二元一次方程组的应用——行程问题
- 格式:doc
- 大小:45.00 KB
- 文档页数:2
列方程解应用题——行程问题【知识要点】行程类应用题基本关系:路程=速度×时间相遇问题:甲、乙相向而行,则:甲走的路程+乙走的路程=总路程追及问题:甲、乙同向不同地,则:追者走的路程=前者走的路程+两地间的距离环形跑道问题:①甲、乙两人在环形跑道上同时同地同向出发:快的必须多跑一圈才能追上慢的。
②甲、乙两人在环形跑道上同时同地反向出发:两人第一次相遇时的总路程为环形跑道一圈的长度。
飞行问题,基本等量关系:顺风速度=无风速度+风速逆风速度=无风速度-风速∴ 顺风速度-逆风速度=2×风速航行问题,基本等量关系:顺水速度=静水速度+水速逆水速度=静水速度-水速∴ 顺水速度-逆水速度=2×水速【典型例题】例1、 某队伍长450m ,以s m 5.1的速度行进,一个通讯兵从排尾赶到排头,并立即返回排尾,他的速度是s m 3,那么往返需要多少时间?例2、在一直形的长河中有甲、乙船,现同时由A 城顺流而下,乙船到B 地时接到通知,需立即返回到C 地执行任务,甲船继续顺流航行。
已知甲、乙两船在静水中的速度都是h km 5.7,水流速度为每小时km 5.2,A 、C 两地间的距离为km 10。
如果乙船由A 地经B 地再到达C 地,共用了4h ,问乙船从B 地到C 地时甲船驶离B 地有多远?例3、甲、乙两人在400m 长的环形跑道上练习百米赛跑,甲的速度是14m ,乙的速度是16m 。
(1)若两人同时同地相向而行,问经过多少秒后两人相遇?(2)若两人同时同地同向而行,问经过多少秒后两人相遇?例4、甲、乙两人从相距36千米的两地相向而行,若甲先出发2小时,则在乙动身2.5小时后两人相遇;若乙先出发2小时,则甲动身3小时后两人相遇.求甲、乙两人的速度.例5、甲、乙两个运动员分别从相距100米的直跑道两端同时相对出发,甲以每秒6.25米,乙以每秒3.75米的速度来回匀速跑步,他们共同跑了8分32秒,在这段时间内两个多次相遇(两人同时到达同一地点).他们最后一次相遇的地点离乙的起点有多少米?甲追上乙多少次?甲与乙迎面相距多少次?例6、两列火车分别行驶在两平行的轨道上,其中快车车长100米,慢车车长150米,当两车相向而行时,快车驶过慢车某个窗口(快车车头到达窗口某一点至车尾离开这一点)所用的时间为5秒。
二元一次方程应用题8种类型一、行程问题1. 题目- 甲、乙两人相距30千米,甲速度为x千米/小时,乙速度为y千米/小时,若两人同时出发相向而行,3小时后相遇;若两人同时同向而行,甲在乙后面,5小时后甲追上乙。
求甲、乙两人的速度。
2. 解析- 根据相向而行时,路程 = 速度和×时间,可得到方程3(x + y)=30,化简为x + y = 10。
- 根据同向而行时,路程差=速度差×时间,可得到方程5(x - y)=30,化简为x - y=6。
- 联立方程组x + y = 10 x - y = 6,将两式相加,2x=16,解得x = 8。
- 把x = 8代入x + y = 10,得y = 2。
二、工程问题1. 题目- 一项工程,甲队单独做需要x天完成,乙队单独做需要y天完成,两队合作需要6天完成;甲队单独做比乙队单独做少用5天。
求甲、乙两队单独完成这项工程各需要多少天?2. 解析- 把工作总量看作单位“1”,根据工作效率 = 工作总量÷工作时间,两队合作的工作效率为(1)/(6),甲队工作效率为(1)/(x),乙队工作效率为(1)/(y),则(1)/(x)+(1)/(y)=(1)/(6)。
- 又因为甲队单独做比乙队单独做少用5天,所以y - x=5,即y=x + 5。
- 将y=x + 5代入(1)/(x)+(1)/(y)=(1)/(6)中,得到(1)/(x)+(1)/(x + 5)=(1)/(6)。
- 去分母得6(x+5)+ 6x=x(x + 5),展开6x+30+6x=x^2+5x,移项化为一元二次方程x^2-7x - 30 = 0,因式分解(x - 10)(x+3)=0,解得x = 10或x=-3(天数不能为负舍去)。
- 当x = 10时,y=10 + 5=15。
三、利润问题1. 题目- 某商店购进甲、乙两种商品,甲商品进价为x元/件,乙商品进价为y元/件。
已知购进5件甲商品和4件乙商品共花费300元;甲商品每件售价20元,乙商品每件售价30元,全部售出后利润为100元。
二元一次方程组应用题经典题型1. 行程问题比如,甲、乙两人相距30千米,若两人同时相向而行,3小时后相遇;若两人同时同向而行,甲6小时可追上乙。
求甲、乙两人的速度。
设甲的速度是x千米/小时,乙的速度是y千米/小时。
相向而行时,根据路程 = 速度和×时间,可得到方程3(x + y)=30;同向而行时,根据路程差 = 速度差×时间,可得到方程6(x - y)=30。
这两个方程组成二元一次方程组,解这个方程组就能求出甲、乙的速度啦。
2. 工程问题有一项工程,甲队单独做需要x天完成,乙队单独做需要y天完成,两队合作需要6天完成,并且甲队做2天的工作量和乙队做3天的工作量相等。
求x和y的值。
把这项工程的工作量看成单位“1”,根据工作效率 = 工作量÷工作时间,甲队的工作效率就是1/x,乙队的工作效率就是1/y。
两队合作的工作效率就是1/6,可得到方程1/x+1/y = 1/6。
又因为甲队做2天的工作量和乙队做3天的工作量相等,即2/x = 3/y。
这样就组成了二元一次方程组,通过解方程组就能得到x和y的值啦。
3. 销售问题某商场购进甲、乙两种商品共50件,甲种商品进价每件35元,利润率是20%,乙种商品进价每件20元,利润率是15%,共获利278元。
求甲、乙两种商品各购进多少件?设购进甲种商品x件,购进乙种商品y件。
因为总共购进50件商品,所以x + y = 50。
甲种商品每件获利35×20% = 7元,乙种商品每件获利20×15% = 3元,总共获利278元,可得到方程7x+3y = 278。
这两个方程组成二元一次方程组,解方程组就可以求出x和y的值啦。
4. 调配问题有两个仓库,甲仓库有粮食x吨,乙仓库有粮食y吨。
如果从甲仓库调出10吨到乙仓库,那么乙仓库的粮食就是甲仓库的2倍;如果从乙仓库调出5吨到甲仓库,那么两仓库的粮食就相等。
求x和y的值。
根据题意可得到方程组:y + 10 = 2(x - 10)和x + 5 = y - 5。
二元一次方程组应用题经典题及答案一、行程问题题目:A、B 两地相距 120 千米,甲、乙两人分别从 A、B 两地同时出发,相向而行。
甲的速度是每小时 10 千米,乙的速度是每小时 20 千米。
经过多少小时两人相遇?答案:设经过 x 小时两人相遇。
甲行驶的路程为 10x 千米,乙行驶的路程为 20x 千米。
由于两人是相向而行,所以他们行驶的路程之和等于两地的距离,可列出方程:10x + 20x = 12030x = 120x = 4答:经过 4 小时两人相遇。
二、工程问题题目:一项工程,甲单独做需要 10 天完成,乙单独做需要 15 天完成。
若两人合作,需要多少天完成?答案:设两人合作需要 x 天完成。
把这项工程的工作量看作单位“1”,甲每天的工作效率是 1/10,乙每天的工作效率是 1/15。
两人合作每天的工作效率是(1/10 + 1/15),可列出方程:(1/10 + 1/15)x = 1(3/30 + 2/30)x = 15/30 x = 1x = 6答:两人合作需要 6 天完成。
三、商品销售问题题目:某商店将进价为 8 元的商品按每件 10 元售出,每天可售出200 件。
现在采用提高售价,减少销售量的办法增加利润,如果这种商品每件的销售价每提高 05 元,其销售量就减少 10 件,问应将每件售价定为多少元时,才能使每天利润为 640 元?答案:设将每件售价定为 x 元。
每件的利润为(x 8)元,售价提高了(x 10)元。
因为售价每提高 05 元,销售量减少 10 件,所以销售量减少了 10×(x 10)÷05 = 20(x 10)件。
实际销售量为200 20(x 10)件。
根据利润=每件利润×销售量,可列出方程:(x 8)200 20(x 10)= 640(x 8)(200 20x + 200)= 640(x 8)(400 20x)= 640400x 20x² 3200 + 160x = 640-20x²+ 560x 3840 = 0x² 28x + 192 = 0(x 12)(x 16)= 0解得 x₁= 12,x₂= 16答:应将每件售价定为 12 元或 16 元时,才能使每天利润为 640 元。
二元一次方程组的应用——行程问题行程问题是数学中常见的应用问题之一。
我们可以利用等量关系路程=速度×时间,速度=路程÷时间,时间=路程÷速度来解决问题。
列方程是解决问题的一般步骤,需要设列解验答。
例1:某车站有甲、乙两辆汽车,若甲车先出发1小时后乙车出发,则乙车出发后5小时追上甲车;若甲车先开出20km后乙车出发,则乙车出发4小时后追上甲车,求甲乙两车的速度。
设甲车每小时走x千米,乙车每小时走y千米,根据题意列出方程组,解得甲车速度为x=40km/h,乙车速度为y=50km/h。
例2:甲、乙两人在周长为400m的环形跑道上练跑,如果同时、同地相向、同向出发,经过80秒相遇;已知乙的速度是甲速度的2/3,求甲、乙两人的速度。
设甲的速度为x米/秒,乙的速度为y米/秒,根据题意列出方程组,解得甲的速度为3米/秒,乙的速度为2米/秒。
例3:甲、乙两人从相距36千米的两地相向而行。
如果甲比乙先走2小时,那么他们在乙出发后经2.5小时相遇;如果XXX比甲先走2小时,那么他们在甲出发后经3小时相遇;求甲、乙两人每小时各走多少千米。
设甲每小时走x千米,乙每小时走y千米,根据题意列出方程组,解得甲每小时走12千米,乙每小时走24千米。
本题中需要求解飞机的速度和风速,可以利用等量关系进行计算。
首先,假设飞机在顺风飞行时的速度为v1,逆风飞行时的速度为v2,风速为w,则根据题意可以列出以下两个等式:1200 = v1 × 2.5 + (v1 + w) × 3.331200 = v2 × 3.33 + (v2 - w) × 2.67将两个等式联立,消去v1和v2,得到:w = 75v1 = 450v2 = 300因此,飞机的速度为450千米/小时,风速为75千米/小时。
课后拓展:1、如果飞机的速度不变,风速变为150千米/小时,从A市飞往B市需要多长时间?2、如果飞机的速度变为500千米/小时,风速仍为75千米/小时,从A市飞往B市需要多长时间?。
二元一次方程组的 12 种应用题型归纳类型一:行程问题【例 1】甲、乙两人相距 36 千米,相向而行,如果甲比乙先走 2 小时,那么他们在乙出发2.5 小时后相遇;如果乙比甲先走 2 小时,那么他们在甲出发 3 小时后相遇,甲、乙两人每小时各走多少千米?解:设甲的速度为 x 千米/时,乙的速度为 y 千米/时。
(2.5 + 2)x + 2.5y = 36 3x + (3 + 2)y = 36 x = 6 y = 3.6答:甲的速度为 6 千米/时,乙的速度为 3.6 千米/时。
【例 2】两地相距 280 千米,一艘船在其间航行,顺流用 14 小时,逆流用 20 小时,求这艘船在静水中的速度和水流速度。
解:设这艘船在静水中的速度为 x 千米/时,水流速度为 y 千米/时。
14(x + y ) = 280 20(x ‒ y ) = 280 x = 17 y = 3答:这艘船在静水中的速度为 17 千米/时,水流速度为 3 千米/时。
类型二:工程问题【例】小明家准备装修一套新住房,若甲、乙两个装饰公司合作 6 周完成,需工钱 5.2 万元;若甲公司单独做 4 周后,剩下的由乙公司来做,还需 9 周完成,需工钱 4.8 万元。
若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由。
{解得{ {解得{{ y = { b = 解:设甲公司每周的工作效率为 x ,乙公司每周的工作效率为 y 。
x = 1 6x + 6y = 1 4x + 9y = 110 1 解得 151 1 ∴1÷10=10(周) 1÷15=15(周)∴甲公司单独完成这项工程需 10 周,乙公司单独完成这项工程需 15 周。
设甲公司每周的工钱为 a 万元,乙公司每周的工钱为 b 万元。
a = 3 6a + 6b = 5.2 4a + 9b = 4.8 5 4 解得 15此时 10a=6(万元) 15b=4(万元) 6>4答:从节约开支的角度考虑,小明家应选择乙公司。
北京版数学七年级下册《二元一次方程组的应用(一)——行程问题》教学设计一. 教材分析《二元一次方程组的应用(一)——行程问题》是人教版七年级下册数学教材的一部分,本节课主要让学生掌握二元一次方程组在解决行程问题中的应用。
通过前面的学习,学生已经掌握了二元一次方程组的基本概念和解法,本节课将引导学生将理论知识应用于实际问题,培养学生的数学应用能力。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和问题解决能力,他们对二元一次方程组的概念和解法有了初步的认识。
但在实际应用过程中,部分学生可能会对行程问题中的实际意义理解不深,难以将数学知识与实际问题相结合。
因此,在教学过程中,教师需要关注学生的认知水平,引导学生深入理解行程问题,提高学生的数学应用能力。
三. 教学目标1.知识与技能:使学生掌握二元一次方程组在解决行程问题中的应用,提高学生的数学应用能力。
2.过程与方法:通过解决实际问题,培养学生运用数学知识分析问题、解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的实际应用。
四. 教学重难点1.重点:二元一次方程组在行程问题中的应用。
2.难点:如何将行程问题转化为二元一次方程组,并熟练解方程组求解。
五. 教学方法1.情境教学法:通过设计具有实际意义的行程问题,激发学生的学习兴趣,引导学生主动参与。
2.合作学习法:学生进行小组讨论,培养学生的团队合作意识,提高学生的问题解决能力。
3.引导发现法:教师引导学生从实际问题中发现规律,总结二元一次方程组在行程问题中的应用方法。
六. 教学准备1.教学课件:制作精美的课件,展示行程问题的实际情境。
2.练习题:准备相关行程问题的练习题,用于巩固所学知识。
3.教学工具:准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)教师通过展示一个实际行程问题,引导学生思考如何用数学知识解决问题。
例如:小明骑自行车去图书馆,以每小时6公里的速度行驶,小红步行去图书馆,以每小时4公里的速度行驶。
二元一次方程组的应用(行程问题)00例1、成渝路内江至成都段全长170千米,一辆小汽车和一辆客车同时从内江、成都两地相向开出,经过1小时10分钟相遇,小汽车比客车多行驶20千米.求小汽车和大客车的平均时速分别是多少千米/时?00等量关系:_______________________________________________;00_______________________________________________.00解:设______________________________________________________.000例2、A、B两地相距500km,甲、乙两汽车由A、B两地相向而行。
若同时出发,则5小时相遇;若乙车早5小时出发,则甲车出发3小时后相遇,求甲乙两车的速度。
000等量关系:______________________________________________;00_______________________________________________.00解:设______________________________________________________.000例3、甲、乙两种酒精,一种浓度为60%,乙种浓度为90%,现在要配制70%的酒精300克,一位同学未经计算便取了甲种酒精180克,乙种酒精120克,请你通过计算说明这位同学能否配制成浓度为70%的酒精?00等量关系:___________________________;0 00____________________________.000解:设_____________________________.000二元一次方程组的应用(打折、配套问题)00例1、一件商品如果按定价的九折出售,可以盈利20%,如果打八折出售,则可以盈利10元,求此商品的进价和定价各是多少元?00例2、某服装厂接到生产一种工作服的订货单任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产速度在客户要求的期限内只能完成订货的4/5 ;现在工厂改进人员组织结构和生产流程,每天可生产这种工作服200套,这样不仅比规定的时间少用1天,而且比订货量多生产25套,订做的工作服是几套?要求的期限是几天?000例3 、现有190张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,一个盒身与两个盒底与两个盒底配成一个完整盒子,问用多少张铁皮制成盒身,多少张铁皮制成盒底,可以正好制成一批完整的盒子?000巩固练习(作业):001、小颖家离学校1200米,其中有一段为上坡路,另一端为下坡路。
课堂教学设计表教学流程图图片文本多媒体展示合作探究问题合作探究:1、如何分析等量关系?2、如何根据等量关系列出方程组?3、解题时应注意哪些问题?教学内容和教师的活动媒体的^文本小结主要内容结束播放动画并点评学生的教师进行逻辑判断附录:(本节课导学案)七年级(下)数学导学案总第 25课时 主备人:施扶承 成员:《二元一次方程组的应用-行程问题》导学案班级 _________ 第 _______ 小组 姓名 __________________ 座号 _______ 课时安排:1课时第1课时上课时间:2017年3月16日、学习目标:1、 知识技能:会列出二元一次方程组解决有关高铁列车车长的行程问题。
2、 数学思考:会将高铁列车与轿车分别抽象为“线段与点”。
3、 问题解决:利用“化动为静”法找出有关高铁列车车长问题等量关系解决行程问题。
4、 情感态度:积极参与小组合作探究,从中获得成功的喜悦。
二、预习指导【评价: —分析实际问题(由小组学科代表负责填写并反馈:A B CD )】小明家、小红家、高铁车站与小东家在同一直线上,位置如图所示。
已知小明家与小红家相距10千米,小明家与小东家相距 60千米,三个同学买好回家过年的同一班车票,小明 乘坐轿车从家里出发,小红与小东乘坐摩托车从家里出发(摩托车的速度相同),他们三人同 时出发,0.5小时后同时在高铁车站相遇。
求轿车的速度和摩托车的速度----------------- 命千米 ------------------------- 4过千米科 「 卄小明掃 小红家 高铁车站 小东家1、小明家与小东家相遇60千米,如果摩托车速度为50千米/时,那么小东乘坐摩托车到小明家用时 _____ 小时;2、小明家与小东家相遇 60千米,如果小东乘坐摩托车到小明家用时1.2小时,那么摩托车的速度为 __________ 米/时;50千米/时,用时1小时到达小红家,那么小东家与小红家相离 _________ 千米4、小明与小东相向而行,两人在高铁车站相遇,等量关系为: 小明与小红同向而行,两人在高铁车站相遇,等量关系为: 根据以上等量关系完成下列解题过程: 解:设轿车的速度为x 千米/时,摩托车的速度为y 千米/时,依题意得:解得:经检验, ___________________答:轿车的速度为 ________ 千米/时,摩托车的速度为 _________ 米/时。