是()。
A.直角B.钝角C.平角5.把梯形的上底和下底延长,它们()。
A.一定相交B.永不相交C.可能相交6.有一组对边平行,另两条边相等的四边形一定是()。
A.等腰梯形B.梯形C.正方形7.下面关于梯形说法正确的是()。
A.只有一组对边平行B.有一组对边平行C.两组对边分别平行二.填空题(共6小题)8.梯形中,不平行的一组对边叫做梯形的。
9.两腰相等的梯形是,直角梯形中有个直角。
10.梯形只有组对边平行,有条高。
11.如图梯形的上底与下底长度的和是厘米,高是厘米。
第11题第12题12.图形中有个角;其中有个直角,有个钝角,有个锐角。
13.如果把梯形ACFD的上底记作:AC,那么下底记作,高记作,这是一个梯形。
三.判断题(共5小题)14.梯形的两条腰延长后会相交,上底和下底延长后永远也不会相交。
15.直角梯形仍然只有两条高。
16.两腰相等的梯形叫等腰梯形。
17.(易错题)梯形的腰一定比高长。
18.直角梯形具有稳定性。
四.操作题(共3小题)19.填出下面图形的各部分的名称20.在点子图上画一个上底是2cm,下底是5cm,高是3cm的梯形(每个小正方形的边长是1cm)21.在点子图上画一个等腰梯形。
梯形-解析一.选择题(共7小题)1.B2.C3.B4.C5.B6.A7.A 二.填空题(共6小题)8.腰9.等腰图形,210.一,无数11.14,712.4,2,1,113.DF,CF,直角三.判断题(共5小题)14.√15.×16.√17.×18.×四.操作题(共3小题)19.解:20.解:21.解:。
三角形平行四边形梯形概念总结
一、三角形
1.三条线段首尾相接围成的图形叫作三角形, 三角形具有稳定性;
2.有三条边,有三个角,有三个顶点,有三条高;
3.3个角都是锐角的三角形是锐角三角形, 有1个角是直角的三角形是直角三角形, 有1个角是钝角的三角形是钝角三角形;
4.三角形任意两边之和大于第三边;两边之差小于第三边;三角形的三个内角和是180°;
5. 等腰三角形有两个底角,大小相等;有1个顶角。
等腰三角形有两条腰,长度相等;有一条底。
等腰三角形是轴对称图形,有1条对称轴。
等腰三角形的底角=(180°-顶角)÷2。
等腰三角形的顶角=180°-底角×2;
6. 3条边都相等的三角形是等边三角形,也叫作正三角形。
等边三角形3个角相等,都是60°等边三角形是轴对称图形,有3条对称轴
7.三角形按角分:锐角三角形、直角三角形、钝角三角形;
8.三角形按边分:不等边三角形、等腰三角形(两底角相等)、等边三角形(三内角都相等,为60°);
9.拼组:两个完全相同的等腰直角三角形可以拼成一个正方形,两个完全相同的锐角(或钝角)三角形形可以拼成一个平行四边形,两个完全相同的直角三角形可以拼成一个长方形,一个等腰三角形,一个平行四边形。
10、面积=底×高÷2 周长=三边之和
二、平行四边形
1、两组对边分别平行的四边形是平行四边形;
2、平行四边形对边平行且相等;平行四边形对角也相等;平行四边形有4条边,4个角,内角和是360°。
3、从平行四边形一条边上的一点到它对边的垂直线段是平行四边形的高,这条对边是平行四边形的底。
4、平行四边形具有不稳定性;
5、面积=底×高周长=(邻边+邻边)×2
三、梯形
1.一组对边平行而另一组对边不平行的四边形叫做梯形;梯形有4条边,4个角,一组组对边平行,另一组对边不平行。
2. 从梯形一条底边上的一点到它对边的垂直线段叫作梯形的高。
3.分类:一般梯形、直角梯形、等腰梯形;
3、(1)等腰梯形两腰相等,两底平行;(2)等腰梯形在同一底上的两个角相等;(3)等腰梯形是轴对称图形;(4)有两个角是直角的梯形叫作直角梯形,梯形的内角和是360°;
4、面积=(上底+下底)×高÷2 周长=上底+下底+两腰
常见的梯形辅助线规律口诀为:梯形问题巧转化,变为△和□;要想尽快解决好,添加辅助线最重要;平移两腰作出高,延长两腰也是关键;记着平移对角线,上下底和差就出现;如果出现腰中点,就把中位线细心连;上述方法不奏效,过中点旋转成全等;灵活添加辅助线,帮你度过梯形难关;想要易解梯形题,还得注意特题特解;注意梯形割与补,巧变成为□和△.基本图形如下:
1.平移梯形一腰或两腰,把梯形的腰、两底角等转移到一个三角形中,同时还得到平行四边形.
【例1】已知:如图2,在梯形ABCD中,.求证:
.
分析:平移一腰BC到DE,将题中已知条件转化在同一等腰三角形中解决,即
AB=2CD.
证明:过D作 ,交AB于E.
∵ AB平行于CD,且 ,
∴四边形是菱形.
∴
又
∴为等边三角形.
∴
又 ,
∴
∴.
2.平移一条对角线一般是过上底的一个端点作一条对角线的平行线,与另一底的延长线相交,得到一个平行四边形和三角形,把梯形问题转化为平行四边形和三角形问题解决.
【例2】.如图,等腰梯形中, , ,且 ,是高,是中位线,求证:.
分析:由梯形中位线性质得 ,欲证 ,只要证
.过点作 ,交的延长线于 ,就可以把
、和移到三角形中,再证明等式成立就简单多了.
证明:过点作交的延长线于点 ,则四边形是平行四边形.∴ ,
∵四边形是等腰梯形,
∴ ,∴
又∵ ,∴ ,
∴ ,∴ .
∵ ,
∴
又∵ ,∴ .
3.当遇到以上的梯形辅助线添加后不能解决问题时,可以特题特解,结合具体问题中的具体条件,寻求特殊的方法解决问题.比如可将对角线绕中点旋转、
利用一腰中点旋转、将梯形补成平行四边形或三角形问题.
如图,梯形中, ,、分别平分和 ,为
中点,求证:.
分析:要证明 ,可以利用为中点,延长与的延长
线交于 ,,得到 ,再证明
即可.
证明:延长、交于点 F,显然.
∴ , .
又∵ ,
, ,
∴ ,∴
∴是线段的垂直平分线.
∴ ,∴ .
评注:添加辅助线后,沟通了、与的联系,由线段垂直平分线性质得出 ,从而问题获得解决.。