【数学】北京市朝阳区2015届高三第二次综合练习(文)
- 格式:doc
- 大小:719.73 KB
- 文档页数:15
2015届高三年级第二次四校联考数学(文)试题2014.12命题:康杰中学 临汾一中 忻州一中 长治二中【满分150分,考试时间为120分钟】一、选择题(5×12=60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项用2B 铅笔涂黑答题纸上对应题目的答案标号)1. 已知集合}{1log 4<=x x A ,集合{}82<=xx B ,则AB 等于A .()4,∞-B .()4,0C . ()3,0D .()3,∞-2. 已知复数iiz -=1(i 为虚数单位),则复数z 在复平面内对应的点在 A . 第一象限 B .第二象限 C .第三象限D .第四象限3. 已知数列{}n a 满足12=a ,031=++n n a a )(*∈N n ,则数列{}n a 的前10项和10S 为A .)13(4910- B .)13(4910+ C .)13(4910+- D .)13(4910-- 4. 已知函数x x x f 2)(2+=,若)2(2)()(f a f a f ≤+-,则实数a 的取值范围是A .[]2,2-B .(]2,2-C .[]2,4-D .[]4,4-5.已知命题p :()0,∞-∃x ,xx 32<,命题q :()1.0∈∀x ,0log 2<x 则下列命题为真命题的是A. q p ∧ B .)(q p ⌝∨ C .q p ∧⌝)( D .)(q p ⌝∧ 6.执行如图所示的程序框图,输出的S 值为A. 144 B .36C .49D .1697.已知向量b a ,1=2=,3-=∙,则a 与b 的夹角为 A .32π B .3πC .6πD . 65π8. 已知圆:C 0218622=++++y x y x ,抛物线x y 82=的准线为l ,设抛物线上任意一点P 到直线l 的距离为d ,则PC d +的最小值为A .41B .7C .6D .99.已知函数x x f x +=3)(,x x x g 3log )(+=,33log )(x x x h -=的零点分别为1x ,2x ,3x ,则1x ,2x ,3x 的大小关系是 A .1x >2x >3xB .2x >1x >3xC .1x >3x >2xD .3x >2x >1x10. 已知α是第二象限角,54)3sin(=-απ,函数)2cos(cos cos sin )(x x x f -+=παα 的图像关于直线0x x =对称,则=0tan xA .53-B. 34- C. 43- D. 54-11.A.510+ B. 210+ C.6226++ D. 626++12. 已知函数⎩⎨⎧>≤-=-0,lg 0,22)(x x x x f x,则方程)0()2(2>=+a a x x f 的根的个数不可能为A .3B .4C .5D .6 二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题纸的相应位置上) 13. 已知双曲线的渐近线方程为x y 43±=,则此双曲线的离心率为_______. 14. 点),(y x M 满足不等式12≤+y x ,,则y x +的最大值为________. 15. 已知三棱锥ABC D -中,1==BC AB ,2=AD ,5=BD ,2=AC ,AD BC ⊥,则三棱锥ABC D -的外接球的表面积为________.16. 已知定义在R 上的函数)(x f y =满足:①对于任意的R x ∈,都有)(1)1(x f x f =+;②函数(第11题)正视图侧视图俯视图)1(+=x f y 是偶函数;③当(]1,0∈x 时,x xe x f =)(,则)23(-f ,)421(f ,)322(f 从小到大....的排列是______.三、解答题(本大题6小题,共70分,解答应写出文字说明、证明过程或演算步骤,并把解答写在答卷纸的相应位置上) 17. (本小题满分12分)在公差不为0的等差数列{}n a 中,已知11=a ,且2a ,5a ,14a 成等比数列. (1)求数列{}n a 的通项公式;(2)令n n n a b ⋅=2,求数列{}n b 的前n 项和n T . 18. (本小题满分12分)如图,四棱锥ABCD P -中,底面ABCD 为矩形, ⊥PA 平面ABCD ,E 为PD 的中点. (1)证明://PB 平面AEC ;(2)设1==AB AP ,3=AD ,求点P 到平面AEC 的距离. 19. (本小题满分12分)已知向量()x x sin 3,sin =,()x x cos ,sin -=,设函数()x f ∙=. (1)求函数)(x f 的单调递增区间;(2)在ABC ∆中,边c b a ,,分别是角C B A ,,的对边,角A 为锐角,若()162sin =⎪⎭⎫⎝⎛-+πA A f ,7=+c b ,ABC ∆的面积为32,求边a 的长. 20. (本小题满分12分)已知动圆C 过定点A )0,3(-,且与圆B :64)3(22=+-y x 相切,点C 的轨迹为曲线T ,设Q 为曲线T 上(不在x 轴上)的动点,过点A 作OQ (O 为坐标原点)的平行线交曲线T 与N M ,两点. (1)求曲线T 的方程;(2)是否存在常数λ,使2AM λ=∙总成立?若存在,求λ;若不存在,说明理由. 21. (本小题满分12分)设函数x xppx x f ln 2)(--=(R p ∈). (1)若函数)(x f 在其定义域内为单调递增函数,求实数p 的取值范围; (2)设xex g 2)(=,且0>p ,若在[]e ,1上至少存在一点0x ,使得>)(0x f )(0x g 成立,求实数p PABC DE的取值范围.请考生在(22)、(23)、(24)三题中任选一题作答,如果多答,则按做的第一题记分.作答时用2B 铅笔在答题卡上把所选题目对应题号右侧的方框涂黑. 22.(本小题满分10分)选修4—1:几何证明选讲如图,CF ABC ∆是边AB 上的高,,.FP BC FQ AC ⊥⊥(1)证明:A 、B 、P 、Q 四点共圆; (2)若14==AQ CQ ,,354=PF ,求CB 的长.23.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C 的极坐标方程是θρcos 4=.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程是t t y t x (sin cos 1⎩⎨⎧=+=αα是参数).(1)写出曲线C 的参数方程;(2)若直线l 与曲线C 相交于A 、B 两点,且14=AB ,求直线l 的倾斜角α的值.24.(本小题满分10分) 选修4—5:不等式选讲已知函数122)(--+=x x x f (1)解不等式2)(-≥x f ;(2)对任意[)+∞∈,a x ,都有)(x f a x -≤成立,求实数a 的取值范围.2015四校二联文科数学试题答案一选择题 1-6 CBDACB 7-12DADCCA 二填空题 13. 35或4514. 1 15. 6π 16. )23(-f <)322(f <)421(f 三解答题17.解:(1)设数列{}n a 的公差为d ,由题知,14225a a a ⋅=, ……………1分11=a )131)(1()41(2d d d ++=+∴, ……………2分即022=-d d ,又0≠d ,2=∴d ……………4分)1(21-+=∴n a n ,12-=∴n a n ……………5分(2) n n n b 2)12(⋅-=, ……………6分n n n T 2)12(252321321⨯-++⨯+⨯+⨯=∴ ① 14322)12(2)32(2523212+⨯-+⨯-++⨯+⨯+⨯=n n n n n T ②①-②得 11432)12(2222++⨯--++++=-n n n n T ……………9分122)12(21282++⨯----+=n n n 122)12(282++⨯--+-=n n n )122(261+-+-=+n n )23(261n n -+-=+ ……………11分)32(261-+=∴+n T n n ……………12分 18.(1)连结BD 交AC 与点O ,连结EO∵底面ABCD 为矩形 ∴O 为BD 的中点又∵E 为PD 的中点 ∴OE 为△PBD 的中位线,则OE ∥PB ………4分 又AEC OE 平面⊂,A E C PB 平面⊄∴PB ∥平面AEC ……………6分(2)∵PB ∥平面AEC∴P 到平面AEC 与B 到平面AEC 的距离相等∴V P-AEC =V B-AEC =V E-ABC ……………8分 又S △ABC =233121=⨯⨯,且E 到平面ABC 的距离为2121=PAAC=2,EC=2,AE=1, ∴S △AEC =47……………10分设P 到平面AEC 的距离为h ,则2123314731⨯⨯=⨯⨯h ,可得h =721 ∴P 到平面AEC 的距离为721……………12分 PAB C DE19.(1)()x x x x f cos sin 3sin 2-=⋅=x x 2sin 2322cos 1--=⎪⎭⎫ ⎝⎛+-=62sin 21πx ……………3分 由()Z k k x k ∈+≤+≤+πππππ2236222,得)(326Z k k x k ∈+≤≤+ππππ ∴)(x f 的单调递增区间为)(32,6Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ ……………6分(2)()12cos 2162sin 62sin 2162sin =-=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+-=⎪⎭⎫⎝⎛-+A A A A A f πππ ∴211cos 22cos 2-=-=A A 又A 为锐角,∴21cos =A ,3π=A …………9分S △ABC =32sin 21=A bc , ∴8=bc , 则bc bc c b A bc c b a --+=-+=2)(cos 2222225=∴5=a ……………12分 20.(1)∵)0,3(-A 在圆B 的内部 ∴两圆相内切,所以AC BC -=8,即AB AC BC >=+8∴C 点的轨迹是以A ,B 为焦点的椭圆,且长轴长82=a ,4=a ,3=c ,79162=-=∴b ∴曲线T 的方程为:171622=+y x ……………4分(2)当直线MN 47==,72=∴λπ7cos ||||=⋅⋅=⋅,则167-=λ ……………5分当直线MN 斜率存在时,设),(11y x M ,),(22y x N ,MN:)3(+=x k y ,则OQ:kx y =,由⎩⎨⎧+==+)3(11216722x k y y x 得011214496)167(2222=-+++k x k x k ,则 222116796k k x x +-=+,2221167112144k k x x +-=⋅ ……………7分 ∴()()[]()[]222121221221167499333kk x x x x k x x k y y +-=+++=++=()()222121167)1(4933k k y y x x ++-=+++=⋅ ……………9分 由⎩⎨⎧==+kx y y x 11216722得112167222=+x k x ,则22167112k x +=, ∴()()222222216711121kk x k y x OQ ++=+=+=,由2AM λ=⋅可解得167-=λ。
阶段性测试题二(函 数)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(文)(2014·福建省闽侯二中、永泰二中、连江侨中、长乐二中联考)函数f (x )=3x 21-x +lg(3x+1)的定义域是( )A .(-13,+∞)B .(-13,1)C .(-13,13)D .(-∞,-13)[答案] B[解析] 为使f (x )=3x 21-x+lg(3x +1)有意义,须⎩⎪⎨⎪⎧1-x >0,3x +1>0,解得-13<x <1,故选B.(理)(2014·山东省德州市期中)已知函数f (x )的定义域为(0,1),则函数f (2x +1)的定义域为( ) A .(-1,1) B .(-12,0)C .(-1,0)D .(12,1)[答案] B[解析] 要有f (2x +1)有意义,应有0<2x +1<1, ∴-12<x <0,故选B.2.(2014·营口三中期中)函数f (x )=e x +x -2的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1) D .(1,2)[答案] C[解析] ∵f (0)·f (1)=(e 0-2)·(e -1)<0,∴选C.3.(文)(2014·枣庄市期中)函数y =16-3x 的值域是( ) A .[0,+∞) B .[0,4] C .[0,4) D .(0,4)[答案] C[解析] 要使函数有意义,应有16-3x ≥0,∴3x ≤16, 又3x >0,∴0<3x ≤16,∴0≤16-3x <16,∴0≤y <4,故选C.(理)(2014·北京海淀期中)下列函数中,值域为(0,+∞)的函数是( ) A .f (x )=x B .f (x )=ln x C .f (x )=2x D .f (x )=tan x[答案] C[解析] ∵x ≥0,ln x ∈R,2x >0,tan x ∈R ,∴选C.4.(文)(2014·甘肃省金昌市二中期中)设a =0.32,b =20.3,c =log 0.34,则( ) A .b <a <c B .c <b <a C .b <c <a D .c <a <b[答案] D[解析] ∵0<0.32<1,20.3>20=1,log 0.34<log 0.31=0,∴c <a <b . (理)(2014·北京朝阳区期中)若0<m <1,则( ) A .log m (1+m )>log m (1-m ) B .log m (1+m )>0 C .1-m >(1+m )2 D .(1-m )13>(1-m )12[答案] D[解析] ∵0<m <1,∴1<m +1<2,0<1-m <1,∴y =log m x 为减函数,y =(1-m )x 为减函数,∴log m (1+m )<log m 1<log m (1-m ),A 、B 错;(1+m )2>1>1-m ,C 错;(1-m )13>(1-m )12,故正确答案为D.5.(2014·山东省菏泽市期中)若f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=3,则f (8)-f (4)的值为( )A .-1B .1C .-2D .2[答案] C[解析] ∵f (1)=1,f (2)=3,f (x )为奇函数, ∴f (-1)=-1,f (-2)=-3,∵f (x )周期为5, ∴f (8)-f (4)=f (-2)-f (-1)=-2.6.(文)(2014·福建省闽侯二中、永泰二中、连江侨中、长乐二中联考)已知函数f (x )=⎩⎪⎨⎪⎧log 4x ,x >03x ,x ≤0,则f [f (116)]=( )A .9B .-19C.19D .-9[答案] C[解析] ∵f (x )=⎩⎪⎨⎪⎧log 4x ,x >03x ,x ≤0∴f (116)=log 4116=-2,f [f (116)]=f (-2)=3-2=19,故选C.(理)(2014·江西临川十中期中)若f (x )=⎩⎪⎨⎪⎧2-x(x ≥3),f (x +3) (x <3),则f (-4)等于( )A .2 B.12 C .32 D.132[答案] D[解析] ∵f (x )=⎩⎪⎨⎪⎧2-x(x ≥3),f (x +3) (x <3),∴f (-4)=f (-1)=f (2)=f (5)=2-5=132.7.(文)(2014·河南省实验中学期中)下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( ) A .y =cos2x B .y =log 2|x | C .y =e x -e -x 2D .y =x 3+1[答案] B[解析] y =x 3+1是非奇非偶函数;y =e x -e -x2为奇函数;y =cos2x 在(1,2)内不是单调增函数,故选B.(理)(2014·广东梅县东山中学期中)下列函数中,既是偶函数又在(0,+∞)上是单调递增的是( )A .y =2|x +1|B .y =x 2+2|x |+3C .y =cos xD .y =log 0.5|x |[答案] B[解析] y =2|x +1|是非奇非偶函数;y =cos x 在(0,+∞)上不是单调增函数,y =log 0.5|x |在(0,+∞)上单调递减,故选B.8.(2014·福建省闽侯二中、永泰二中、连江侨中、长乐二中联考)定义在R 上的函数f (x )满足f (x +3)=-f (x ),当-3≤x <-1时,f (x )=-(x +2)2,当-1≤x <3时,f (x )=x .则f (1)+f (2)+f (3)+…+f (2013)=( )A .338B .337C .1678D .2013[答案] B[解析] ∵定义在R 上的函数f (x )满足f (x +3)=-f (x ),∴f (x +6)=f [(x +3)+3]=-f (x +3)=f (x ), ∴f (x )是周期为6的周期函数.又当-3≤x <-1时,f (x )=-(x +2)2,当-1≤x <3时,f (x )=x .∴f (1)=1,f (2)=2,f (3)=f (-3)=-1,f (4)=f (-2)=0,f (5)=f (-1)=-1,f (6)=f (0)=0,2013=6×335+3,故f (1)+f (2)+f (3)+…+f (2013)=335(1+2-1+0-1+0)+1+2-1=337,选B.9.(文)(2014·枣庄市期中)如图是张大爷离开家晨练过程中离家距离y 与行走时间x 之间函数关系的图象.若用黑点表示张大爷家的位置,则张大爷散步行走的路线可能是( )[答案] D[解析] 由图象知,张大爷散步时,离家的距离y 随散步行走时间x 的变化规律是,先均速增加,中间一段时间保持不变,然后匀速减小,故选D.(理)(2014·泸州市一诊)函数f (x )=(1-1x2)sin x 的图象大致为( )[答案] A[解析] 首先y =1-1x 2为偶函数,y =sin x 为奇函数,从而f (x )为奇函数,故排除C 、D ;其次,当x =0时,f (x )无意义,故排除B ,选A.10.(2014·安徽程集中学期中)已知f (x )=⎩⎪⎨⎪⎧(3-a )x -a (x <1),log a x (x ≥1).是(-∞,+∞)上的增函数,那么实数a 的取值范围是( )A .(1,+∞)B .(-∞,3)C .[32,3)D .(1,3)[答案] C[解析] ∵f (x )在R 上为增函数,∴⎩⎪⎨⎪⎧3-a >0,a >1,3-2a ≤0,∴32≤a <3,故选C. 11.(文)(2014·银川九中一模)如果不等式f (x )=ax 2-x -c >0的解集为{x |-2<x <1},那么函数y=f (-x )的大致图象是( )[答案] C[解析] 由于不等式ax 2-x -c >0的解集为{x |-2<x <1},∴a <0,且-2和1是方程ax 2-x -c =0的两根,∴a =-1,c =-2,∴f (x )=-x 2-x +2,∴y =f (-x )=-x 2+x +2,故选C.(理)(2014·抚顺市六校联合体期中)函数f (x )=(1-cos x )sin x 在[-π,π]的图象大致为( )[答案] C[解析] f (x )=(1-cos x )sin x =4sin 3x 2cos x 2,∵f (π2)=1,∴排除D ;∵f (x )为奇函数,∴排除B ;∵0<x <π时,f (x )>0,排除A ,故选C. 12.(2014·山西曲沃中学期中)如图,直角坐标平面内的正六边形ABCDEF ,中心在原点,边长为a ,AB 平行于x 轴,直线l :y =kx +t (k 为常数)与正六边形交于M 、N 两点,记△OMN 的面积为S ,则关于函数S =f (t )的奇偶性的判断正确的是( )A .一定是奇函数B .一定是偶函数C .既不是奇函数,也不是偶函数D .奇偶性与k 有关 [答案] B[解析] 设直线OM 、ON 与正六边形的另一个交点分别为M ′、N ′,由于正六边形关于点O 成中心对称,∴OM ′=OM ,ON ′=ON ,从而△OM ′N ′与△OMN 成中心对称,设直线l 交y 轴于T ,直线M ′N ′交y 轴于T ′,则|OT |=|OT ′|,且S △OM ′N ′=S △OMN ,即当t <0时,有S =f (t )=f (-t ),∴S =f (t )为偶函数.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上.) 13.(2014·营口三中期中)定义在R 上的偶函数f (x )满足f (x +1)=f (1-x ).若当0≤x <1时,f (x )=2x ,则f (log 26)=________.[答案] 32[解析] ∵f (x +1)=f (1-x ),∴函数f (x )的图象关于直线x =1对称,又f (x )为偶函数,∴f (-x )=f (x ),∴f (x +2)=f (x ),∴f (x )是周期为2的周期函数,∴f (log 26)=f (log 26-2)=f (log 232),∵0<log 232<1,14.(文)(2014·河南省实验中学期中)方程4x -2x +1-3=0的解是________.[答案] x =log 23[解析] 令2x =t ,则t >0,∴原方程化为t 2-2t -3=0,∴t =3. 即2x =3,∴x =log 23.(理)(2014·长安一中质检)方程33x-1+13=3x -1的实数解为________. [答案] x =log 34[解析] 令3x =t ,则t >0,∴原方程化为3t -1+13=t3,∴t =4,即3x =4,∴x =log 34.15.(2014·北京海淀期中)已知a =log 25,2b =3,c =log 32,则a ,b ,c 的大小关系为________. [答案] a >b >c[解析] 因为,a =log 25>log 24=2,c =log 32<log 33=1,由2b =3得,b =log 23,1=log 22<log 23<log 24=2,所以a >b >c .16.(文)(2014·北京朝阳区期中)已知函数f (x )=⎩⎪⎨⎪⎧-x 2-2x , x ≥0,x 2-2x , x <0.若f (3-a 2)<f (2a ),则实数a 的取值范围是________.[答案] -3<a <1[解析] 根据所给分段函数,画图象如下:可知函数f (x )在整个定义域上是单调递减的, 由f (3-a 2)<f (2a )可知,3-a 2>2a ,解得-3<a <1. (理)(2014·湖南省五市十校联考)下列命题: ①函数y =sin(x -π2)在[0,π]上是减函数;②点A (1,1),B (2,7)在直线3x -y =0两侧;③数列{a n }为递减的等差数列,a 1+a 5=0,设数列{a n }的前n 项和为S n ,则当n =4时,S n 取得最大值;④定义运算⎪⎪⎪⎪⎪⎪a 1a 2b 1b 2=a 1b 2-a 2b 1,则函数f (x )=⎪⎪⎪⎪⎪⎪⎪⎪x 2+3x 1x 13x 的图象在点(1,13)处的切线方程是6x -3y -5=0.其中正确命题的序号是________(把所有正确命题的序号都写上).[答案] ②④[解析] y =sin(x -π2)=-cos x 在[0,π]上为增函数,∴①错;∵(3×1-1)(3×2-7)<0,∴②正确;∵{a n }为递减等差数列,∴d <0,∵a 1+a 5=0,∴a 1>0,a 5<0,且a 3=0,∴当n =2或3时,S n 取得最大值,故③错;由新定义知f (x )=13x 3+x 2-x ,∴f ′(x )=x 2+2x -1,∴f ′(1)=2,故f (x )在(1,13)处的切线方程为y -13=2(x -1),即6x -3y -5=0,∴④正确,故填②④.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分12分)(文)(2014·甘肃省金昌市二中期中)已知函数f (x )=2ax 2+4x -3-a ,a ∈R .(1)当a =1时,求函数f (x )在[-1,1]上的最大值;(2)如果函数f (x )在R 上有两个不同的零点,求a 的取值范围. [解析] (1)当a =1时,f (x )=2x 2+4x -4 =2(x 2+2x )-4=2(x +1)2-6.因为x ∈[-1,1],所以x =1时,f (x )取最大值f (1)=2.(2)∵⎩⎪⎨⎪⎧ Δ>0,a ≠0,∴⎩⎪⎨⎪⎧a 2+3a +2>0,a ≠0,∴a <-2或-1<a <0或a >0,∴a 的取值范围是(-∞,-2)∪(-1,0)∪(0,+∞).(理)(2014·北京朝阳区期中)已知函数f (x )=x 2-4x +a +3,a ∈R . (1)若函数y =f (x )的图象与x 轴无交点,求a 的取值范围; (2)若函数y =f (x )在[-1,1]上存在零点,求a 的取值范围;(3)设函数g (x )=bx +5-2b ,b ∈R .当a =0时,若对任意的x 1∈[1,4],总存在x 2∈[1,4],使得f (x 1)=g (x 2),求b 的取值范围.[解析] (1)∵f (x )的图象与x 轴无交点,∴Δ=16-4(a +3)<0,∴a >1.(2)∵f (x )的对称轴为x =2,∴f (x )在[-1,1]上单调递减,欲使f (x )在[-1,1]上存在零点,应有⎩⎪⎨⎪⎧ f (1)≤0,f (-1)≥0.即⎩⎪⎨⎪⎧a ≤0,8+a ≥0,∴-8≤a ≤0. (3)若对任意的x 1∈[1,4],总存在x 2∈[1,4],使f (x 1)=g (x 2),只需函数y =f (x )的值域为函数y =g (x )值域的子集即可.∵函数y =f (x )在区间[1,4]上的值域是[-1,3],当b >0时,g (x )在[1,4]上的值域为[5-b,2b +5],只需⎩⎪⎨⎪⎧5-b ≤-1,2b +5≥3,∴b ≥6;当b =0时,g (x )=5不合题意,当b <0时,g (x )在[1,4]上的值域为[2b +5,5-b ],只需⎩⎪⎨⎪⎧2b +5≤-1,5-b ≥3,∴b ≤-3.综上知b 的取值范围是b ≥6或b ≤-3.18.(本小题满分12分)(文)(2014·韶关市曲江一中月考)已知二次函数f (x )满足条件:①在x =1处导数为0;②图象过点P (0,-3);③在点P 处的切线与直线2x +y =0平行. (1)求函数f (x )的解析式;(2)求在点Q (2,f (2))处的切线方程.[解析] (1)设f (x )=ax 2+bx +c (a ≠0),则f ′(x )=2ax +b , 由题意有⎩⎪⎨⎪⎧f ′(1)=0,f (0)=-3,f ′(0)=-2,即⎩⎪⎨⎪⎧2a +b =0,c =-3,b =-2,解得⎩⎪⎨⎪⎧a =1,b =-2,c =-3.∴f (x )=x 2-2x -3.(2)由(1)知f (x )=x 2-2x -3,f ′(x )=2x -2,∴切点Q (2,-3),在Q 点处切线斜率k =f ′(2)=2, 因此切线方程为y +3=2(x -2),即2x -y -7=0.(理)(2014·河南淇县一中模拟)已知函数f (x )=e x -ln(x +m ). (1)设x =0是f (x )的极值点,求m ,并讨论f (x )的单调性; (2)证明当m ≤2时,f (x )>0. [解析] (1)f ′(x )=e x -1x +m,由x =0是f (x )的极值点得f ′(0)=0,所以m =1.于是f (x )=e x -ln(x +1),定义域为(-1,+∞),f ′(x )=e x -1x +1.函数f ′(x )=e x -1x +1在(-1,+∞)上单调递增,且f ′(0)=0,因此,当x ∈(-1,0)时,f ′(x )<0;当x ∈(0,+∞)时,f ′(x )>0. 所以f (x )在(-1,0)上单调递减,在(0,+∞)上单调递增. (2)当m ≤2,x ∈(-m ,+∞)时,ln(x +m )≤ln(x +2), 故只需要证明当m =2时,f (x )>0.当m =2时,函数f ′(x )=e x -1x +2在(-2,+∞)上单调递增.又f ′(-1)<0,f ′(0)>0,故f ′(x )=0在(-2,+∞)上有唯一实根x 0,且x 0∈(-1,0). 当x ∈(-2,x 0)时,f ′(x )<0;当x ∈(x 0,+∞)时,f ′(x )>0, 从而当x =x 0时,f (x )取得最小值. 由f ′(x 0)=0得e x 0=1x 0+2,所以ln(x 0+2)=-x 0,故f (x )≥f (x 0)>0, 综上,当m ≤2时,f (x )>0.19.(本小题满分12分)(文)(2014·枣庄市期中)已知函数f (x )=a -22x -1(a ∈R ).(1)用单调函数的定义探索函数f (x )的单调性; (2)求实数a 使函数f (x )为奇函数.[解析] (1)f (x )的定义域为(-∞,0)∪(0,+∞).任取非零实数x 1,x 2,且x 1<x 2,从而f (x 1)-f (x 2)<0,所以f (x 1)<f (x 2). 所以f (x )在(-∞,0)上单调递增. 同理可证,f (x )在(0,+∞)上单调递增.(2)解法一:对∀x ∈(-∞,0)∪(0,+∞),有-x ∈(-∞,0)∪(0,+∞). f (x )+f (-x )=a -22x -1+a -22-x -1=2a -22x -1-2·2x1-2x =2a +2·2x -22x -1=2a +2.若函数f (x )为奇函数,则有2a +2=0,解得a =-1, 此时f (-x )=-f (x ). 所以a =-1为所求.解法二:若函数f (x )为奇函数,则f (-1)=-f (1),即a -22-1-1=-(a -221-1).解得a =-1.当a =-1时,对∀x ∈(-∞,0)∪(0,+∞),有-x ∈(-∞,0)∪(0,+∞). f (x )+f (-x )=-1-22x -1-1-22-x -1=-2-22x -1-2·2x1-2x =0,所以f (-x )=-f (x ),即函数f (x )为奇函数. 所以a =-1为所求.(理)(2014·泉州实验中学期中)已知定义域为R 的函数f (x )=-2x +b2x +1+a 是奇函数.(1)求a ,b 的值;(2)已知f (x )是减函数,若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围. [解析] (1)∵f (x )是奇函数,定义域为R , ∴f (0)=0,即b -1a +2=0⇒b =1,∴f (x )=1-2x a +2x +1,又由f (1)=-f (-1)知,1-2a +4=-1-12a +1,∴a =2.(2)由(1)知f (x )=1-2x 2+2x +1=-12+12x+1,易知f (x )在(-∞,+∞)上为减函数,∵f (x )是奇函数,∴不等式f (t 2-2t )+f (2t 2-k )<0等价于f (t 2-2t )<f (k -2t 2),∵f (x )为减函数,∴t 2-2t >k -2t 2.即对一切t ∈R 有:3t 2-2t -k >0,∴判别式Δ=4+12k <0,∴k <-13.20.(本小题满分12分)(文)(2014·福州市八县联考)函数f (x )=2ax -x 2+ln x ,a 为常数. (1)当a =12时,求f (x )的最大值;(2)若函数f (x )在区间[1,2]上为单调函数,求a 的取值范围.[解析] (1)当a =12时,f (x )=x -x 2+ln x ,则f (x )的定义域为(0,+∞),∴f ′(x )=1-2x +1x =-(2x +1)(x -1)x .由f ′(x )>0,得0<x <1;由f ′(x )<0,得x >1; ∴f (x )在(0,1)上是增函数,在(1,+∞)上是减函数. ∴f (x )的最大值为f (1)=0. (2)∵f ′(x )=2a -2x +1x.若函数f (x )在区间[1,2]上为单调函数,则f ′(x )≥0,或f ′(x )≤0在区间[1,2]上恒成立. ∴2a -2x +1x ≥0,或2a -2x +1x ≤0在区间[1,2]上恒成立.即2a ≥2x -1x ,或2a ≤2x -1x 在区间[1,2]上恒成立.设h (x )=2x -1x ,∵h ′(x )=2+1x 2>0,∴h (x )=2x -1x 在区间[1,2]上为增函数.∴h (x )max =h (2)=72,h (x )min =h (1)=1,∴只需2a ≥72,或2a ≤1,∴a ≥74,或a ≤12.(理)(2014·韶关市曲江一中月考)如图是函数f (x )=a3x 3-2x 2+3a 2x 的导函数y =f ′(x )的简图,它与x轴的交点是(1,0)和(3,0).(1)求函数f (x )的极小值点和单调递减区间; (2)求实数a 的值.[解析] (1)由图象可知:当x <1时,f ′(x )>0,f (x )在(-∞,1)上为增函数; 当1<x <3时,f ′(x )<0,f (x )在(1,3)上为减函数; 当x >3时,f ′(x )>0,f (x )在(3,+∞)为增函数;∴x =3是函数f (x )的极小值点,函数f (x )的单调减区间是(1,3).(2)f ′(x )=ax 2-4x +3a 2,由图知a >0且⎩⎪⎨⎪⎧f ′(1)=0,f ′(3)=0,∴⎩⎪⎨⎪⎧a >0,a -4+3a 2=0,9a -12+3a 2=0.∴a =1. 21.(本小题满分12分)(文)(2014·湖南省五市十校联考)已知A ,B ,C 是直线l 上的不同三点,O 是l 外一点,向量OA →,OB →,OC →满足OA →=(32x 2+1)OB →+(ln x -y )OC →,记y =f (x ).(1)求函数y =f (x )的解析式; (2)求函数y =f (x )的单调区间.[解析] (1)∵OA →=(32x 2+1)OB →+(ln x -y )OC →,且A ,B ,C 是直线l 上的不同三点,∴(32x 2+1)+(ln x -y )=1,∴y =32x 2+ln x . (2)∵f (x )=32x 2+ln x ,∴f ′(x )=3x +1x =3x 2+1x,∵f (x )=32x 2+ln x 的定义域为(0,+∞),∴f ′(x )=3x 2+1x 在(0,+∞)上恒正,∴y =f (x )在(0,+∞)上为增函数, 即y =f (x )的单调增区间为(0,+∞).(理)(2014·河北冀州中学期中)已知函数f (x )=ax 3+bx 2+cx +a 2(a >0)的单调递减区间是(1,2)且满足f (0)=1.(1)求f (x )的解析式;(2)对任意m ∈(0,2],关于x 的不等式f (x )<12m 3-m ln m -mt +3在x ∈[2,+∞)上有解,求实数t的取值范围.[解析] (1)由f (0)=a 2=1,且a >0,可得a =1. 由已知,得f ′(x )=3ax 2+2bx +c =3x 2+2bx +c , ∵函数f (x )=ax 3+bx 2+cx +a 2的单调递减区是(1,2), ∴f ′(x )<0的解是1<x <2.所以方程3x 2+2bx +c =0的两个根分别是1和2,∴⎩⎪⎨⎪⎧3+2b +c =0,12+4b +c =0,得⎩⎪⎨⎪⎧b =-92,c =6.∴f (x )=x 3-92x 2+6x +1.(2)由(1),得f ′(x )=3x 2-9x +6=3(x -1)(x -2),∵当x >2时,f ′(x )>0,∴f (x )在[2,+∞)上单调递增,x ∈[2,+∞)时,f (x )min =f (2)=3, 要使f (x )<12m 3-m ln m -mt +3在x ∈[2,+∞)上有解,应有12m 3-m ln m -mt +3>f (x )min ,∴12m 3-m ln m -mt +3>3, mt <12m 3-m ln m 对任意m ∈(0,2]恒成立,即t <12m 2-ln m 对任意m ∈(0,2]恒成立.设h (m )=12m 2-ln m ,m ∈(0,2],则t <h (m )min ,h ′(m )=m -1m =m 2-1m =(m -1)(m +1)m,令h ′(m )=0得m =1或m =-1, 由m ∈(0,2],列表如下:∴当m =1时,h (m )min =h (m )极小值=12,∴t <12.22.(本小题满分14分)(文)(2013·泗阳县模拟)某生产旅游纪念品的工厂,拟在2013年度将进行系列促销活动.经市场调查和测算,该纪念品的年销售量x 万件与年促销费用t 万元之间满足3-x 与t +1成反比例.若不搞促销活动,纪念品的年销售量只有1万件.已知工厂2013年生产纪念品的固定投资为3万元,每生产1万件纪念品另外需要投资32万元.当工厂把每件纪念品的售价定为:“年平均每件生产成本的150%”与“年平均每件所占促销费一半”之和时,则当年的产量和销量相等.(利润=收入-生产成本-促销费用)(1)求出x 与t 所满足的关系式;(2)请把该工厂2013年的年利润y 万元表示成促销费t 万元的函数; (3)试问:当2013年的促销费投入多少万元时,该工厂的年利润最大? [解析] (1)设比例系数为k (k ≠0).由题意知,3-x =kt +1.又t =0时,x =1.∴3-1=k 0+1.∴k =2,∴x 与t 的关系是x =3-2t +1(t ≥0).(2)依据题意,可知工厂生产x 万件纪念品的生产成本为(3+32x )万元,促销费用为t 万元,则每件纪念品的定价为:(3+32x x ·150%+t2x)元/件.于是,y =x ·(3+32x x ·150%+t2x )-(3+32x )-t ,化简得,y =992-32t +1-t2(t ≥0).因此,工厂2013年的年利润y =992-32t +1-t2(t ≥0)万元.(3)由(2)知,y =992-32t +1-t2(t ≥0)=50-(32t +1+t +12)≤50-232t +1·t +12=42(当t +12=32t +1,即t =7时,等号成立).所以,当2013年的促销费用投入7万元时,工厂的年利润最大,最大利润为42万元. (理)(2014·安徽屯溪一中质检)某沿海地区养殖的一种特色海鲜上市时间仅能持续5个月,预测上市初期和后期会因供应不足使价格呈持续上涨态势,而中期又将出现供大于求,使价格连续下跌.现有三种价格模拟函数:①f (x )=p ·q x ;②f (x )=px 2+qx +1;③f (x )=x (x -q )2+p .(以上三式中p ,q 均为常数,且q >1).(1)为准确研究其价格走势,应选哪种价格模拟函数(不必说明理由);(2)若f (0)=4,f (2)=6,求出所选函数f (x )的解析式(注:函数定义域是[0,5].其中x =0表示8月1日,x =1表示9月1日,…,以此类推);(3)在(2)的条件下研究下面课题:为保证养殖户的经济效益,当地政府计划在价格下跌期间积极拓宽外销,请你预测该海鲜将在哪几个月份内价格下跌.[分析] (1)利用价格呈现前几次与后几次均连续上升,中间几次连续下降的趋势,故可从三个函数的单调上考虑,前面两个函数没有出现两个递增区间和一个递减区间,应选f (x )=x (x -q )2-p 为其模拟函数;(2)由题中条件:f (0)=4,f (2)=6,得方程组,求出p ,q 即可得到f (x )的解析式;(3)确定函数解析式,利用导数小于0,即可预测该海鲜产品在哪几个月份内价格下跌.[解析] (1)根据题意,应选模拟函数f (x )=x (x -q )2+p .(2)∵f (0)=4,f (2)=6,∴⎩⎪⎨⎪⎧ p =4,(2-q )2=1,∴⎩⎪⎨⎪⎧p =4,q =3,所以f (x )=x 3-6x 2+9x +4(0≤x ≤5).(3)f (x )=x 3-6x 2+9x +4,f ′(x )=3x 2-12x +9, 令f ′(x )<0得,1<x <3,又∵x ∈[0,5],∴f (x )在(0,1),(3,5)上单调递增,在(1,3)上单调递减. 所以可以预测这种海鲜将在9月,10月两个月内价格下跌.。
北京市朝阳区高三年级第二次综合练习文科综合试卷2014.5第一部分选择题(共35小题,共l40分)1.图l中,圣若阿金地区A.终年受赤道低压带控制,降水多B.位于东南信风的迎风坡,降水多C.受自南向北的暖流影响,湿度大D.亚热带常绿硬叶林分布范围广2.图2为南亚某岛示意图,图中A.该岛的东、西岸各有一山脉纵贯B.甲地1月份降水量比7月份的多C.该岛的南北距离超过600千米D.乙河水位季节变化小,水流平缓3.我国江南某林场有一树桩,一群大雁正向树桩M侧方向长途飞行(图3)。
此季节我国A.华北沙尘暴天气频发B.湖南省盛行西北季风C.西北山地雪线逐渐降低D.东北昼长夜短且昼渐短读南水北调中线示意图(图4),回答4~5题。
4.丹江口地区较北京A.进入雨季晚B.年降水量少C.下渗作用弱D.水资源丰富5.大量调水后,汉江的丹江口下游A.水体污染减轻B.河流对地下水的补给减少C.航运能力提高D.河流对河道侵蚀作用增强读丹霞地貌景观图(图5)及其形成示意图(图6),回答6-7题。
6.丹霞地貌形成过程是A .固结成岩—风化、侵蚀—地壳抬升B .固结成岩—地壳运动、裂隙—侵蚀C .地壳下沉—侵蚀、搬运—固结成岩D .变质作用—风化剥蚀、搬运—堆积 7.关于丹霞地貌的类型A .甲为干旱峰林型B .甲为湿润山地型C .乙为湿润峰林型D .乙为干旱峡谷型 读图7,回答8—9题。
8.若①②③④表示不同历史阶段人口增长特点,则其发展顺序是 A .①→②→③→④ B .①→④→②→③ C .④→①→②→③ D .④→③→②→①9.若①②③④为城市的不同发展阶段,则 A .①人口老龄化B .②适宜发展劳动力密集型产业C .③城市化处于高水平的后期阶段D .④人口迁出量大于人口迁入量读某公司推出的旅游线路图(图8),回答l0-11题。
10.图内A .景点在苏、皖、浙、闽四省B .为壮族的主要广布地区C .地形以山地、高原为主D .各省较少受到台风影响 11.该线路A .旅游应防暴雨引发的风暴潮B .适合老年人夏季四日休闲游C .景观类型丰富,地域组合好D .北京游客的规模较宁夏的小12.观察《讲经图》,所讲内容最有可能是 A.《诗》《书》《礼》《易》《春秋》 B.《伤寒杂病论》 C.《四书章句集注》 D.《天下郡国利病书》13.唐太宗把各地都督、刺吏及其他重要官吏的名字写在屏风上,“得其在官善恶之迹,皆注于名下,以备黜陟”。
北京市朝阳区高三年级第二次综合练习语文试卷2014.5(考试时间150分钟满分150分)本试卷共6页。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,请交回答题卡。
一、本大题共7小题,共16分。
阅读下面文字,按要求完成1~6题。
人们常把人生看成一种占有物,必欲向之获取最大效益而后快,因此多有唯利是图、贪得无厌的行径。
但人生是占有不了的。
毋宁说,它是侥幸落到我们手上的一件暂.时的礼物,我们迟早要把它交还。
在终极的意义上,人世间的成功和失败、幸福和灾难,都只是过眼烟云,彼此并无实质的区别。
从呱.呱坠地开始,人们习惯于得到,而不习惯于失去。
但是,“人有旦夕祸福”,(既然/即使)生而为人,就得有承受旦夕祸福的精神准备和勇气,否则很容易在遭到重大失去之后一蹶不振。
甲。
布施的本义是教人去除(贪鄙/卑鄙)之心,由不执著于财物,进而不执著于一切身外之物,乃至于这尘世的生命。
正如佛家的一.幅.对联所说:“身心放下于当下,乙”。
佛教把布施列为“六度”之首,即意欲把人从迷惑的此岸(渡/度)向觉悟的彼岸。
俗众借布施积善图报,寺庙靠布施敛财致富....,这实在是小和尚念歪了老祖宗的经。
我始终把佛教看作是古今中外最透彻的人生哲学,对它后来不伦不类的演变实在是刮目相看。
肖伯纳说:“人生有两大悲剧,一是没有得到你心爱的东西,另一是得到了你心爱的东西。
”这话的立足点是占有,所以才会有占有欲未得满足的痛苦和已得满足的无聊这双重悲剧。
如果把立足点移到创造上,以审美的眼光看人生,我们是可以反其意而说的:人生有两大快乐,一是没有得到你心爱的东西,于是你可以去寻求和创造;另一是得到了你心爱的东西,于是你可以去(品味/品位)和体验。
(选自周国平《不占有》,有删改)1.文中加点字的读音和加点词语书写不正确...的一项是(2分)A.暂时(zàn)B.呱呱坠地(gū)C.一幅D.敛财致富2.文中黑体字成语运用不当..的一项是(2分)A.贪得无厌B.过眼烟云C.一蹶不振D.刮目相看3.文中括号内词语运用全部正确的一项是(2分)A.即使贪鄙度品位B.既然卑鄙度品位C.既然贪鄙渡品味D.即使卑鄙渡品味4.填入文中横线甲处的过渡句与上下文衔接最恰当的一项是(2分)A.要么被动失去,要么主动布施B.为了习惯失去,有时不妨主动失去——布施C.习惯布施,就是习惯失去D.几乎所有宗教都倡导布施5.将下列句子填入文中横线乙处,对仗最工整的一项是(2分)A.名利超然即泰然B.真入法门圣默然C.迷津总在利当前D.看穿世事意清闲6.针对萧伯纳和周国平对人生的认识,下列理解不正确...的一项是(3分)A.萧伯纳从占有的角度论述人生,看到了人生有两大悲剧。
函数的概念与基本初等函数1.【云南省玉溪市第一中学2019届高三第二次调研考试数学】函数()23x f x x =+的零点所在的一个区间是A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)2.【云南省玉溪市第一中学2019届高三第二次调研考试数学】下列函数中,既是偶函数,又在区间(0,)+∞上单调递减的函数是 A .3x y =B .1ln||y x = C .||2x y =D .cos y x =3.【山东省德州市2019届高三第二次练习数学】设函数()()2log 1,04,0x x x f x x ⎧-<=⎨≥⎩,则()3f -+()2log 3f =A .9B .11C .13D .154.【山东省济宁市2019届高三二模数学】已知f(x)是定义在R 上的周期为4的奇函数,当x ∈(0,2)时,f(x)=x 2+lnx ,则f(2019)= A .−1 B .0 C .1D .25.【黑龙江省哈尔滨市第三中学2019届高三第二次模拟数学】函数22()log (34)f x x x =--的单调减区间为A .(,1)-∞-B .3(,)2-∞- C .3(,)2+∞D .(4,)+∞6.【山东省烟台市2019届高三3月诊断性测试(一模)数学】若函数()f x 是定义在R 上的奇函数,1()14f =,当0x <时,2()log ()f x x m =-+,则实数m = A .1-B .0C .1D .27.【北京市房山区2019届高三第一次模拟测试数学】关于函数f(x)=x −sinx ,下列说法错误的是A .f (x )是奇函数B .f (x )在(−∞,+∞)上单调递增C .x =0是f (x )的唯一零点D .f (x )是周期函数8.【河南省郑州市2019届高三第三次质量检测数学】我国著名数学家华罗庚先生曾说:数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休,在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数的图象的特征,如函数()441x x f x =-的图象大致是A .B .C .D .9.【四川省百校2019届高三模拟冲刺卷】若函数()y f x =的大致图象如图所示,则()f x 的解析式可以是A .()e e x xxf x -=+B .()e e x xxf x -=-C .()e e x xf x x -+=D .()e e x xf x x--=10.【天津市北辰区2019届高考模拟考试数学】已知函数f (x )是定义在R 上的偶函数,且在[0,+∞)上单调递增,则三个数a =f (−log 313),b =f (log 1218),c =f (20.6)的大小关系为A .a >b >cB .a >c >bC .b >a >cD .c >a >b11.【宁夏银川一中2018届高三第二次模拟考试数学】已知不等式xy ≤ax 2+2y 2对于x ∈[1,2],y ∈[2,3]恒成立,则a 的取值范围是 A .[1,+∞) B .[−1,4) C .[−1,+∞)D .[−1,6]12.【北京市朝阳区2019届高三第二次(5月)综合练习(二模)数学】已知函数2,(),x x a f x x x a ⎧≥=⎨-<⎩,若函数()f x 存在零点,则实数a 的取值范围是 A .(),0-∞ B .(),1-∞ C .()1,+∞D .()0,+∞13.【山东省烟台市2019届高三5月适应性练习(二)数学】已知函数()y f x =的定义域为R ,)1(+x f 为偶函数,且对121x x ∀<≤,满足()()01212<--x x x f x f .若(3)1f =,则不等式()2log 1f x <的解集为 A .1,82⎛⎫ ⎪⎝⎭B .)8,1(C .10,(8,)2⎛⎫+∞ ⎪⎝⎭D .(,1)(8,)-∞+∞14.【重庆西南大学附属中学校2019届高三第十次月考数学】已知(2)f x +是偶函数,()f x 在(]2-∞,上单调递减,(0)0f =,则(23)0f x ->的解集是 A .2()(2)3-∞+∞,, B .2(2)3, C .22()33-,D .22()()33-∞-+∞,, 15.【山东省德州市2019届高三第二次练习数学】已知定义在R 上的函数()f x 在区间)[0+∞,上单调递增,且()1y f x =-的图象关于1x =对称,若实数a 满足()()2log 2f a f <,则a 的取值范围是A .10,4⎛⎫ ⎪⎝⎭B .1,4⎛⎫+∞⎪⎝⎭C .1,44⎛⎫⎪⎝⎭D .()4,+∞16.【陕西省西安市2019届高三第三次质量检测数学】若定义在R 上的函数f (x )满足f(x +2)=f(x)且x ∈[−1,1]时,f (x )=|x |,则方程f (x )=log 3|x |的根的个数是 A .4 B .5 C .6D .717.【广东省汕头市2019届高三第二次模拟考试(B 卷)数学】已知函数()211,02,0x x x f x xx +⎧+-<⎪=⎨⎪≥⎩,()22g x x x =--,设b 为实数,若存在实数a ,使得()()2g b f a +=成立,则b 的取值范围为A .[]1,2-B .37,22⎡⎫-⎪⎢⎣⎭ C .37,22⎡⎤-⎢⎥⎣⎦D .3,42⎛⎤-⎥⎝⎦18.【云南省玉溪市第一中学2019届高三第二次调研考试数学】若()log ()f x x 12=2+1,则()f x 的定义域为____________.19.【山东省滨州市2019届高三第二次模拟(5月)考试数学】若函数f(x)=x 2−(a −2)x +1(x ∈R)为偶函数,则log a 27+log 1a87=__________.20.【湖南省长沙市第一中学2019届高三下学期高考模拟卷(一)数学】若函数()f x 称为“准奇函数”,则必存在常数a ,b ,使得对定义域的任意x 值,均有()(2)2f x f a x b +-=,已知1)(-=x xx f 为准奇函数”,则a +b =_________.21.【广东省深圳市深圳外国语学校2019届高三第二学期第一次热身考试数学】函数()211log 1ax f x x x+=+-为奇函数,则实数a =__________.22.【东北三省三校(辽宁省实验中学、东北师大附中、哈师大附中)2019届高三第三次模拟考试数学】若函数f (x )={2x +1mx +m −1 ,x ≥0,x <0在(−∞,+∞)上单调递增,则m 的取值范围是__________.23.【河南省濮阳市2019届高三5月模拟考试数学】已知直线l 与曲线31y x x =-+有三个不同的交点()11,A x y ,()22,B x y ,()33,C x y ,且||||AB AC =,则()31i i i x y =+=∑__________.。
北京市朝阳区高三年级第二次综合练习数学学科测试(文史类)2014.5(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. (1)若全集{},,,U a b c d =,{},A a b =,{}B c =,则集合{}d 等于 (A )()U AB ð (B )A B (C )A B (D )()U AB ð (2)下列函数中,既是奇函数又在区间0,+∞()上单调递增的函数为(A ) sin y x = (B )ln y x = (C )3y x = (D ) 2x y = (3)已知抛物线22x y =,则它的焦点坐标是(A )1,04⎛⎫⎪⎝⎭ (B )10,2⎛⎫ ⎪⎝⎭ (C )10,4⎛⎫ ⎪⎝⎭ (D )1,02⎛⎫⎪⎝⎭(4)执行如图所示的程序框图.若输入3a =,则输出i 的值是(A )2 (B ) 3 (C ) 4 (D ) 5(5)由直线10x y -+=,50x y +-=和10x -=)用不等式组可表示为(A )10,50,1.x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩ (B )10,50,1.x y x y x -+≥⎧⎪+-≤⎨⎪≥⎩ (C )10,50,1.x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩ (D )10,50,1.x y x y x -+≤⎧⎪+-≤⎨⎪≤⎩(6)在区间ππ[-,]上随机取一个数x ,则事件:“cos 0x ≥”的概率为 (A )14 (B ) 34 (C )23 (D )12(7)设等差数列{}n a 的公差为d ,前n 项和为n S .若11a d ==,则8n nS a +的最小值为 (A )10 (B )92 (C )72 (D)12+ ( 8 )已知平面上点{2200(,)()()16,P x y x x y y ∈-+-=其中}22004x y +=,当0x ,0y 变化时,则满足条件的点P 在平面上所组成图形的面积是(A) 4π (B) 16π ( C) 32π (D )36π第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9.计算12i1i+=- . 10.已知两点()1,1A ,()1,2B -,若12BC BA =,则C 点坐标是 . 11.圆心在x 轴上,半径长是4,且与直线5x =相切的圆的方程是 .12.由两个四棱锥组合而成的空间几何体的三视图如图所示,其体积是 ;表面积是 .13.设一列匀速行驶的火车,通过长860m 的隧道时,整个车身都在隧道里的时间是22s .该列车以同样的速度穿过长790m 的铁桥时,从车头上桥,到车尾下桥,共用时33s ,则这列火车的长度为___m .22俯视图侧视图正视图(第12题图)14.在如图所示的棱长为2的正方体1111ABCD A B C D -中,作与平面1ACD 平行的截面,则截得的三角形中面积最大的值是___; 截得的平面图形中面积最大的值是___.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(满分13分)在ABC 中,a ,b ,c 分别是角A B C ,,的对边.已知a =π3A =.(Ⅰ)若b =C 的大小;(Ⅱ)若2c =,求边b 的长. 16. (本小题满分13分)某市规定,高中学生在校期间须参加不少于80小时的社区服务才合格.某校随机抽取20位学生参加社区服务的数据,按时间段75,80),80,85),[85,90),[90,95),[95,100][[(单位:小时)进行统计,其频率分布直方图如图所示. (Ⅰ)求抽取的20人中,参加社区服务时间不少于90小时的学生人数; (Ⅱ)从参加社区服务时间不少于90小时的学生中任意选取2人,求所选学生的参加社区服务时间在同一时间段内的概率.17. (本小题满分14分)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧面PAD ⊥底面ABCD .(Ⅰ)若E ,F 分别为PC ,BD 中点,求证:EF ∥平面PAD ;(Ⅱ)求证:PA ⊥CD ;(Ⅲ)若2PA PD AD ==,AA求证:平面PAB ⊥平面PCD .18.(本小题满分13分)已知函数e ()xa f x x⋅=(a ∈R ,0a ≠).(Ⅰ)当1a =时,求曲线()f x 在点()1,(1)f 处切线的方程; (Ⅱ)求函数()f x 的单调区间;(Ⅲ)当()0,x ∈+∞时,若()f x 1≥恒成立,求a 的取值范围. 19.(本小题满分14分)已知椭圆C 的中心在原点O ,焦点在x 轴上,离心率为12,右焦点到右顶点的距离为1. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线:l 10mx y ++=与椭圆C 交于,A B 两点,是否存在实数m ,使O A O B O A O B +=-成立?若存在,求m 的值;若不存在,请说明理由.20.(本小题满分13分)已知函数()f x 对任意,x y ∈R 都满足()()()1f x y f x f y +=++,且1()02f =,数列{}n a 满足:()na f n =,*n ∈N .(Ⅰ)求(0)f 及(1)f 的值;(Ⅱ)求数列{}n a 的通项公式; (Ⅲ)若311()()42n naa nb +=-,试问数列{}n b 是否存在最大项和最小项?若存在,求出最大项和最小项;若不存在,请说明理由.北京市朝阳区高三年级第二次综合练习15. (Ⅰ)解:由正弦定理sin sin a b A B =,得=,解得sin 2B =. 由于B 为三角形内角,b a <,则4B π=,所以3412C ππ5π=π--=. ………6分 (Ⅱ)依题意,222cos 2b c a A bc+-=,即2141224b b +-=.整理得2280b b --=, 又0b >,所以4b =. ………13分另解:由于sin sin a cA C=2sin C =,解得1sin 2C =. 由于a c >,所以π6C =.由π3A =,得π2B =.由勾股定理222b c a =+,解得4b =. …13分 16. 解:(Ⅰ)由题意可知,参加社区服务在时间段[90,95)的学生人数为200.0454⨯⨯=(人),参加社区服务在时间段[95,100]的学生人数为200.0252⨯⨯=(人). 所以参加社区服务时间不少于90小时的学生人数为 4+26=(人). ………5分 (Ⅱ)设所选学生的服务时间在同一时间段内为事件A .由(Ⅰ)可知,参加社区服务在时间段,95)[90的学生有4人,记为,,,a b c d ; 参加社区服务在时间段5,100[9]的学生有2人,记为,A B .从这6人中任意选取2人有,,,,,,,,,,,,,,ab ac ad aA aB bc bd bA bB cd cA cB dA dB AB共15种情况.事件A 包括,,,,,,ab ac ad bc bd cd AB 共7种情况. 所以所选学生的服务时间在同一时间段内的概率7()15P A =.………13分 17. 证明:(Ⅰ)如图,连结AC .因为底面ABCD 是正方形,所以AC 与BD 互相平分又因为F 是BD 中点,所以F 是AC 中点.在△PAC 中,E 是PC 中点,F 是AC 中点, 所以EF ∥PA .又因为EF ⊄平面PAD ,APA ⊂平面PAD ,所以EF ∥平面PAD . ………4分 (Ⅱ)因为平面PAD ⊥底面ABCD ,且平面PAD 平面=ABCD AD ,又CD AD ⊥, 所以CD ⊥面PAD .又因为PA ⊂平面PAD , 所以CD PA ⊥.即PA ⊥CD . …9分(Ⅲ)在△PAD 中,因为PA PD AD ==,所以PA PD ⊥. 由(Ⅱ)可知PA ⊥CD ,且=CDPD D ,所以PA ⊥平面PCD .又因为PA ⊂平面PAB ,所以面PAB ⊥平面PCD . …14分18. (Ⅰ)22e e e (1)()x x x ax a a x f x x x ⋅--'==,0x ≠.当1a =时,2e (1)()x x f x x -'=.依题意(1)0f '=,即在1x =处切线的斜率为0.把1x =代入e ()xf x x=中,得(1)e f =.则曲线()f x 在1x =处切线的方程为e y =. ………………….4分(Ⅱ)函数()f x 的定义域为{}0x x ≠.由于22e e e (1)()x x x ax a a x f x x x ⋅--'==.(1)若0a >,当()0f x '>,即1x >时,函数()f x 为增函数; 当()0f x '<,即0x <和01x <<时,函数()f x 为减函数.(2)若0a <, 当()0f x '>,即0x <和01x <<时,函数()f x 为增函数;当()0f x '<,即1x >时,函数()f x 为减函数.综上所述,0a >时,函数()f x 的单调增区间为()1,+∞;单调减区间为(),0-∞,()0,1.0a <时, 函数()f x 的单调增区间为(),0-∞,()0,1;单调减区间为()1,+∞.………………….9分(Ⅲ)当()0,x ∈+∞时,要使()f x =e 1xa x⋅≥恒成立,即使e x x a ≥在()0,x ∈+∞时恒成立. 设()e x x g x =,则1()exxg x -'=.可知在01x <<时,()0g x '>,()g x 为增函数; 1x >时,()0g x '<,()g x 为减函数.则max 1()(1)eg x g ==.从而1e a ≥.另解:(1)当0a <时,()e 1a f a =<,所以()f x 1≥不恒成立.(2)当0a >且()0,x ∈+∞时,由(Ⅰ)知,函数()f x 的单调增区间为()1,+∞,单调减区间为()0,1.所以函数()f x 的最小值为(1)e f a =,依题意(1)e 1f a =≥,解得1e a ≥. 综上所述,1ea ≥. .13分 19. (Ⅰ)设椭圆C 的方程为22221x y a b+=()0a b >>,半焦距为c .依题意1,21.c e a a c ⎧==⎪⎨⎪-=⎩ 解得1c =,2a =,所以2223b a c =-=.所以椭圆C 的标准方程是22143x y +=. ………………….4分 (Ⅱ)不存在实数m ,使||||OA OB OA OB +=-,证明如下:把1y mx =--代入椭圆C:223412x y +=中,整理得22(34)880m x mx ++-=. 由于直线l 恒过椭圆内定点()0,1-,所以判别式0∆>. 设1122(,),(,)A x y B x y ,则122843m x x m +=-+,122843x x m -⋅=+. 依题意,若||||OA OB OA OB +=-,平方得0OA OB ⋅=. 即12121212(1)(1)0x x y y x x mx mx +=+--⋅--=, 整理得21212(1)()10m x x m x x ++++=,所以2(1)m +2843m -+2281043m m -+=+, 整理得2512m =-,矛盾. 所以不存在实数m ,使||||OA OB OA OB +=-. ………………….14分 20. 解:(Ⅰ)在()()()1f x y f x f y +=++中,取0x y ==,得(0)1f =-, 在()()()1f x y f x f y +=++中,取12x y ==,得(1)1f =,…………2分 (Ⅱ)在()()()1f x y f x f y +=++中,令x n =,1y =, 得(1)()2f n f n +=+,即12n n a a +-=.所以{}n a 是等差数列,公差为2,又首项1(1)1a f ==,所以21n a n =-,*n ∈N . …………6分 (Ⅲ){}n b 存在最大项和最小项令2111()()22na n t -==,则22111()816256nb t t t =-=--, 显然102t <≤,又因为N n *∈,所以当12t =,即1n =时,{}n b 的最大项为1316b =. 当132t =,即3n =时,{}n b 的最小项为331024b =-. …………13分。
北京市朝阳区高三年级第一次综合练习数学试卷(文史类)2015.4一、选择题:(1)已知全集{,,,}U a b c d =,集合{,},{,}A a b B b c ==,则()UA B 等于( )A .{}bB .{}dC .{,,}a c dD .{,,}a b c【难度】1【考点】集合的运算 【答案】B 【解析】 由题意得:{},,A B a b c =,所以{}()U A B d =故选B(2)已知命题:p x ∀∈R ,sin 1x ≤,则( )A .:p ⌝x ∀∈R ,sin 1x ≥B .:p ⌝x ∀∈R , sin 1x >C .:p ⌝0x ∃∈R , 0sin 1x ≥D .:p ⌝ 0x ∃∈R ,0sin 1x > 【难度】1【考点】全称量词与存在性量词 【答案】D 【解析】全称命题的否定是存在性命题,所以命题:p x ∀∈R ,sin 1x ≤的否定为::p ⌝ 0x ∃∈R ,0sin 1x >故选D(3)若抛物线22(0)y px p =>的焦点与双曲线222x y -=的右焦点重合,则p 的值为( )A B .2 C .4 D .【难度】1 【考点】抛物线 【答案】C 【解析】由题意得:抛物线22(0)y px p =>的焦点为(,0)2p双曲线222x y -=的右焦点为(2,0) 所以,4p = 故选C(4)如图所示的程序框图表示的算法功能是( )A .计算123456S =⨯⨯⨯⨯⨯的值B .计算12345S =⨯⨯⨯⨯的值C .计算1234S =⨯⨯⨯的值D .计算1357S =⨯⨯⨯的值 【难度】2【考点】算法和程序框图 【答案】B 【解析】程序执行过程如下:1,2S t ==,符合条件100S ≤,进入循环体; 122,3S t =⨯==,符合条件100S ≤,进入循环体; 236,4S t =⨯==,符合条件100S ≤,进入循环体; 6424,5S t =⨯==,符合条件100S ≤,进入循环体; 245120,6S t =⨯==,不符合条件100S ≤,跳出循环体;输出120S =;所以该程序是计算12345S =⨯⨯⨯⨯的值, 故选B (5)已知113log 2x =,1222x -=,3x 满足3331()log 3x x =,则( )A .123x x x <<B .132x x x <<C .213x x x <<D .312x x x << 【难度】2【考点】零点与方程 【答案】A 【解析】 分别作出13log y x =,2x y =,1()3x y =,3log y x =的图象有图可知:110x -<<,201x <<,312x << 所以,123x x x << 故选A(6)函数ππ()2sin()cos()66f x x x =--图象的一条对称轴方程是( )A .π6x =B. π3x =C. 5π12x =D. 2π3x = 【难度】2【考点】三角函数的图像与性质 【答案】C 【解析】把选项依次代入函数ππ()2sin()cos()66f x x x=--只有C选项得到的值为1故选C(7)已知实数x,y满足20,20,0,x yx yy t+≥⎧⎪-≤⎨⎪≤≤⎩其中0t>.若3z x y=+的最大值为5,则z的最小值为()A.52B.1C.0D.1-【难度】2【考点】线性规划【答案】D【解析】作出可行域如下图:由题意可知当z取最大值时,目标函数为:35y x=-+联立235y xy x=⎧⎨=-+⎩得:(1,2);所以2t=联立22y xy=-⎧⎨=⎩得:(1,2)-,代入目标函数可求得:min1z=-故选D(8)已知边长为3的正方形ABCD与正方形CDEF所在的平面互相垂直,M为线段CD上的动点(不含端点),过M作//MH DE交CE于H,作//MG AD交BD于G,连结GH.设CM x=(03)x<<,则下面四个图象中大致描绘了三棱锥C GHM-的体积y与变量x变化关系的是()【难度】3 【考点】函数综合 【答案】A【解析】如图所示:由题意得:CM MH x ==,3DM GM x ==-;11(3)22GMH S GM MH x x ∆=⋅=-231111(3)(3)3326C MGH GMH V S CM x x x x x -∆=⋅=⋅-⋅=-1()(2)2V x x x '=-,所以x(0,2) 2 (2,3)3()f x '+-()f x(0)0f =单增单减(3)0f =故选A 二、填空题:(9)i 为虚数单位,计算1i1i+-= . 【难度】1【考点】复数综合运算 【答案】i【解析】1i (1i)(1+i)21i (1i)(1+i)2ii ++===-- 故答案为i(10)已知平面向量a ,b 满足1==a b ,a 与b 的夹角为60︒,则()⋅+=a a b . 【难度】1【考点】数量积的应用 【答案】32【解析】2()cos ,a a b a a b a a b a b ⋅+=+⋅=+⋅⋅<>1311122=+⨯⨯= 故答案为32(11)圆22:(2)(2)8C x y -+-=与y 轴相交于,A B 两点,则弦AB 所对的圆心角的大小为 . 【难度】2【考点】直线与圆的位置关系 【答案】90 【解析】由题意得:令0y =,解得:0x =或4x =即(0,0)A ,(4,0)B ,4AB =,又CA CB ==所以,ABC ∆为等腰直角三角形,其中90BCA ∠= 故答案为90(12)一个四棱锥的三视图如图所示,其中侧视图为正三角形,则该四棱锥的体积是 ,四棱锥侧面中最大侧面的面积是 .【难度】2【考点】空间几何体的三视图与直观图【答案】36;74【解析】由三视图可知,该几何体是一个四棱锥,直观图如下:其中底面是边长为1的正方形,高为32 PH=其体积为13311326V=⨯⨯⨯=;由直观图可知,四个侧面分别为:,,,PAB PBC PCD PDA∆∆∆∆这四个三角形均可看成以P为顶点的三角形,显然,PBC∆的高PE是四个三角形最长的高,所以2113711222PBCS BC PE∆⎛⎫==⨯+=⎪⎪⎝⎭37(13)稿酬所得以个人每次取得的收入,定额或定率减除规定费用后的余额为应纳税所得额,每次收入不超过4000元,定额减除费用800元;每次收入在4000元以上的,定率减除20%的费用.适用20%的比例税率,并按规定对应纳税额减征30%,计算公式为:(1)每次收入不超过4000元的:应纳税额=(每次收入额-800)×20%×(1-30%) (2)每次收入在4000元以上的:应纳税额=每次收入额×(1-20%)×20%×(1-30%). 已知某人出版一份书稿,共纳税280元,这个人应得稿费(扣税前...)为 元. 【难度】3 【考点】函数综合 【答案】2800 【解析】由题意得:设此人应得稿费(扣税前...)为x 元 先假设此人一份书稿稿费(扣税前...)符合条件(1),即4000x ≤ 则:280(800)20%(130%)x =-⨯⨯-, 解得:28004000x =≤,符合条件(1)再假设此人一份书稿稿费(扣税前...)符合条件(2),即4000x > 则:280(120%)20%(130%)x =⋅-⨯⨯-, 解得:25004000x =≤,不符合条件(2) 故答案为2800(14)记12x x -为区间12[,]x x 的长度.已知函数2xy =,x ∈[]2,a -(0a ≥),其值域为[],m n ,则区间[],m n 的长度的最小值是 . 【难度】3【考点】函数的定义域与值域 【答案】3 【解析】由题意得,函数2xy =的图像如图所示:当01a ≤≤时,函数2xy =的值域为[1,4],此时[],m n 的长度为3;当1a >时,函数2xy =的值域为[1,()]f a ,此时[],m n 的长度大于3;故答案为3 三、解答题:(15)在ABC ∆中,π3A =,6cos 3B =,6BC =. (Ⅰ)求AC 的长; (Ⅱ)求ABC ∆的面积. 【难度】3【考点】解斜三角形 【答案】见解析 【解析】(Ⅰ)因为6cos 3B =,(0,)B ∈π,又22sin cos 1B B +=, 所以3sin 3B =.由正弦定理得,sin sin AC BC B A =.33=. 所以4AC =.(Ⅱ)在ABC ∆中,sin sin(60)C B =+sin cos60cos sin 60B B =+13sin 2B B ==133623+32.所以1sin 2ABC S AC BC C ∆=⋅=1462⨯⨯⨯3+32=23+62. (16)某次考试结束后,为了解甲、乙两所学校学生的数学考试情况,随机抽取甲、乙两校各10名学生的考试成绩,得茎叶图如图所示(部分数据不清晰):(Ⅰ)请根据茎叶图判断哪个学校的数学成绩平均水平较高(直接写出结果);(Ⅱ)若在抽到的这20名学生中,分别从甲、乙两校随机各抽取1名成绩不低于90分的学生,求抽到的学生中, 甲校学生成绩高于乙校学生成绩的概率.【难度】3 【考点】概率综合 【答案】见解析 【解析】解:(Ⅰ)从茎叶图可以看出,乙校10名学生的考试成绩的平均分 高于甲校10名学生的考试成绩平均分,故乙校的数学成绩整体水平较高. (Ⅱ)设事件M :分别从甲、乙两校随机各抽取1名成绩不低于90分的同学, 抽到的学生中,甲校学生成绩高于乙校学生成绩. 由茎叶图可知,甲校成绩不低于90分的同学有2人,从小到大依次记为12,A A ;乙校成绩不低于90分的同学有5人, 从小到大依次记为12345,,,,B B B B B . 其中121234592,93,90,91,95,96,98.A A B B B B B分别从甲、乙两校各随机抽取1名成绩不低于90分的同学共有11121314152122232425,,,,,,,,,A B A B A B A B A B A B A B A B A B A B 这10种可能.其中满足“抽到的学生中,甲校学生成绩高于乙校学生成绩”共有11122122,,,A B A B A B A B 这4种可能.所以42()105P M ==. 即分别从甲、乙两校随机各抽取1名成绩不低于90分的同学, 抽到的学生中,甲校学生成绩高于乙校学生成绩的概率为25. (17)如图,在三棱柱111C B A ABC -中,各个侧面均是边长为2的正方形,D 为线段AC 的中点. (Ⅰ)求证:BD ⊥平面11A ACC ;(Ⅱ)求证:直线1AB ∥平面D BC 1;(Ⅲ)设M 为线段1BC 上任意一点,在D BC 1内的平面区域(包括边界)是否存在点E ,使CE ⊥DM ,并说明理由.【难度】3【考点】立体几何综合【答案】见解析【解析】(Ⅰ)证明:因为三棱柱的侧面是正方形,所以11,CC BC CC AC ,BC AC C . 所以1CC 底面ABC . 因为BD 底面ABC ,所以1CC BD .由已知可得,底面ABC 为正三角形.因为D 是AC 中点,所以BDAC . 因为1AC CC C ,所以BD平面11ACC A . (Ⅱ)证明:如图,连接1B C 交1BC 于点O ,连接OD .显然点O 为1B C 的中点.因为D 是AC 中点, 所以1//AB OD .又因为OD平面1BC D ,1AB 平面1BC D , 所以直线1//AB 平面1BC D .(Ⅲ)在D BC 1内的平面区域(包括边界)存在一点E ,使CE ⊥DM .此时点E 是在线段1C D 上.证明如下:过C 作1CE C D ⊥交线段1C D 于E ,由(Ⅰ)可知BD平面11ACC A ,而CE ⊂平面11ACC A , 所以BD CE .又1CE C D ⊥,1BDC D D ,所以CE 平面D BC 1. 又DM ⊂平面D BC 1,所以CE ⊥DM .(18)设数列{}n a 的前n 项和为n S ,且14a =,1n n a S +=,n *∈N .(Ⅰ)写出2a ,3a ,4a 的值;(Ⅱ)求数列{}n a 的通项公式;(Ⅲ)已知等差数列{}n b 中,有22b a =, 33b a =,求数列{}n n a b ⋅的前n 项和n T .【难度】3【考点】数列综合应用【答案】见解析【解析】(Ⅰ)解:因为14a =,1n n a S +=,所以2114a S a ===,3212448a S a a ==+=+=,4312344816a S a a a ==++=++=.(Ⅱ)当2n ≥时,11222n n n n n n a S S +-=-=-=.又当1n =时,114a S ==.所以4,1,2, 2.n n n a n =⎧=⎨≥⎩(Ⅲ)依题意,224b a ==,338b a ==.则由11428b d b d +=⎧⎨+=⎩得,10b =,4d =,则4(1)n b n =-. 所以20,1,(1)2, 2.n n n n a b n n +=⎧⋅=⎨-≥⎩所以2(1)2(*)n n n a b n n +⋅=-∈N .因为n T =1122334411...n n n n a b a b a b a b a b a b --++++++456120122232...(2)2(1)2n n n n ++=+⨯+⨯+⨯++-⨯+-⨯,所以567232122232...(2)2(1)2n n n T n n ++=⨯+⨯+⨯++-⨯+-⨯.所以4567232222...2(1)2n n n T n ++-=+++++--⨯41332(12)(1)216(2)212n n n n n -++-=--⨯=---⨯- . 所以316(2)2n n T n +=+-⨯.(19)已知椭圆2222:1(0)x y C a b a b +=>>的两个焦点分别为12(2,0),(2,0)F F -2F 的直线l (斜率不为0)与椭圆C 交于,A B 两点,线段AB 的中点为D ,O 为坐标原点,直线OD 交椭圆于,M N 两点.(Ⅰ)求椭圆C 的方程;(Ⅱ)当四边形12MF NF 为矩形时,求直线l 的方程.【难度】4【考点】圆锥曲线综合【答案】见解析【解析】解:(Ⅰ)由题意可得2222,,3,c c a a b c =⎧⎪⎪=⎨⎪=+⎪⎩解得a =b =故椭圆的方程为22162x y +=. (Ⅱ)由题意可知直线l 斜率存在,设其方程为(2)y k x =-,点11(,)A x y ,22(,)B x y ,33(,)M x y ,33(,)N x y --, 由221,62(2),x y y k x ⎧+=⎪⎨⎪=-⎩得2222(13)121260k x k x k +-+-=, 所以21221213k x x k +=+. 因为121224(4)13k y y k x x k-+=+-=+, 所以AB 中点22262(,)1313k k D k k-++. 因此直线OD 方程为30x ky +=0k .由2230,1,62x ky x y +=⎧⎪⎨+=⎪⎩解得232213y k =+,333x ky =-. 因为四边形12MF NF 为矩形,所以220F M F N ⋅=,即3333(2,)(2,)0x y x y -⋅---=.所以223340x y --=. 所以222(91)4013k k+-=+.解得k =.故直线l的方程为2)y x =-. (20)已知函数()()e xa f x x x =+,a ∈R .(Ⅰ)当0a =时,求曲线()y f x =在点(1,(1))f 处的切线方程;(Ⅱ)当1a =-时,求证:()f x 在(0,)+∞上为增函数;(Ⅲ)若()f x 在区间(0,1)上有且只有一个极值点,求a 的取值范围.【难度】4【考点】导数的综合运用【答案】见解析【解析】 解:函数()f x 定义域为{0}x x ≠,322()e x x x ax a f x x++-'=. (Ⅰ)当0a =时,()e x f x x =⋅,()f x '=(1)e x x +.所以(1)e,(1)2e f f '==.所以曲线()y f x =在点(1,(1))f 处的切线方程是e 2e(1)y x -=-,即2e e =0x y --.(Ⅱ) 当1a =-时,()f x '=3221e x x x x x +-+. 设()g x =321x x x +-+,则2()321(31)(1)g x x x x x '=+-=-+.令()(31)(1)0g x x x '=-+>得,13x >或1x <-,注意到0x >,所以13x >. 令()(31)(1)0g x x x '=-+<得,注意到0x >,得103x <<. 所以函数()g x 在1(0,)3上是减函数,在1(,)3+∞上是增函数. 所以函数()g x 在13x =时取得最小值,且122()0327g =>. 所以()g x 在(0,)+∞上恒大于零.于是,当(0,)x ∈+∞,()f x '=3221e 0x x x x x+-+>恒成立. 所以当1a =-时,函数()f x 在()0,+∞上为增函数.(Ⅱ)问另一方法提示:当1a =-时,()f x '=3221e x x x x x +-+. 由于3210x x x +-+>在()0,+∞上成立,即可证明函数()f x 在()0,+∞上为增函数.(Ⅲ)(Ⅱ)322()e ()xx x ax a f x x ++-'=. 设()h x =32x x ax a ++-,2()32h x x x a '=++.(1) 当0a >时,()0h x '>在(0,)+∞上恒成立,即函数()h x 在(0,)+∞上为增函数.而(0)0h a =-<,(1)20h =>,则函数()h x 在区间()0,1上有且只有一个零点0x , 使0()0f x '=,且在0(0,)x 上,()0f x ,在0,1x 上,()0f x ,故0x 为函数()f x 在区间()0,1上唯一的极小值点;(2)当0a =时,当x ()0,1时,2()320h x x x '=+>成立,函数()h x 在区间()0,1上为增函数,又此时(0)0h =,所以函数()0h x >在区间()0,1恒成立,即()0f x ,故函数()f x 在区间()0,1为单调递增函数,所以()f x 在区间()0,1上无极值;(3)当0a <时,()h x =3232(1)x x ax a x x a x ++-=++-. 当()0,1x ∈时,总有()0h x >成立,即()0f x '>成立, 故函数()f x 在区间()0,1上为单调递增函数,所以()f x 在区间()0,1上无极值.综上所述0a >.。
2014-2015年度豫晋冀高三第二次调研考试数学试卷(文科)考生注意:1.本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.2.请将各题答案填在试卷后面的答题卷上. 3.奉试卷主要考试内容:高考全部内容.第I 卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求的.1.设集合 {}1,2,3,4,5,6U =,集合 {}1,2,5A =,{}4,5,6则A B 等于A.{5} B .{}1,2 C. {}1,2,3 D. {}3,4,6 2.已知复数 241ii z+-=(i 为虚数单位),则z 等于 A. -l+3i 1 B.-l+2i C.l-3i D.l-2i3.设{}n a 是等差数列,若 52log 8a =,则 46a a +等于A.6B. 8C.9D.164.某校三个年级共有24个班,学校为了了解同学们的心理状况,将每个班编号,依次为l 到24,现用系统抽样方法,抽取4个班进行调查,著抽到编号之和为48,则抽到的最小编号为 A.2 B. 3 C. 4 D. 55.已知向量 (1,),(2,2)a k b ==,且a+b 与阿a 共线,那么 a b ⋅的值为 A .l B. 2 C. 3 D.46.已知双曲线 22221(0,0)x y a b a b-=>>的一条渐近线与圆 22(3)9x y -+=相变于A.B两点,若 2AB =,则该双曲线的离心率为A.8B. C 3 D.4 7.执行如图所示的程序框图,输出S 的值为A.3B. -6C. 10D. 128.已知P(x,y)为区域 2200y x x a⎧-≤⎨≤≤⎩内的任意一点,当该区域的面积为4时,z=2x-y 的最大值是A. 6B.0C. 2D.9函数 1(20)82sin()(0,0)32kx x y x x ππωϕϕ+-≤<⎧⎪=⎨+≤≤<<⎪⎩的图象如图,则11.,,226A k πωϕ===B.11,,223k πωϕ===C.11,,226k πωϕ=-==D.2,2,3k πωϕ=-==10.某四面体的三视图如图所示,该四面体的六条棱的长度中,最大的是A. B.C.D. ll.已知F 为抛物线 2y x =的焦点,点A ,B 在该抛物线上且位于x 轴的两侧, 2OA OB ⋅=(其中O 为坐标原点),则△AFO 与△BFO 面积之和的最小值是 A.8 B.6 C.2D. 12.设函数 32()2ln f x x ex mx x =-+-,记()()f x g x x=,若函数()g x 至少存在一个零点,则实m 数拼的取值范围是A. 21,e e ⎛⎤-∞+ ⎥⎝⎦ B. 210,e e⎛⎤+ ⎥⎝⎦C. 21,e e ⎛⎤++∞ ⎥⎝⎦ D. 2211,e e e e⎛⎤--+ ⎥⎝⎦第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分把答案填在答题卷中的横线上. 13.已知α为锐角,且 3cos()45πα+=,则sin α=________ . 14.某次测量发现一组数据 (,)i i x y 具有较强的相关性,并计算得 1y x =+,其中数据0(1,)y ,Y )因书写不清,只记得 0y 是[0,3]内的任意一个值,则该数据对应的残差的绝对值不大于l 的概率为__________.(残差=真实值一预测值)15.已知长方体 1111ABCD A BC D -.肉接于球O ,底面ABCD 是边长为2的正方形,E 为 1AA 的中点,OA ⊥平面BDE ,则球O 的表面积为___________. 16.设{}n a 是等比数列,公比q =, n S 为{}n a 的前n 项和,记2117,n nn n S S T n N a *+-=∈',设 0n T 为数列 {}n T 的最大项,则 0n =________.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边长,S 表示该三角形的面积,且阿22cos cos22cos B B B =+(1)求角B 的大小;(2)若a=2,S =b 的值 18.(本小题满分12分)如图,菱形ABCD 的边长为6, 60BAD ∠=, ACBD O =.将菱形ABCD 沿对角线AC折起,得到三棱锥,点M 是棱BC 的中点,DM = (1)求证:平面ABC ⊥平面MDO. (2)求三棱锥M-ABD 的体积.19.(本小题满分12分)某车间将10名技工平均分为甲、乙两组来加工某种零件,在单位时间内每个技工加工零件若干个,其中合格零件的个数如下表:(1)分别求出甲、乙两组技工在单位时间内完成合格零件的平均数及方差,并由此分析两组 技工的技术水平;(2)评审组从该车间甲、乙两组中各随机抽取1名技工,对其加工的零件进行检测,若两人完成合格零件个数之和超过14件,则称该车间“生产率高效”,求该车间“生产率高效”的 概率, 20.(本小题满分12分)已知椭圆 22221(0)x y a b a b +=>>的离心率为 2,且过点 .(1)求椭圆的标准方程.(2)四边形ABCD 的顶点在椭圆上,且对角线AC 、BD 过原点O.若 22AC BD b k k a⋅=-;(i)求 OA OB ⋅的最值;(ii)求证;四边形ABCD 的面积为定值.21.(本小题满分12分) 已知函数 211()122g x x x =--, 19()()ln ()28f xg x m x m R =+++∈. (l)若存在 0x >,使 ()0f x ≤成立,求实数m 的取值范围;(2)设 1m e <≤, ()()(1)H x f x m x =-+,证明:对任意的 []12,1,x x m ∈,恒有12()()1H x H x -<.请考生在22、23、24三题中任选一题作答,如果多选,则按所做的第一题计分.22.(本小题满分10分)选修4-1:几何证明选讲如图,△ABO 三边上的点C 、D 、E 都在O 上,已知AB//DE ,AC= CB . (l)求证:直线AB 是 O 的切线;(2)若AD=2,且 1tan 2ACD ∠=,求 O 的半径r 的长.23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立坐标系,直线 l 的参数方程为 x ty at =⎧⎨=⎩(t 为参数),曲线 1C 的方程为 (4sin )12ρρθ-=,定点A(6,0),点P 是 曲线 1C 上的动点,Q 为AP 的中点. (1)求点Q 的轨迹 2C 的直角坐标方程;(2)直线 l 与直线 2C 交于A ,B 两点,若 AB ≥,求实数a 的取值范围. 24.(本小题满分l0分)选修4-5:不等式选讲 已知函数 ()2123f x x x =++-. (l)求不等式 ()6f x ≤的解集;(2)若关于x 的不等式 ()1f x a <-的解集非空,求实数a 的取值范围。
2015届高三第二次月考试卷(文史类)(时间:120分钟,总分:150分)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={-1,0,1},N={x|x 2=x},则()M C MN =A.{-1,0,1}B.{0,1}C.{ -1}D.{1} 2.复数z=i (i+1)(i 为虚数单位)的共轭复数是A.1i --B. 1i -+C. 1i -D. 1i + 3.命题“若4πα=,则tan 1α=”的逆否命题是A.若α≠4π,则tan α≠1 B. 若α=4π,则tan α≠1C. 若tan α≠1,则α≠4πD. 若tan α≠1,则α=4π4.容量为20的样本数据,分组后的频数如下表则样本数据落在区间[10,40]的频率为A 0.35B 0.45C 0.55D 0.65 5.函数f(x)=xcos2x 在区间[0,2]π上的零点个数为A 2B 3C 4D 5 6.命题“存在一个无理数,它的平方是有理数”的否定是 A.任意一个有理数,它的平方是有理数 B.任意一个无理数,它的平方不是有理数 C.存在一个有理数,它的平方是有理数 D.存在一个无理数,它的平方不是有理数7 . sin cos αα-=,α∈(0,π),则sin 2α=A -1BCD 1 8. 设 a >b >0 ,C <0 ,给出下列三个结论① c a >cb② c a <c b ③ log b (a-c )>log a (b-c) 其中所有的正确结论的序号是A ①B ① ②C ② ③D ① ②③ 9. 将函数y =cos(21x +6π)的图象经过怎样的平移,可以得到函数y =cos 21x 的图象A 向左平移6π个单位长度 B 向右平移6π个单位长度 C 向右平移3π个单位长度 D 向左平移3π个单位长度10.函数y=12x 2-㏑x 的单调递减区间为A (-1,1]B (0,1]C [1,+∞)D (0,+∞) 二.填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡上对应题号的横上.11. 已知向量a=(1,0),b=(1,1),则与2a b +为____________;12. 阅读如图所示的程序框图,运行相应的程序,输出的结果s=_________;(第12题) (第13题)13. 若函数)sin()(ϕω+=x x f 的图象(部分)如图所示,则 ϕ的取值是______________ 14. 已知12cos(),(0)13πθθπ+=<<,则cos 2θ的值为_______________.15. 已知函数sin y x x =,它的图象的对称轴方程是 __________________.三.解答题:本大题共6小题,共75分. 解答应写出文字说明,证明过程或演算步骤.16. 在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c .角A ,B ,C 成等差数列。
北京市朝阳区高三年级第二次综合练习(文)
(考试时间120分钟 满分150分)
本试卷分为选择题(共40分)和非选择题(共110分)两部分
第一部分(选择题 共40分)
一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出
符合题目要求的一项.
1.设集合A {}(1)(2)0x x x =--?,集合{}1B x x =
<,则A B =U ( )
A .Æ
B .{}1x x =
C .{}12x x
# D .{}12x x -<?
2.在如图所示的正方形中随机掷一粒豆子,豆子落在该正方形内切圆的四分之一圆(如图阴影部分)中的概率是( ) A .
π4 B .π8 C .π16 D .π32
3.实数x ,y 满足不等式组0,
0,2,x y x y y -≥⎧⎪
+≤⎨⎪≥-⎩
,则目标函数3z x y =+的最小值是( )
A . 12-
B . 8-
C . 4-
D .0 4. 已知非零平面向量 , ,则“与共线”是“与共线”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件
5.执行如图所示的程序框图,输出S 的值为( ) A .0 B .1- C .12-
D .32
-
a b a b a +b -a b
6.
函数11,
()lg ,1,
x f x x x ìï-?ï=íï³ïî的零点个数是( )
A. 0
B.1
C.2
D.3
7.已知点A 为抛物线:C 2
4x y =上的动点(不含原点),过点A 的切线交x 轴于点B ,设抛物线C 的焦点为F ,则ABF Ð( )
A .一定是直角
B .一定是锐角
C .一定是钝角
D .上述三种情况都可能 8.已知某校一间办公室有四位老师甲、乙、丙、丁.在某天的某个时段,他们每人各做一
项工作,一人在查资料,一人在写教案,一人在批改作业,另一人在打印材料. 若下面4个说法都是正确的: ①甲不在查资料,也不在写教案; ②乙不在打印材料,也不在查资料; ③丙不在批改作业,也不在打印材料; ④丁不在写教案,也不在查资料.
此外还可确定:如果甲不在打印材料,那么丙不在查资料.根据以上信息可以判断( ) A .甲在打印材料 B .乙在批改作业 C .丙在写教案 D .丁在打印材料
第二部分(非选择题 共110分)
二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9.设为虚数单位,则 .
10.若中心在原点的双曲线的一个焦点是1(0,2)F -,一条渐近线的方程是,则
双曲线的方程为 .
11.一个四棱锥的三视图如图所示,则这个四棱锥的体积为 ;表面积为 .
12. 已知在中,,,,则sin A = ;的面积为 .
13.在圆C :()2
2
2(2)8x y -+-=内,过点(1,0)P 的最长的弦为AB ,最短的弦为DE ,
则四边形ADBE 的面积为 . 14.关于函数1
()42
x f x =
+的性质,有如下四个命题: ①函数()f x 的定义域为R ; ②函数()f x 的值域为(0,)+?; ③方程()f x x =有且只有一个实根; ④函数()f x 的图象是中心对称图形. 其中正确命题的序号是 .
i i(1i)-=C 0x y -=
C ABC
D 4C p =3
cos 5
B =5AB =AB
C D
三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)
已知函数x x x x x f 2
sin )cos sin 32(cos )(-+⋅=. (Ⅰ)求函数)(x f 在区间π[,π]2
上的最大值及相应的x 的值; (Ⅱ)若0()2,f x =且0(0,2π)x Î,求0x 的值.
16.(本小题满分13分)
已知递增的等差数列{}n a (*
n N Î)的前三项之和为18,前三项之积为120. (Ⅰ)求数列{}n a 的通项公式;
(Ⅱ)若点111(,)A a b ,222(,)A a b ,…,(,)n n n A a b (*
n N Î)从左至右依次都在函数2
3x
y =的图象上,求这n 个点123,,A A A ,…,n A 的纵坐标之和.
17.(本小题满分13分)
某学科测试,要求考生从,,A B C 三道试题中任选一题作答.考试结束后,统计数据显示共有420名学生参加测试,选择,,A B C 题作答的人数如下表:
(Ⅰ)某教师为了解参加测试的学生答卷情况,现用分层抽样的方法从420份试卷中抽出若干试卷,其中从选择A 题作答的试卷中抽出了3份,则应从选择,B C 题作答的试卷中各抽出多少份?
(Ⅱ)若在(Ⅰ)问被抽出的试卷中,选择,,A B C 题作答得优的试卷分别有2份,2份,1
份.现从被抽出的选择,,A B C 题作答的试卷中各随机选1份,求这3份试卷都得优的概率.
18.(本小题满分14分)
如图,在矩形ABCD 中,2AB AD =,M 为CD 的中点.将ADM ∆沿AM 折起,使得平面ADM ⊥平面ABCM .点O 是线段AM 的中点. (Ⅰ)求证:平面DOB ⊥平面ABCM ; (Ⅱ)求证:AD BM ⊥;
(Ⅲ)过D 点是否存在一条直线l ,同时满足以下两个条件:
①l Ì平面BCD ;②//l AM .请说明理由.
19.(本小题满分14分)
已知椭圆C :22
14
x y +=,O 为坐标原点,直线l 与椭圆C 交于,A B 两点,且
90AOB
?o .
(Ⅰ)若直线l 平行于x 轴,求AOB D 的面积;
(Ⅱ)若直线l 始终与圆2
2
2
(0)x y r r +=>相切,求r 的值.
20.(本小题满分13分)
已知函数()sin cos f x a x x =+,其中0a >.
(Ⅰ)当1a ³时,判断()f x 在区间π
[0,]4
上的单调性;
(Ⅱ)当01a <<2
()2f x t at <++对于x π
[0,]4恒成立,求实
数t 的取值范围.
参考答案。