【真卷】2017年甘肃省张掖市高台一中高考数学二模试卷(文科)
- 格式:doc
- 大小:363.00 KB
- 文档页数:19
2017年甘肃省第二次高考诊断考试文科数学第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、若集合{|12},{|21}A x x B x x =-<<=-<<,则集合A B =A .{|11}x x -<<B .{|21}x x -<<C .{|22}x x -<<D .{|01}x x <<2、如图所示,向量12,OZ OZ所对应的复数分别为12,Z Z ,则12Z Z ⋅=A .42i +B .2i +C .22i +D .3i +3、某研究性学习小组调查研究性别对喜欢吃甜食的影响, 部分统计数据如下表:经计算210K =,则下列选项正确的是A .有99.5%的把握认为性别对喜欢吃甜食无影响B .有99.5%的把握认为性别对喜欢吃甜食有影响C .有99.9%的把握认为性别对喜欢吃甜食无影响D .有99.9%的把握认为性别对喜欢吃甜食有影响 4、已知4tan 3x =,且x 角的终边在第三象限,则cos x = A .45 B .45- C .35 D .35-5、函数()3log (3),0(1),0x x f x f x x -≤⎧=⎨->⎩,则(3)f 的值为A .-1B .-2C .1D .26、如图所示,四面体ABCD 的四个顶点是长方体的四个顶点(长方体是虚拟图形,起辅助作用),则四面体ABCD 的三视图(用①②③④⑤⑥代表图形)A .①②⑥B .①②③C .④⑤⑥D .③④⑤7、设D 为ABC ∆的所在平面内一点,4BC CD =- ,则AD =A .1344AB AC - B .1344AB AC + C .3144AB AC -D .3144AB AC +8、某品牌洗衣机专柜在国庆期间举行促销活动,茎叶图中记录了每天的销售量(单位:台),把这些数据经过如图所示的程序框图处理后,输出的S =A .196B .203C .28D .299、已知函数满足一下两个条件:①任意12,(0,)x x ∈+∞,且12x x ≠时,1212()[()()]0x x f x f x --<;②对定义域内任意x 有()()0f x f x +-=,则符合条件的函数是A .()2f x x =B .()1f x x =-C .()1f x x x=- D .()ln(1)f x x =+ 10、已知点A 是直角三角形ABC 的直角顶点,且(2,2),(4,),(22,2)A a B a C a -+,则ABC ∆的外接圆的方程是A .22(3)5x y +-= B .22(3)5x y ++= C .22(3)5x y -+= D .22(3)5x y ++=11、已知三棱锥S-ABC 的各顶点都在一个球面上,ABC ∆所在截面圆的圆心O 在AB 上,SO ⊥平面,1ABC AC BC == A .254π B .2512π C .12548π D .25π 12、将函数()3sin(2)3f x x π=+的图象向左平移6π个单位,在向上平移1个单位,得到()g x 的图象,若()()1216g x g =,且1233,[,]22x x ππ∈-,则122x x -的最大值为A .2312π B .3512π C .196π D .5912π第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上.. 13、数列{}n a 中,若11(1)0,1n n a a a ++==,则6a =14、已知实数,x y 满足240103x y x y y +-≥⎧⎪--≤⎨⎪≤⎩,则3z x y =-的最大值是15、已知抛物线28y x =上一点P 到焦点的距离为4,则PFO ∆的面积为16、已知函数221x x y x +-=-与函数2y kx =-的图象恰有两个交点,则实数k 的取值范围是三、解答题:本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤 17、(本小题满分12分)设数列{}1n a +是一个各项均为正数的等比数列,已知377,127a a ==. (1)求的1a 值;(2)求数列{}n a 的前n 项和.18、(本小题满分12分)甘肃省瓜州县自古就以生产“美瓜”面名扬中外,生产的“瓜州蜜瓜”有4个系列30多个品种,质脆汁多,香甜可口,清爽宜人,含糖量达14%~19%,是消暑止渴的佳品,调查表明,蜜瓜的甜度与海拔高度,日照时长,温差有极强的相关性,分别用,,x y z 表示蜜瓜甜度与海拔高度,日照时长,温差的相关程度,big 对它们进行量化:0表示一般,1表示良,2表示优,在用综合指标w x y z =++的值平定蜜瓜的顶级,若4w ≥,则为一级;若23w ≤≤,则为二级;若01w ≤≤,则为三级,今年来,周边各省也开始发展蜜瓜种植,为了了解目前蜜瓜在周边各省的种植情况,研究人员从不同省份随机抽取了10块蜜瓜种植地,得到如下结果:(1)若有蜜瓜种植地110块,试估计等级为三家的蜜瓜种植地的数量;(2)从样本里等级为一级的蜜瓜种植地中随机抽取两块,求这两块种植地的综合指标w 至少有一个为4的概率.19、(本小题满分12分)如图,在ABC ∆中,AB BC ⊥,点,D E 分别在,AB AC 上,2,3AD DB AC EC ==,沿DE 将ADE ∆翻折起来,使得点A 到P 的位置,满足PB =.(1)证明:DB ⊥平面PBC ;(2)若PB BC PC ===M 在PC 上,且,求三棱锥P BEM -的体积.20、(本小题满分12分)已知椭圆22122:1(0)x y C a b a b +=>>的顶点到直线:l y x =2. (1)求椭圆1C 的离心率;(2)过圆22:4O x y +=上任意一点P 作椭圆1C 的两条切线PM 和PN 分别与圆交于点,M N ,求PMN ∆面积的最大值.21、(本小题满分12分)已知函数()sin cos f x x x x =+. (1)当(,)4x ππ∈时,求函数()f x 的单调区间;(2)若存在(,)42x ππ∈,使得()2cos f x kx x >+成立,求实数k 的取值范围.请考生在第(22)、(23)题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B 铅笔在答题卡上把所选题目的题号涂黑,把答案填在答题卡上. 22、(本小题满分10分) 选修4-4 坐标系与参数方程已知直线2:(x l t y ⎧=+⎪⎪⎨⎪=⎪⎩为参数),曲线cos :(sin x C y θθθ=⎧⎨=⎩为参数).(1)使判断l 与C 的位置关系;(2)若把曲线1C 上个点的横坐标压缩为原来的12倍,纵坐标压缩为原来的2倍,得到曲线2C ,设点P 是曲线2C 上一个动点,求它到直线l 的距离的最小值.23、(本小题满分10分))选修4-5 不等式选讲 设函数()3,2f x x g x =--. (1)解不等式()()2f x g x +<;(2)对于实数,x y ,若()()1,1f x g y ≤≤,证明:213x y -+≤.2017年甘肃省第二次高考诊断文科数学试题参考答案及评分标准第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.C2.A3.B4.D5.C6.B7.B8.D9.C 10. D 11. A 12.B 12.答案提示:由题可知2()3sin(2)13g x x π=++,因为12()()16g x g x =所以4)()(21==x g x g 都为最大值,令22232x k ππ+=π+,可得12x k π=π-,又因为1233,,22x x ππ⎡⎤∈-⎢⎥⎣⎦,可以取得1311,,121212x πππ=--,则122x x -的最大值=1113352()121212πππ⨯--=,答案为B 第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.61 14. 31- 15.4 16.()()1115- ,, 16. 答案提示: 2 21(2)(1)()12 2 1.x x x x f x x x x x ---≤<+-⎧==⎨-+<->⎩,,,或 直线2-=kx y 过定点)20(-,,由函数图像可知结果为:()()1115- ,, 三、解答题:解答应写出文字说明,证明过程或演算步骤.17. 解:(I )由题可知1281,8173=+=+a a , ………………2分则有1288)1)(1()1(7325⨯=++=+a a a ,可得3215=+a 即315=a ; ……………… 6分 (II )}1{+n a 是一个以2为首项, 2为公比的等比数列,n n n a 22211=⨯=+-所以21n n a =- , ………………9分 利用分组求和可得12122212n n n S n n +-=-=---(). ………………12分 18. 解:(I )计算10块种植地的综合指标,可得下表:3分……6分 (II )由(I )可知:等级是一级的(4ω≥)有B ,D ,F ,G ,I ,共5块,从中随机抽取两块,所有的可能结果为: (,)B D ,(,)B F ,(,)B G ,(,)B I , (,)D F ,(,)D G ,(,)D I ,(,)F G ,(,)F I ,(,)G I ,共计10个; ……………10分其中综合指标4ω=的有:D ,F 2个,符合题意的可能结果为(,)B D ,(,)B F ,(,)D F ,(,)D G ,(,)D I ,(,)F G ,(,)F I 共7个,设“两块种植地的综合指标ω至少有一个为4”为事件M……………12分19. (I )证明:设3,,,2AB b BD b PB PD b ====则∵222PD PB BD =+ ∴BD PB ⊥ ………………4分BC BD ⊥ ,B BC PB =⋂ PBC BD 面⊥∴ ………………6分(II )解:∵PB BC PC == ∴PB BC ⊥ ∵,BD PB BD BC B 且^=I ∴BCE PB 面⊥, ∴3348P MBE E PMB E PBC V V V ---===. ……………12分 20.解:(I )由直线1l 的方程知,直线1l 与两坐标轴的夹角均为45 ,故长轴端点到直线1l 1l求得1a b =, ……………3分所以C 1的离心率c e a ===. ……………5分 (II )设点(,)P P P x y ,则224p p x y +=.,1P y =±, 另一切线的斜率为0,从而PM PN ⊥.……………6分设过点P 的椭圆的切线方程为()P P y y k x x -=-,代入椭圆方程,消y 并整理得:222(31)6()3()30P P P P k x k y kx x y kx ++-+--=.依题意0∆=,得222(3)210p P P p x k x y k y -++-=.设切线,PM PN 的斜率分别为12,k k ,从而8分即PM PN ⊥,线段MN 为圆O 的直径,||4MN =. 所以,222111||||(||||)||4244PMN S PM PN PM PN MN ∆=∙+==≤时,PMN S ∆取最大值4.4. ……………12分 21.解:(I )x x x x x x x f cos sin cos sin )(=-+=', ………………………2分 ∴42x ππ⎛⎫∈ ⎪⎝⎭,时,()cos 0f x x x '=>,∴函数f (x )在42ππ⎛⎫ ⎪⎝⎭,上是增函数;2x π⎛⎫∈π ⎪⎝⎭,时,()cos 0f x x x '=<,∴函数f (x )在2π⎛⎫π ⎪⎝⎭,上是减函数; …………………………5分 (II )由题意等价于x x x cos sin +x kx cos 2+>,整理得xxk sin <. 令xxx h sin )(=,则2sin cos )(x x x x x h -=',令x x x x g sin cos )(-=,0sin )(<-='x x x g , ∴g (x )在()42x ππ∈,上单调递减, ∴()()(1)044g x g ππ<=-<,即0sin cos )(<-=x x x x g , ……………10分 ∴0sin cos )(2<-='x x x x x h ,即xxx h sin )(=在()42ππ,上单调递减, ∴sin42()44h x π<==ππ,即k <π ………………………12分 22. 解:(I )1:02:221=+=--y x C y x l ,, ……………………… 2分122200>=--=d ,所以直线与曲线相离. ……………………… 5分(II )变化后的曲线方程是1cos ,2.x y θθ⎧=⎪⎪⎨⎪=⎪⎩ 设点1(cos )2P θθ , ………7分则点到直线的距离是d ==则最小距离是22. ………………10分 23. 解:(I )解不等式|3||2| 2.x x -+-<①当2x ≤时,原不等式可化为322,x x -+-< 可得3.2x >所以32.2x <≤②当23x <≤时,原不等式可化为322,x x -+-< 可得1 2.< 所以2 3.x <≤ ③当3x ≥时,原不等式可化为322,x x -+-< 可得7.2x < 所以73.2x <≤由①②③可知,不等式的解集为37.22xx ⎧⎫<<⎨⎬⎩⎭ …………………5分(II )|21||3)2(2)|32212 3.x y x y x y -+=----+-+=(≤≤ 当且仅当 4213x x y y ==⎧⎧⎨⎨==⎩⎩或 时等号成立. …………………10分 也可用线性规划得出结论.。
高台县第一中学2017届高三质量检测数学试题一、选择题:本大题共l2个小题,每小题5分,共60分.每小题给出的四个选项中只有一项是符合题目要求的.1、若集合{}{}1|lg(2),|2,x A x R y x B y R y x A -=∈=-=∈=∈,则()R C A B = ( )A .R B.(][),02,-∞+∞ C.[)2,+∞ D.(],0-∞2、已知复数2320131i i i i z i++++=+ ,则复数z 在复平面内对应的点位于( )A .第一像限B .第二像限C .第三像限D .第四像限3、理:如图,长方体ABCD —A 1B 1C 1D 1,有一动点在此长方体内随机运动,则此动点在三棱锥A —A 1BD内的概率为( )A. 12B. 13C. 14D. 16文:四名同学根据各自的样本数据研究变量,x y 之间的相关关系,并求得回归直线方程,分别得到以下四个结论:① y 与x 负相关且 2.347 6.423y x =-; ② y 与x 负相关且3.476 5.648y x =-+;③y与x正相关且 5.4378.493y x=+;④y与x正相关且4.326 4.578y x=--.其中一定不正确...的结论的序号是 ( )A.①②B.②③C.③④D.①④4、已知某几何体的正视图和侧视图均是边长为1的正方形,则这个几何体的体积不可能是()A.12 B.4π C.1 D.3π5、阅读如下程序框图,如果输出i =4,那么空白的判断框中应填人的条件是 ( )A. S<10?B. S<12?C. S<14?D. S<16?6、如图设抛物线21y x=-+的顶点为A,与x轴正半轴的交点为B,设抛物线与两坐标轴正半轴围成的区域为M,随机往M内投一点P,则点P落在∆AOB内的概率是 ( )A. 56 B. 45C. 34D. 237、设实数x、y满足26260,0x yx yx y+≤⎧⎪+≤⎨⎪≥≥⎩,则{}max231,22z x y x y=+-++的取值范围是( )A.[2,5] B.[2,9] C.[5,9] D.[1,9]-8、若△ABC的三个内角A,B,C度数成等差数列,且(错误!未找到引用源。
文科数学答案第1页(共4页)文科数学答案第2页(共4页)文科数学答案第3页(共4页)文科数学答案第4页(共4页)文科数学答案 第5页(共4页)2017年甘肃省第二次高考诊断文科数学试题参考答案及评分标准第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.C 2.A 3.B 4.D 5.C 6.B 7.B 8.D 9.C 10. D 11. A 12.B 12.答案提示:由题可知2()3sin(2)13g x x π=++,因为12()()16g x g x 所以4)()(21==x g x g 都为最大值,令22232x k ππ+=π+,可得12x k π=π-,又因为1233,,22x x ππ⎡⎤∈-⎢⎥⎣⎦,可以取得1311,,121212x πππ=--,则122x x 的最大值=1113352()121212πππ⨯--=,答案为B 第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.61 14. 31- 15.4 16.()()1115-,,16. 答案提示: 2 21(2)(1)()1 2 2 1.x x x x f x x x x x ---≤<+-⎧==⎨-+<->⎩,,,或 直线2-=kx y 过定点)20(-,,由函数图像可知结果为:()()1115-,,三、解答题:解答应写出文字说明,证明过程或演算步骤.17. 解:(I )由题可知1281,8173=+=+a a , ………………2分则有1288)1)(1()1(7325⨯=++=+a a a ,可得3215=+a 即315=a ; ……………… 6分 (II )}1{+n a 是一个以2为首项, 2为公比的等比数列,n n n a 22211=⨯=+-所以21n n a =- , ………………9分文科数学答案 第6页(共4页)利用分组求和可得12122212n n n S n n +-=-=---(). ………………12分 18. 解:(I )计算10块种植地的综合指标,可得下表:3分6分 (II )由(I )可知:等级是一级的(4ω≥)有B ,D ,F ,G ,I ,共5块,从中随机抽取两块,所有的可能结果为: (,)B D ,(,)B F ,(,)B G ,(,)B I , (,)D F,(,)D G ,(,)D I ,(,)F G ,(,)F I ,(,)G I ,共计10个;……………10分其中综合指标4ω=的有:D ,F 2个,符合题意的可能结果为(,)B D ,(,)B F ,(,)D F ,(,)D G ,(,)D I ,(,)F G ,(,)F I 共7个,设“两块种植地的综合指标ω至少有一个为4”为事件M……………12分 19. (I )证明:设3,,,2AB b BD b PB PD b ====则∵222PD PB BD =+ ∴BD PB ⊥ ………………4分BC BD ⊥ ,B BC PB =⋂ PBC BD 面⊥∴ (6)分(II)解:∵PB BC PC === ∴PB BC ⊥∵,BDPB BD BC B 且 ∴BCE PB 面⊥,∴3348P MBE E PMB E PBC V V V ---===. ……………12分 20.解:(I )由直线1l 的方程知,直线1l 与两坐标轴的夹角均为45,故长轴端点到直线1l 的距离为2,短轴端点到直线1l 的距离为2求得1a b ==, ……………3分文科数学答案 第7页(共4页)所以C 1的离心率c e a ===……………5分 (II )设点(,)P P P x y ,则224p p x y +=.(ⅰ)若两切线中有一条切线的斜率不存在,则P x =,1P y =±, 另一切线的斜率为0,从而PM PN ⊥.此时,11||||222PMN S PM PN ∆=•=⨯⨯=. ……………6分(ⅱ)若切线的斜率均存在,则P x ≠, 设过点P 的椭圆的切线方程为()P P y y k x x -=-,代入椭圆方程,消y 并整理得:222(31)6()3()30P P P P k x k y kx x y kx ++-+--=.依题意0∆=,得222(3)210p P P p x k x y k y -++-=.设切线,PM PN 的斜率分别为12,k k ,从而22122213133p p ppy x k k xx--===---,………8分即PM PN ⊥,线段MN 为圆O 的直径,||4MN =. 所以,222111||||(||||)||4244PMN S PM PN PM PN MN ∆=•+==≤当且仅当||||PM PN ==PMN S ∆取最大值4.综合(ⅰ)(ⅱ)可得:PMN S ∆取最大值4. ……………12分 21.解:(I )x x x x x x x f cos sin cos sin )(=-+=', ………………………2分 ∴42x ππ⎛⎫∈ ⎪⎝⎭,时,()cos 0f x x x '=>,∴函数f (x )在42ππ⎛⎫ ⎪⎝⎭,上是增函数;2x π⎛⎫∈π ⎪⎝⎭,时,()cos 0f x x x '=<,∴函数f (x )在2π⎛⎫π⎪⎝⎭,上是减函数; …………………………5分 (II )由题意等价于x x x cos sin +x kx cos 2+>,整理得xxk sin <. 令xxx h sin )(=,则2sin cos )(x x x x x h -=',文科数学答案 第8页(共4页)令x x x x g sin cos )(-=,0sin )(<-='x x x g , ∴g (x )在()42x ππ∈,上单调递减,∴()()(1)044g x g ππ<=⨯-<,即0sin cos )(<-=x x x x g , ……………10分 ∴0sin cos )(2<-='x x x x x h ,即x xx h sin )(=在()42ππ,上单调递减,∴sin42()44h x π<==πππ,即k <π. ………………………12分 22. 解:(I )1:02:221=+=--y x C y x l ,, ……………………… 2分122200>=--=d , 所以直线与曲线相离. ……………………… 5分(II)变化后的曲线方程是1cos ,2sin .2x y θθ⎧=⎪⎪⎨⎪=⎪⎩设点1(cos )2P θθ , ………7分则点到直线的距离是d ==则最小距离是22. ………………10分 23. 解:(I )解不等式|3||2| 2.x x -+-<①当2x ≤时,原不等式可化为322,x x -+-< 可得3.2x >所以32.2x <≤②当23x <≤时,原不等式可化为322,x x -+-< 可得1 2.< 所以2 3.x <≤ ③当3x ≥时,原不等式可化为322,x x -+-< 可得7.2x < 所以73.2x <≤由①②③可知,不等式的解集为37.22xx ⎧⎫<<⎨⎬⎩⎭ …………………5分(II )|21||3)2(2)|32212 3.x y x y x y -+=----+-+=(≤≤当且仅当4213x xy y==⎧⎧⎨⎨==⎩⎩或时等号成立.…………………10分……也可用线性规划得出结论.…文科数学答案第9页(共4页)。
2017高考仿真卷·文科数学(二)(考试时间:120分钟试卷满分:150分)第Ⅰ卷选择题(共60分)一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知i是虚数单位,则复数=()A.-2+iB.iC.2-iD.-i2.已知集合M={x|x2-4x<0},N=,则M∪N=()A.[-2,4)B.(-2,4)C.(0,2)D.(0,2]3.采用系统抽样的方法从1 000人中抽取50人做问卷调查,为此将他们随机编号为1,2,3,…,1 000,适当分组后,在第一组中采用简单随机抽样的方法抽到的号码为8.若编号落入区间[1,400]上的人做问卷A,编号落入区间[401,750]上的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷C的人数为()A.12B.13C.14D.154.已知命题p:函数y=ln(x2+3)+的最小值是2;命题q:“x>2”是“x>1”的充分不必要条件.则下列命题是真命题的是()A.p∧qB.( p)∧( q)C.( p)∧qD.p∧( q)5.已知点A是抛物线C1:y2=2px(p>0)与双曲线C2:=1(a>0,b>0)的一条渐近线的交点,若点A到抛物线C1的焦点的距离为p,则双曲线C2的离心率等于()A. B. C. D.6.某产品的广告费用x(单位:万元))的统计数据如下表:根据表中数据求得回归直线方程为=9.5x+,则等于()A.22B.26C.33.6D.19.57.设a,b,c分别是△ABC的内角A,B,C所对边的边长,则直线sin A·x-ay-c=0与bx+sin B·y+sin C=0的位置关系是()A.平行B.重合C.垂直D.相交但不垂直8.如图,正四棱锥P-ABCD底面的四个顶点A,B,C,D在球O的同一个大圆上,点P在球面上,若V =,则球O的表面积是()正四棱锥P-ABCDA.4πB.8πC.12πD.16π9.已知变量x,y满足线性约束条件若目标函数z=kx-y仅在点(0,2)处取得最小值,则k的取值范围是()A.k<-3B.k>1C.-1<k<1D.-3<k<110.某几何体的三视图如图所示,当a+b取最大值时,这个几何体的体积为()A. B. C. D.11.已知M是△ABC内一点(不含边界),且=2,∠BAC=30°.若△MBC,△MCA,△MAB的面积分别为x,y,z,记f(x,y,z)=,则f(x,y,z)的最小值为()A.26B.32C.36D.4812.已知集合M={(x,y)|y=f(x)},若对于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,则称集合M是“商高线”.给出下列四个集合:①M=;②M={(x,y)|y=sin x+1};③M={(x,y)|y=log2x};④M={(x,y)|y=e x-2}.其中是“商高线”的序号是()A.①②B.②③C.①④D.②④第Ⅱ卷非选择题(共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.执行如图所示的程序框图,若输入x=0.1,则输出的m的值是.14.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=3x+m(m为常数),则f(-log35)的值为.15.关于函数f(x)=2(sin x-cos x)cos x的下列四个结论:①函数f(x)的最大值为;②把函数f(x)=sin 2x-1的图象向右平移个单位后可得到函数f(x)=2(sin x-cos x)·cos x的图象;③函数f(x)的单调递增区间为,k∈Z;④函数f(x)的图象的对称中心为,k∈Z.其中正确的结论有个.16.已知数列{a n}满足a1=,a n-1-a n=(n≥2),则该数列的通项公式为.三、解答题(本大题共6小题,满分70分,解答须写出文字说明、证明过程或演算步骤)17.(本小题满分12分)在△ABC中,角A,B,C的对边分别为a,b,c,已知A=,sin B=3sin C.(1)求tan C的值;(2)若a=,求△ABC的面积.18.(本小题满分12分)国家教育部要求高中阶段每学年都要组织学生进行“国家学生体质健康数据测试”,方案要求以学校为单位组织实施.某校对高一(1)班的同学按照“国家学生体质健康数据测试”的项目进行了测试,并对测试成绩进行统计,其频率分布直方图如图所示,若分数在[90,100]上的人数为2.(1)请求出分数在[70,80)内的人数;(2)现根据测试成绩从第一组和第五组(从低分段到高分段依次分为第一组,第二组,…,第五组)中任意选出2人,形成搭档小组.若选出的2人成绩差大于30,则称这2人为“互补组”,试求选出的2人为“互补组”的概率.19.(本小题满分12分)如图,在正方体ABCD-A1B1C1D1中,E,F分别为AB,BB1的中点.(1)求证:EF⊥平面A1D1B;(2)若AA1=2,求三棱锥D1-DEF的体积.20.(本小题满分12分)已知椭圆C的中心在原点,焦点在x轴上,长轴长为4,且点在椭圆C上.(1)求椭圆C的方程;(2)设P是椭圆C长轴上的一个动点,过P作斜率为的直线l交椭圆C于A,B两点,求证:|P A|2+|PB|2为定值.21.(本小题满分12分)设函数f(x)=.(1)求证:f(x)在(0,1)和(1,+∞)内都是增函数;(2)若在函数f(x)的定义域内,不等式af(x)>x恒成立,求a的取值范围.请考生在第22、23两题中任选一题做答,如果多做,则按所做的第一题评分.22.(本小题满分10分)选修4—4:坐标系与参数方程在平面直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系.已知曲线C:ρcos2θ=2a sin θ(a>0),过点P(-4,-2)的直线l的参数方程为(t为参数),直线l与曲线C分别交于点M,N.(1)写出C的直角坐标方程和l的普通方程;(2)若|PM|,|MN|,|PN|成等比数列,求a的值.23.(本小题满分10分)选修4—5:不等式选讲已知函数f(x)=|x-1|+|x+1|.(1)求不等式f(x)≥3的解集;(2)若关于x的不等式f(x)>a2-x2+2x在R上恒成立,求实数a的取值范围.参考答案2017高考仿真卷·文科数学(二)1.B解析(方法一)=i.(方法二)=i.2.A解析∵M={x|0<x<4},N={x|-2≤x≤2},∴M∪N=[-2,4).3.A解析若采用系统抽样的方法从1 000人中抽取50人做问卷调查,则需要分为50组,每组20人.若第一组抽到的号码为8,则以后每组抽取的号码分别为28,48,68,88,108,…,所以编号落入区间[1,400]上的有20人,编号落入区间[401,750]上的有18人,所以做问卷C的有12人.4.C解析因为命题p为假命题,命题q为真命题,所以( p)∧q为真命题.5.C解析因为点A到抛物线C1的焦点的距离为p,所以点A到抛物线准线的距离为p.所以点A的坐标为.所以双曲线的渐近线方程为y=±2x.所以=2,所以b2=4a2.又b2=c2-a2,所以c2=5a2.所以双曲线的离心率为.6.B解析由题意知=2,=45.又由公式,得=26,故选B.7.C解析因为,所以两条直线斜率的乘积为=-1,所以这两条直线垂直.8.D解析连接PO,由题意知,PO⊥底面ABCD,PO=R,S正方形ABCD=2R2.因为V正四棱锥P-ABCD=,所以·2R2·R=,解得R=2,所以球O的表面积是16π.9.D解析如图,作出不等式组所表示的平面区域.由z=kx-y得y=kx-z,要使目标函数z=kx-y 仅在点A(0,2)处取得最小值,则阴影部分区域在直线y=kx+2的下方,故目标函数线的斜率k 满足-3<k<1.10.D解析由该几何体的三视图可得其直观图为如图所示的三棱锥,且从点A出发的三条棱两两垂直,AB=1,PC=,PB=a,BC=b.可知P A2+AC2=a2-1+b2-1=6,即a2+b2=8.故(a+b)2=8+2ab≤8+2,即a+b≤4,当且仅当a=b=2时,a+b取得最大值,此时P A=,AC=.所以该几何体的体积V=×1×.11.C解析由=2,∠BAC=30°,可得S△ABC=1,即x+y+z=1.故(x+y+z)=1+4+9+≥14+4+6+12=36,当且仅当x=,y=,z=时等号成立.因此,f(x,y,z)的最小值为36.12.D解析若对于函数图象上的任意一点M(x1,y1),在其图象上都存在点N(x2,y2),使OM⊥ON,则函数图象上的点的集合为“商高线”.对于①,若取M(1,1),则不存在这样的点;对于③,若取M(1,0),则不存在这样的点.②④都符合.故选D.13.0解析若输入x=0.1,则m=lg 0.1=-1.因为m<0,所以m=-1+1=0.所以输出的m的值为0.14.-4解析因为f(x)是定义在R上的奇函数,所以f(0)=1+m=0.所以m=-1.所以f(-log35)=-f(log35)=-(-1)=-4.15.2解析因为f(x)=2sin x·cos x-2cos2x=sin 2x-cos 2x-1=sin-1,所以其最大值为-1.所以①错误.因为函数f(x)=sin 2x-1的图象向右平移个单位后得到函数f(x)=sin-1=sin-1的图象,所以②错误.由-+2kπ≤2x-+2kπ,k∈Z,得函数f(x)的单调递增区间为,k∈Z,即为,k'∈Z.故③正确.由2x-=kπ,k∈Z,得x=,k∈Z,故④正确.16.a n=解析因为a n-1-a n=(n≥2),所以,所以.所以,…,.所以.所以.所以a n=(n≥2).经检验,当n=1时也适合此公式.所以a n=.17.解(1)∵A=,∴B+C=.∴sin=3sin C.∴cos C+sin C=3sin C.∴cos C=sin C.∴tan C=.(2)由,sin B=3sin C,得b=3c.在△ABC中,由余弦定理得a2=b2+c2-2bc cos A=9c2+c2-2×(3c)×c×=7c2.∵a=,∴c=1,b=3.∴△ABC的面积为S=bc sin A=.18.解(1)由频率分布直方图可知分数在[50,60)内的频率为0.1,[ 60,70)内的频率为0.25,[80,90)内的频率为0.15,[90,100]上的频率为0.05.故分数在[70,80)内的频率为1-0.1-0.25-0.15-0.05=0.45.因为分数在[90,100]上的人数为2,频率为0.05,所以参加测试的总人数为=40.所以分数在[70,80)内的人数为40×0.45=18.(2)因为参加测试的总人数为=40,所以分数在[50,60)内的人数为40×0.1=4.设第一组[50,60)内的同学为A1,A2,A3,A4;第五组[90,100]上的同学为B1,B2,则从中选出2人的选法有(A1,A2),(A1,A3),(A1,A4),(A1,B1),(A1,B2),(A2,A3),(A2,A4),(A2,B1),(A2,B2),(A3,A4),(A3,B1),(A3,B2),( A4,B1),(A4,B2),(B1,B2),共15种,其中2人成绩差大于30的选法有(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(A4,B1),(A4,B2),共8种,则选出的2人为“互补组”的概率为.19.(1)证明如图,连接AB1.因为E,F分别为AB与AB1的中点,所以EF∥AB1.因为AB1⊥A1B,所以EF⊥A1B.又因为D1A1⊥平面ABB1A1,平面ABB1A1⊃EF,所以D1A1⊥EF.又因为A1B∩D1A1=A1,所以EF⊥平面A1D1B.(2)解如图,连接DB.因为BB1∥DD1,所以.所以=S△DEB·DD1=×2=.20.(1)解因为2a=4,所以a=2.又因为焦点在x轴上,所以设椭圆方程为=1.将点代入椭圆方程得b2=1,所以椭圆方程为+y2=1.(2)证明设点P(m,0)(-2≤m≤2),可得直线l的方程是y=,由方程组消去y得2x2-2mx+m2-4=0.(*)设A(x1,y1),B(x2,y2),则x1,x2是方程(*)的两个根.所以x1+x2=m,x1x2=.所以|P A|2+|PB|2=(x1-m)2++(x2-m)2+=(x1-m)2+(x1-m)2+(x2-m)2+(x2-m)2=[(x1-m)2+(x2-m)2]=-2m(x1+x2)+2m2]=[(x1+x2)2-2m(x1+x2)-2x1x2+2m2]=[m2-2m2-(m2-4)+2m2]=5.所以|P A|2+|PB|2为定值.21.(1)证明由题意可得f'(x)==(x>0,x≠1).令g(x)=2ln x-,则g'(x)=.当0<x<1时,g'(x) <0,g(x)是减函数,g(x)>g(1)=0.于是f'(x)=g(x)>0,故f(x)在(0,1)内为增函数.当x>1时,g'(x)>0,g(x)是增函数,g(x)>g(1)=0,于是f'(x)=g(x)>0,故f(x)在(1,+∞)内为增函数.(2)解af(x)-x=-x=.令h(x)=-ln x(x>0),则h'(x)=.令φ(x)=ax2-x+a,当a>0,且Δ=1-4a2≤0,即a≥时,此时φ(x)=ax2-x+a>0在(0,1),(1,+∞)内恒成立,所以当a≥时,h'(x)>0在(0,1),(1,+∞)内恒成立,故h(x)在(0,1),(1,+∞)内是增函数,若0<x<1,则h(x)< h(1)=0,所以af(x)-x=h(x)>0;若x>1,则h(x)>h(1)=0,所以af(x)-x=h(x)>0,所以当x>0,x≠1时都有af(x)>x成立.当0<a<时,h'(x)<0,解得<x<,所以h(x)在内是减函数,h(x)<h(1)=0.故af(x)-x=h(x)<0,不符合题意.当a≤0时,x∈(0,1)∪(1,+∞),都有h'(x)<0,故h(x)在(0,1),(1,+∞)内为减函数,同理可知,在(0,1),(1,+∞)内,af(x)-x=h(x)<0,不符合题意.综上所述,a≥,即a的取值范围是.22.解(1)曲线C的直角坐标方程为x2=2ay(a>0),直线l的普通方程为x-y+2=0.(2)将直线l的参数方程与C的直角坐标方程联立,得t2-2(4+a)t+8(4+a)=0.(*)由Δ=8a(4+a)>0,可设点M,N对应的参数分别为t1,t2,且t1,t2是方程(*)的根,则|PM|=|t1|,|PN|=|t2|,|MN|=|t1-t2|.由题设得(t1-t2)2=|t1t2|,即(t1+t2)2-4t1t2=|t1t2|.由(*)得t1+t2=2(4+a),t1t2=8(4+a)>0.则有(4+a)2-5(4+a)=0,解得a=1或a=-4.因为a>0,所以a=1.23.解(1)原不等式等价于解得x≤-或x≥.故原不等式的解集为.(2)令g(x)=|x-1|+|x+1|+x2-2x,则g(x)=当x∈(-∞,1]时,g(x)单调递减;当x∈[1,+∞)时,g(x)单调递增.故当x=1时,g(x)取得最小值1.因为不等式f(x)>a2-x2+2x在R上恒成立,所以a2<1,解得-1<a<1.所以实数a的取值范围是(-1,1).。
2016-2017学年甘肃省张掖市高台一中高三(上)期末数学试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知A={x|x2﹣2x﹣3≤0},,则A∩B=()A.B.C.D.2.(5分)若复数z满足z(i+1)=,则复数z的虚部为()A.﹣1B.0C.i D.13.(5分)已知平面向量,满足,且,,则向量与夹角的正弦值为()A.B.C.D.4.(5分)甲乙两人有三个不同的学习小组A,B,C可以参加,若每人必须参加并且仅能参加一个学习小组,则两人参加同一个小组的概率为()A.B.C.D.5.(5分)执行如图所示的程序框图,若输出的结果为3,则可输入的实数x的值的个数为()A.1B.2C.3D.46.(5分)已知双曲线C:=1(a>0,b>0),右焦点F到渐近线的距离为2,F 到原点的距离为3,则双曲线C的离心率e为()A.B.C.D.7.(5分)某三棱锥的三视图如图所示,该三棱锥的表面积是()A.28+6B.30+6C.56+12D.60+128.(5分)已知数列2008,2009,1,﹣2008,…这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2014项之和S2014等于()A.1B.4018C.2010D.09.(5分)已知三棱锥P﹣ABC,在底面△ABC中,∠A=60°,,P A⊥面ABC,P A =2,则此三棱锥的外接球的体积为()A.B.C.D.8π10.(5分)已知函数f(x)满足:①定义域为R;②任意x∈R,都有f(x+2)=f(x);③当x∈[﹣1,1]时,f(x)=﹣|x|+1,则方程在区间[﹣3,5]内解的个数是()A.5B.6C.7D.811.(5分)已知函数f(x)=sin(2x+ϕ)(其中ϕ是实数),若对x∈R恒成立,且,则f(x)的单调递增区间是()A.[kπ﹣,kπ+](k∈Z)B.C.D.12.(5分)函数在[﹣2,3]上的最大值为2,则实数a的取值范围是()A.B.C.(﹣∞,0]D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知f(x)=axlnx+1,x∈(0,+∞)(a∈R),f′(x)为f(x)的导函数,f′(1)=2,则a=.14.(5分)若x,y满足约束条件,则z=3x+y的最大值为.15.(5分)抛物线x2=2py(p>0)的焦点为F,其准线与双曲线x2﹣y2=1相交于A,B 两点,若△ABF为等边三角形,则p=.16.(5分)在△ABC中,角A、B、C所对的边分别为a、b、c,且a cos B﹣b cos A=c,当tan(A﹣B)取最大值时,角B的值为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知等比数列{a n}的各项均为正数,a1=1,公比为q;等差数列{b n}中,b1=3,且{b n}的前n项和为S n,a3+S3=27,q=.(Ⅰ)求{a n}与{b n}的通项公式;(Ⅱ)设数列{c n}满足c n=,求{c n}的前n项和T n.18.(12分)如图,在直三棱柱ABC﹣A1B1C1中,底面是正三角形,点D是A1B1中点,AC =2,CC1=.(Ⅰ)求三棱锥C﹣BDC1的体积;(Ⅱ)证明:A1C⊥BC1.19.(12分)某地随着经济的发展,居民收入逐年增长,如表是该地一建设银行连续五年的储蓄存款(年底余额),如下表:为了研究计算的方便,工作人员将上表的数据进行了处理,t=x﹣2010,z=y﹣5得到如下表:(Ⅰ)求z关于t的线性回归方程;(Ⅱ)通过(Ⅰ)中的方程,求出y关于x的回归方程;(Ⅲ)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?(附:对于线性回归方程,其中:,=﹣)20.(12分)如图,圆C与x轴相切于点T(2,0),与y轴正半轴相交于两点M,N(点M 在点N的下方),且|MN|=3.(Ⅰ)求圆C的方程;(Ⅱ)过点M任作一条直线与椭圆相交于两点A、B,连接AN、BN,求证:∠ANM=∠BNM.21.(12分)已知函数f(x)=﹣alnx(a∈R).(Ⅰ)若h(x)=f(x)﹣2x,当a=﹣3时,求h(x)的单调递减区间;(Ⅱ)若函数f(x)有唯一的零点,求实数a的取值范围.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1:几何证明选讲]22.(10分)已知△ABC中,AB=AC,D为△ABC外接圆劣弧上的点(不与点A,C重合),延长BD至E,延长AD交BC的延长线于F(1)求证:∠CDF=∠EDF;(2)求证:AB•AC•DF=AD•FC•FB.[选修4-4:极坐标系与参数方程]23.已知曲线C的参数方程为(α为参数),以直角坐标系原点为极点,x轴正半轴为极轴建立极坐标系.(1)求曲线C的极坐标方程,并说明其表示什么轨迹.(2)若直线的极坐标方程为sinθ﹣cosθ=,求直线被曲线C截得的弦长.[选修4-5:不等式选讲]24.已知函数f(x)=|x+3|﹣m,m>0,f(x﹣3)≥0的解集为(﹣∞,﹣2]∪[2,+∞).(Ⅰ)求m的值;(Ⅱ)若∃x∈R,使得成立,求实数t的取值范围.2016-2017学年甘肃省张掖市高台一中高三(上)期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:由A中不等式变形得:(x﹣3)(x+1)≤0,解得:﹣1≤x≤3,即A=[﹣1,3],∵B=[,+∞),∴A∩B=[,3],故选:C.2.【解答】解:由z(i+1)=,得.∴复数z的虚部为0.故选:B.3.【解答】解:,且,,∴+•=3,∴•=﹣1,设向量与夹角为θ,∵两向量的夹角θ的取值范围是,θ∈[0,π],∴cosθ==﹣,∴sinθ==,故选:D.4.【解答】解:总的可能性为3×3=9种,两位同学参加同一个小组的情况为3种,∴所求概率P==,故选:A.5.【解答】解:根据题意,该框图的含义是当x≤2时,得到函数y=x2﹣1;当x>2时,得到函数y=log2x.因此,若输出结果为3时,①若x≤2,得x2﹣1=3,解之得x=±2②当x>2时,得y=log2x=3,得x=8因此,可输入的实数x值可能是2,﹣2或8,共3个数.故选:C.6.【解答】解:由题意双曲线C:=1(a>0,b>0),右焦点F到渐近线的距离为2,F到原点的距离为3,双曲线焦点到渐近线的距离为b=2,c=3.又b2=c2﹣a2,代入得a2=5,解得e==,故选:B.7.【解答】解:三视图复原的几何体是底面为直角边长为4和5的三角形,一个侧面垂直底面的等腰三角形,高为4,底边长为5,如图,所以S底==10,S后=,S右==10,S左==6.几何体的表面积为:S=S底+S后+S右+S左=30+6.故选:B.8.【解答】解:∵a n+1=a n+a n+2,a1=2008,a2=2009,∴a3=1,a4=﹣2008,a5=﹣2009,a6=﹣1,a7=2008,…,∴a n+6=a n.a1+a2+…+a6=0.∴S2014=335(a1+a2+…+a6)+(a1+a2+a3+a4)=2010.故选:C.9.【解答】解:设△ABC外接圆半径为r,设三棱锥P﹣ABC球半径为R,设△ABC外心为O∵三棱锥P﹣ABC,在底面△ABC中,∠A=60°,BC=,P A⊥面ABC,P A=2,∴由正弦定理,得:2r=2,解得r=1,即OA=1,球心到△ABC的外接圆圆心的距离d=1故球的半径R=故三棱锥P﹣ABC外接球的体积V==π故选:A.10.【解答】解:∵∀x∈R,都有f(x+2)=f(x),∴函数的周期为2,在同一坐标系中,作出f(x)的图象,再画出y=log2|x|的图象观察得出交点数为5,即方程f(x)=log2|x|在区间[﹣3,5]内解的个数是5.故选:A.11.【解答】解:根据题意,函数f(x)=sin(2x+ϕ)中,若对x∈R恒成立,则f()等于函数的最大值或最小值,则有2×+ϕ=kπ+,解可得ϕ=kπ+,又由,则有sin(2×+ϕ)>sin(2×0+ϕ),即sinϕ<0,可以设k=﹣1,则有ϕ=﹣π符合题意,令2kπ﹣≤2x﹣≤2kπ+,解可得kπ+≤x≤kπ+;即f(x)的单调递增区间[kπ+,kπ+];故选:C.12.【解答】解:由题意,当x≤0时,f(x)=2x3+3x2+1,可得f′(x)=6x2+6x,解得函数在[﹣1,0]上导数为负,函数为减函数,在[﹣∞,﹣1]上导数为正,函数为增函数,故函数在[﹣2,0]上的最大值为f(﹣1)=2;又有x∈(0,3]时,f(x)=e ax,分析可得当a>0时是增函数,当a<0时为减函数,故要使函数在[﹣2,2]上的最大值为2,则当x=3时,e3a 的值必须小于等于2,即e3a≤2,解得a∈(﹣∞,ln2].故选:D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.【解答】解:f′(x)=alnx+a,∵f′(1)=2,∴a=2.故答案为2.14.【解答】解:由约束条件作出可行域如图,化目标函数z=3x+y为y=﹣3x+z,由图可知,当直线y=﹣3x+z过B(1,1)时,直线在y轴上的截距最大,此时z有最大值为3×1+1=4.故答案为:4.15.【解答】解:抛物线的焦点坐标为(0,),准线方程为:y=﹣,准线方程与双曲线x2﹣y2=1联立可得:x2﹣()2=1,解得x=±,因为△ABF为等边三角形,所以=2|x|,即p2=3x2,即p2=3(),解得p=2.故答案为:.16.【解答】解:在△ABC中,∵a cos B﹣b cos A=c,由正弦定理定理可得:sin A cos B﹣sin B cos A =sin C=sin(A+B),化为:tan A=3tan B>0,∴tan(A﹣B)===≤=,当且仅当tan B=,即B=时取等号.故答案为:.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.【解答】解:(1)设数列{b n}的公差为d,∵,∴q2+3d=18,6+d=q2,q=3,d=3•…(4分),b n=3n,•…(6分)(2)由题意得:,•…(12分).18.【解答】(Ⅰ)解:过D作DH⊥C1B1,直三棱柱中C1B1⊥面A1B1C1,∴C1B1⊥DH,∴DH⊥面BCC1,∴DH是高,DH=,…(3分)∵,∴•…(6分)(Ⅱ)证明:取C1B1的中点E,连接A1E,CE∵底面是正三角形,∴A1E⊥B1C1•…(8分)矩形C 1B1BC中,Rt△C1CE中,,Rt△BCC 1中,,∴,∴△C1CE∽△BCC1,∴∠C1BC=∠EC1C,∵,∴,∴CE⊥BC1•…(10分)∴面A 1CE,∴A1C⊥BC1•…(12分)19.【解答】解:(Ⅰ),,,,,∴z=1.2t﹣1.4•…(6分)(Ⅱ)t=x﹣2010,z=y﹣5,代入z=1.2t﹣1.4得到:y﹣5=1.2(x﹣2010)﹣1.4,即y=1.2x﹣2408.4•…(9分)(Ⅲ)x=2020,∴y=1.2×2020﹣2408.4=15.6,∴预测到2020年年底,该地储蓄存款额可达15.6千亿元•…(12分)20.【解答】解:(Ⅰ)设圆C的半径为r(r>0),依题意,圆心坐标为(2,r).∵|MN|=3,∴,解得,故圆C的方程为.(Ⅱ)把x=0代入方程,解得y=1或y=4,即点M(0,1),N(0,4).(1)当AB⊥y轴时,由椭圆的对称性可知∠ANM=∠BNM.(2)当AB与y轴不垂直时,可设直线AB的方程为y=kx+1.联立方程,消去y得,(1+2k2)x2+4kx﹣6=0.设直线AB交椭圆Γ于A(x1,y1)、B(x2,y2)两点,则,.∴=0,∴∠ANM=∠BNM.综上所述,∠ANM=∠BNM.21.【解答】解:(Ⅰ)h(x)定义域为(0,+∞),…(2分)∴h(x)的单调递减区间是和(1,+∞).…(4分)(Ⅱ)问题等价于有唯一的实根显然a≠0,则关于x的方程有唯一的实根•…(6分)构造函数φ(x)=xlnx,则φ'(x)=1+lnx,由φ'(x)=1+lnx=0,得x=e﹣1当0<x<e﹣1时,φ'(x)<0,φ(x)单调递减当x>e﹣1时,φ'(x)>0,φ(x)单调递增所以φ(x)的极小值为φ(e﹣1)=﹣e﹣1•…(8分)如图,作出函数φ(x)的大致图象,则要使方程的唯一的实根,只需直线与曲线y=φ(x)有唯一的交点,则或解得a=﹣e或a>0故实数a的取值范围是{﹣e}∪(0,+∞)…(12分)请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1:几何证明选讲]22.【解答】证明:(I)∵A,B,C,D四点共圆,∴∠ABC=∠CDF又AB=AC∴∠ABC=∠ACB,且∠ADB=∠ACB,∴∠ADB=∠CDF,对顶角∠EDF=∠ADB,故∠EDF=∠CDF;(II)由(I)得∠ADB=∠ABF,∵∠BAD=∠F AB,∴△BAD∽△F AB,∴=,∴AB2=AD•AF,∵AB=AC,∴AB•AC=AD•AF,∴AB•AC•DF=AD•AF•DF,根据割线定理DF•AF=FC•FB,∴AB•AC•DF=AD•FC•FB.[选修4-4:极坐标系与参数方程]23.【解答】解:(1)∵曲线C的参数方程为(α为参数),∴由sin2α+cos2α=1,得曲线C的普通方程为(x﹣3)2+(y﹣1)2=10,即x2+y2=6x+2y,由ρ2=x2+y2,ρcosθ=x,ρsinθ=y,得曲线C的极坐标方程为ρ2=6ρcosθ+2ρsinθ,即ρ=6cosθ+2sinθ,它是以(3,1)为圆心,以为半径的圆.(2)∵直线的极坐标方程为sinθ﹣cosθ=,∴ρsinθ﹣ρcosθ=1,∴直线的直角坐标为x﹣y+1=0,∵曲线C是以(3,1)为圆心,以r=为半径的圆,圆心C(3,1)到直线x﹣y+1=0的距离d==,∴直线被曲线C截得的弦长|AB|=2=2=.[选修4-5:不等式选讲]24.【解答】解:(1)因为∵f(x)=|x+3|﹣m,所以f(x﹣3)=|x|﹣m≥0,∵m>0,∴x≥m或x≤﹣m,又∵f(x﹣3)≥0的解集为(﹣∞,﹣2]∪[2,+∞).故m=2.•…(5分)(2)等价于不等式,设,•…(8分)故,∃x∈R,使得成立,则有,即2t2﹣3t+1≥0,解得或t≥1即实数的取值范围•…(10分)。
2017年甘肃省河西五市部分普通高中高考数学二模试卷(文科)一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)已知集合M={x|3x﹣x2>0},N={x|x2﹣4x+3>0},则M∩N=()A.(0,1)B.(1,3)C.(0,3)D.(3,+∞)2.(5分)在复平面内,复数z满足z(1+i)=|1+|,则对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)《张丘建算经》卷上第22题为:“今有女善织,日益功疾,且从第2天起,每天比前一天多织相同量的布,若第一天织5尺布,现有一月(按30天计),共织390尺布”,则该女最后一天织多少尺布?()A.18B.20C.21D.254.(5分)直线x+2y﹣5+=0被圆x2+y2﹣2x﹣4y=0截得的弦长()A.2B.2C.4D.45.(5分)下列有关命题的说法错误的是()A.若“p∨q”为假命题,则p,q均为假命题B.“x=1”是“x≥1”的充分不必要条件C.若命题p:∃x0∈R,≥0,则命题¬p:∀x∈R,x2<0D.“sin x=”的必要不充分条件是“x=”6.(5分)执行如图的程序框图,若输出k的值为6,则判断框内可填入的条件是()A.s B.s C.s D.s7.(5分)在区间[0,π]上随机地取一个数x,则事件“sin x≤”发生的概率为()A.B.C.D.8.(5分)某几何体的三视图如图所示,图中的四边形都是边长为1的正方形,两条虚线互相垂直,则该几何体的体积是()A.B.C.D.19.(5分)函数y=ln|x|﹣x2的图象大致为()A.B.C.D.10.(5分)设x,y满足条件,若目标函数z=ax+by(a>0,b>0)的最大值为12,则的最小值为()A.4B.6C.12D.2411.(5分)已知F、A分别为双曲线﹣=1(a>0,b>0)的右焦点和右顶点,过F作x轴的垂线在第一象限与双曲线交于点P,AP的延长线与双曲线在第一象限的渐近线交于点Q,若=(2﹣),则双曲线的离心率为()A.B.C.2D.12.(5分)已知函数f(x)=(a>0,a≠1)的图象上关于直线x =1对称的点有且仅有一对,则实数a的取值范围是()A.[,]∪{}B.[,)∪{}C.[,]∪{}D.[,)∪{}二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)在△ABC中,角A、B、C的对边边长分别是a、b、c,若,,b=1,则c的值为.14.(5分)已知等比数列{a n}中,a3=4,a6=,则公比q=.15.(5分)已知点P,A,B,C在同一球面上,P A⊥平面ABC,AP=2AB=2,AB=BC,且•=0,则该球的表面积是.16.(5分)定义在R上的函数f(x)的导函数为f'(x),满足xf'(x)+f(x)>x,则不等式的解集为.三、解答题(本大题共5小题,共70分)17.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且a tan C=2c sin A.(I)求角C的大小;(II)求sin A+sin B的最大值.18.(12分)共享单车的出现方便了人们的出行,深受市民的喜爱,为调查某校大学生对共享单车的使用情况,从该校8000名学生随机抽取了100位同学进行调查,得到这100名同学每周使用共享单车的时间(单位:小时)频率分布直方图.(1)已知该校大一学生有2400人,求抽取的100名学生中大一学生人数;(2)根据频率分布直方图求该校大学生每周使用共享单车的平均时间;(3)从抽取的100个样本中,用分层抽样的方法抽取使用共享单车时间超过6小时同学5人,再从这5人中任选2人,求这2人使用共享单车时间都不超过8小时的概率.19.(12分)如图,四边形ABCD与BDEF均为菱形,∠DAB=∠DBF=60°,且F A=FC;(1)求证:AC⊥平面BDEF;(2)求证:FC∥平面EAD;(3)设AB=BF=a,求四面体A﹣BCF的体积.20.(12分)已知△ABC的顶点A(1,0),点B在x轴上移动,|AB|=|AC|,且BC的中点在y轴上.(Ⅰ)求C点的轨迹Γ的方程;(Ⅱ)已知过P(0,﹣2)的直线l交轨迹Γ于不同两点M,N,求证:Q(1,2)与M,N 两点连线QM,QN的斜率之积为定值.21.(12分)已知函数f(x)=lnx+(a∈R)(1)若函数f(x)在区间(0,4)上单调递增,求a的取值范围;(2)若函数y=f(x)的图象与直线y=2x相切,求a的值.[选修4-4:坐标系与参数方程]22.(10分)已知曲线C的参数方程为(θ为参数).以原点O为极点,x 轴的非负半轴为极轴建立极坐标方程.(1)求曲线C的极坐标方程;(2)若直线l:θ=α(α∈[0,π),ρ∈R)与曲线C相交于A,B两点,设线段AB的中点为M,求|OM|的最大值.[选修4-5:不等式选讲]23.设函数f(x)=a(x﹣1).(Ⅰ)当a=1时,解不等式|f(x)|+|f(﹣x)|≥3x;(Ⅱ)设|a|≤1,当|x|≤1时,求证:.2017年甘肃省河西五市部分普通高中高考数学二模试卷(文科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)已知集合M={x|3x﹣x2>0},N={x|x2﹣4x+3>0},则M∩N=()A.(0,1)B.(1,3)C.(0,3)D.(3,+∞)【解答】解:由M中不等式变形得:x(x﹣3)<0,解得:0<x<3,即M=(0,3),由N中不等式变形得:(x﹣1)(x﹣3)>0,解得:x<1或x>3,即N=(﹣∞,1)∪(3,+∞),则M∩N=(0,1),故选:A.2.(5分)在复平面内,复数z满足z(1+i)=|1+|,则对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:复数z满足z(1+i)=|1+i|,可得z==1﹣i,复数z对应的点为(1,﹣1),在复平面内z的共轭复数=1+i对应的点为(1,1),在第一象限.故选:A.3.(5分)《张丘建算经》卷上第22题为:“今有女善织,日益功疾,且从第2天起,每天比前一天多织相同量的布,若第一天织5尺布,现有一月(按30天计),共织390尺布”,则该女最后一天织多少尺布?()A.18B.20C.21D.25【解答】解:设公差为d,由题意可得:前30项和S30=390=30×5+d,解得d=.∴最后一天织的布的尺数等于5+29d=5+29×=21.故选:C.4.(5分)直线x+2y﹣5+=0被圆x2+y2﹣2x﹣4y=0截得的弦长()A.2B.2C.4D.4【解答】解:圆x2+y2﹣2x﹣4y=0的圆心C(1,2),半径r==,圆心C(1,2)到直线x+2y﹣5+=0的距离d==1,∴直线x+2y﹣5+=0被圆x2+y2﹣2x﹣4y=0截得的弦长:|AB|=2=2=4.故选:C.5.(5分)下列有关命题的说法错误的是()A.若“p∨q”为假命题,则p,q均为假命题B.“x=1”是“x≥1”的充分不必要条件C.若命题p:∃x0∈R,≥0,则命题¬p:∀x∈R,x2<0D.“sin x=”的必要不充分条件是“x=”【解答】解:若“p∨q”为假命题,则p,q均为假命题,满足复合命题的真假关系,正确.“x=1”可能“x≥1”,但是后者不能推出前者,所以“x=1”是“x≥1”的充分不必要条件,正确.命题p:∃x0∈R,≥0,则命题¬p:∀x∈R,x2<0,满足命题的否定形式,正确.“sin x=”的必要不充分条件是“x=”,应该是充分不必要条件.所以,错误.故选:D.6.(5分)执行如图的程序框图,若输出k的值为6,则判断框内可填入的条件是()A.s B.s C.s D.s【解答】解:当k=9,S=1时,不满足输出条件,故S值应满足条件,执行循环体后:S =,k=8;当k=8,S=时,不满足输出条件,故S值应满足条件,执行循环体后:S=,k=7;当k=7,S=时,不满足输出条件,故S值应满足条件,执行循环体后:S=,k=6;当k=6,S=1时,满足输出条件,故S值应不满足条件,故判断框内可填入的条件是s,故选:B.7.(5分)在区间[0,π]上随机地取一个数x,则事件“sin x≤”发生的概率为()A.B.C.D.【解答】解:∵0≤x≤π,∴由snx≤得0≤x≤或≤x≤π,则事件“snx≤”发生的概率P==,故选:D.8.(5分)某几何体的三视图如图所示,图中的四边形都是边长为1的正方形,两条虚线互相垂直,则该几何体的体积是()A.B.C.D.1【解答】解:由三视图知:几何体是正方体挖去一个正四棱锥,其中正方体的边长为1,挖去的正四棱锥的斜高为,∴四棱锥的高为=,∴几何体的体积V=13﹣×12×=.故选:C.9.(5分)函数y=ln|x|﹣x2的图象大致为()A.B.C.D.【解答】解:令y=f(x)=ln|x|﹣x2,其定义域为(﹣∞,0)∪(0,+∞),因为f(﹣x)=ln|x|﹣x2=f(x),所以函数y=ln|x|﹣x2为偶函数,其图象关于y轴对称,故排除B,D,当x>0时,f(x)=lnx﹣x2,所以f′(x)=﹣2x=,当x∈(0,)时,f′(x)>0,函数f(x)递增,当x∈(,+∞)时,f′(x)<0,函数f(x)递减,故排除C,方法二:当x→+∞时,函数y<0,故排除C,故选:A.10.(5分)设x,y满足条件,若目标函数z=ax+by(a>0,b>0)的最大值为12,则的最小值为()A.4B.6C.12D.24【解答】解:作出不等式组对应的平面区域如图:平移直线y=﹣x+,由图象知当直线经过点A时,y=﹣x+时,直线的截距最大,此时z最大为12,由得,即A(4,6),此时4a+6b=12,即+=1,∴=()(+)=1+1++≥2+2=4,当且仅当=,即9b2=4a2,时取等号,则的最小值为4,故选:A.11.(5分)已知F、A分别为双曲线﹣=1(a>0,b>0)的右焦点和右顶点,过F 作x轴的垂线在第一象限与双曲线交于点P,AP的延长线与双曲线在第一象限的渐近线交于点Q,若=(2﹣),则双曲线的离心率为()A.B.C.2D.【解答】解:F,A分别为双曲线﹣=1(a>0,b>0)的右焦点和右顶点,可设F点坐标为(c,0),A(a,0),过F作x轴的垂线,在第一象限与双曲线交于点P,令x=c,代入双曲线的方程可得y=±b=±,则P点坐标为(c,),则AP所在直线方程为:y=(x﹣a),即y=(x﹣a),联立双曲线﹣=1的渐近线方程y=x得:Q点的横坐标为,∵=(2﹣),∴c﹣a=(2﹣)(﹣a)=(2﹣),∴b2﹣b(c﹣a)=(2﹣)ab,∴a+b﹣c=(2﹣)a,∴b=(1﹣)a+c,∴b2=(3﹣2)a2+c2+(2﹣2)ac=c2﹣a2,∴(4﹣2)a2+(2﹣2)ac=0,∴(4﹣2)a+(2﹣2)c=0,∴(4﹣2)a=(2﹣2)c,∴e===,故选:A.12.(5分)已知函数f(x)=(a>0,a≠1)的图象上关于直线x =1对称的点有且仅有一对,则实数a的取值范围是()A.[,]∪{}B.[,)∪{}C.[,]∪{}D.[,)∪{}【解答】解:∵函数f(x)=(a>0,a≠1)的图象上关于直线x=1对称的点有且仅有一对,∴函数y=log a x,与y=2|x﹣5|﹣2在[3,7]上有且只有一个交点,当对数函数的图象过(5,﹣2)点时,由log a5=﹣2,解得a=;当对数函数的图象过(3,2)点时,由log a3=2,解得a=;当对数函数的图象过(7,2)点时,由log a7=2,解得a=.故a∈[,)∪{},故选:D.二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)在△ABC中,角A、B、C的对边边长分别是a、b、c,若,,b=1,则c的值为2.【解答】解:∵,∴,∴,∵a>b,所以A>B.角A、B、C是△ABC中的内角.∴,∴,∴.故答案为:2.14.(5分)已知等比数列{a n}中,a3=4,a6=,则公比q=.【解答】解:∵a3=4,a6=,∴4q3=,则公比q=.故答案为:.15.(5分)已知点P,A,B,C在同一球面上,P A⊥平面ABC,AP=2AB=2,AB=BC,且•=0,则该球的表面积是6π.【解答】解:∵•=0,∴AB⊥BC,∵P A⊥平面ABC,∴可扩充为长方体,长宽高分别为1,1,2,其对角线长度为=,∴球的半径为,∴球的表面积是4πR2=4=6π.故答案为:6π.16.(5分)定义在R上的函数f(x)的导函数为f'(x),满足xf'(x)+f(x)>x,则不等式的解集为(﹣∞,8).【解答】解:定义在R上的函数f(x)的导函数为f'(x),满足xf'(x)+f(x)>x,不妨取f(x)=1+,则不等式,化为:(x﹣4)(1+)﹣4×3<,解得x<8;故答案为:(﹣∞,8).三、解答题(本大题共5小题,共70分)17.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且a tan C=2c sin A.(I)求角C的大小;(II)求sin A+sin B的最大值.【解答】解:(I)∵2c sin A=a tan C,∴由正弦定理得,2sin C sin A=sin A tan C,则2sin C sin A=sin A•,由sin C sin A≠0得,cos C=,∵0<C<π,∴C=.(II)则A+B=,∴B=﹣A,0<A<,∴sin A+sin B=sin A+sin(﹣A)=sin A+cos A+sin A=sin A+cos A=sin(A+),∵0<A<,∴<A+<,∴当A+=时,sin A+sin B取得最大值,18.(12分)共享单车的出现方便了人们的出行,深受市民的喜爱,为调查某校大学生对共享单车的使用情况,从该校8000名学生随机抽取了100位同学进行调查,得到这100名同学每周使用共享单车的时间(单位:小时)频率分布直方图.(1)已知该校大一学生有2400人,求抽取的100名学生中大一学生人数;(2)根据频率分布直方图求该校大学生每周使用共享单车的平均时间;(3)从抽取的100个样本中,用分层抽样的方法抽取使用共享单车时间超过6小时同学5人,再从这5人中任选2人,求这2人使用共享单车时间都不超过8小时的概率.【解答】解:(1)设抽取的100名学生中大一学生有x人,则,解得x=30,∴抽取的100名学生中大一学生有30人.(2)根据频率分布直方图知该校大学生每周使用共享单车的平均时间为:=1×0.050×2+3×0.200×2+5×0.125×2+7×0.100×2+9×0.025×2=4.4,∴该校大学生每周使用共享单车的平均时间为4.4小时.(3)在100个样本中,任意抽取5人,使用共享单车时间在(6,8]小时内的有4人,记为A、B、C、D,在(8,10]小时的有1人,记为X,从这5人中任选2人,不同的选法有10种,分别为:(A、B),(A、C),(A,D),(A,X),(B,C),(B,D),(B,X),(C,D),(C,X),(D,X),这2人使用共享单车时间都不超过8小时的选法有6种,分别为:(A、B),(A、C),(A,D),(B,C),(B,D),(C,D),∴这2人使用共享单车时间都不超过8小时的概率p=.19.(12分)如图,四边形ABCD与BDEF均为菱形,∠DAB=∠DBF=60°,且F A=FC;(1)求证:AC⊥平面BDEF;(2)求证:FC∥平面EAD;(3)设AB=BF=a,求四面体A﹣BCF的体积.【解答】解:(1)证明:设AC∩BD=O,连结FO,∵四边形ABCD是菱形,∴AC⊥BD,O是AC的中点,又F A=FC,∴FO⊥AC,又FO⊂平面BDEF,BD⊂平面BDEF,BD∩FO=O,∴AC⊥平面BDEF,(2)证明:四边形ABCD和四边形BDEF是菱形,∴BC∥AD,BF∥DE,又BC⊂平面FBC,BF⊂平面FBC,AD⊂平面EAD,DE⊂平面EAD,∴平面BCF∥平面EAD,又FC⊂平面FBC,∴FC∥平面EAD.(3)∵四边形BDEF是菱形,∠DBF=60°,∴△BDF是等边三角形,又O是BD的中点,∴FO⊥OB,FO=,又FO⊥AC,OB∩AC=O,∴FO⊥平面ABCD,∴V A﹣BCF=V F﹣ABC===.20.(12分)已知△ABC的顶点A(1,0),点B在x轴上移动,|AB|=|AC|,且BC的中点在y轴上.(Ⅰ)求C点的轨迹Γ的方程;(Ⅱ)已知过P(0,﹣2)的直线l交轨迹Γ于不同两点M,N,求证:Q(1,2)与M,N 两点连线QM,QN的斜率之积为定值.【解答】解:(Ⅰ)设C(x,y)(y≠0),因为B在x轴上且BC中点在y轴上,所以B(﹣x,0),由|AB|=|AC|,得(x+1)2=(x﹣1)2+y2,化简得y2=4x,所以C点的轨迹Γ的方程为y2=4x(y≠0).(Ⅱ)直线l的斜率显然存在且不为0,设直线l的方程为y=kx﹣2,M(x1,y1),N(x2,y2),由得ky2﹣4y﹣8=0,所以,,,同理,,所以Q(1,2)与M,N两点连线的斜率之积为定值4.21.(12分)已知函数f(x)=lnx+(a∈R)(1)若函数f(x)在区间(0,4)上单调递增,求a的取值范围;(2)若函数y=f(x)的图象与直线y=2x相切,求a的值.【解答】解:(1)∵函数f(x)=lnx+(a∈R),∴=,∵函数f(x)在区间(0,4)上单调递增,∴f′(x)≥0在(0,4)上恒成立,∴(x+1)2+ax≥0,即a>﹣=﹣(x+)﹣2在(0,4)上恒成立,∵x+≥2,(当且仅当x=1时取等号),∴﹣(x+)﹣2≤﹣4,∴a≥﹣4,即a的取值范围是[﹣4,+∞).(2)设切点为(x0,y0),则y0=2x0,,∴,①,且,②由①,得a=(x0+1)2(2﹣),代入②,得lnx0+2x02﹣x0﹣1=0,令F(x)=lnx+2x2﹣x﹣1,则F′(x)>0,∴F(x)在(0,+∞)单调递增,又F(1)=0,∴x0=1,∴a=4.[选修4-4:坐标系与参数方程]22.(10分)已知曲线C的参数方程为(θ为参数).以原点O为极点,x 轴的非负半轴为极轴建立极坐标方程.(1)求曲线C的极坐标方程;(2)若直线l:θ=α(α∈[0,π),ρ∈R)与曲线C相交于A,B两点,设线段AB的中点为M,求|OM|的最大值.【解答】解:(I)曲线C的普通方程为(x+1)2+(y﹣1)2=4,由x=ρcosθ,y=ρsinθ,得ρ2+2ρcosθ﹣2ρsinθ﹣2=0.(II)联立θ=α和ρ2+2ρcosθ﹣2ρsinθ﹣2=0,得ρ2+2ρ(cosα﹣sinα)﹣2=0,设A(ρ1,α),B(ρ2,α),则ρ1+ρ2=2(cosα﹣sinα)=2,由|OM|=,得|OM|=,当α=时,|OM|取最大值.[选修4-5:不等式选讲]23.设函数f(x)=a(x﹣1).(Ⅰ)当a=1时,解不等式|f(x)|+|f(﹣x)|≥3x;(Ⅱ)设|a|≤1,当|x|≤1时,求证:.【解答】解:(I)当a=1时,不等式|f(x)|+|f(﹣x)|≥3x即|x﹣1|+|x+1|≥3x当x≤﹣1时,得1﹣x﹣x﹣1≥3x⇒x≤0,∴x≤﹣1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(1分)当﹣1<x<1时,得1﹣x+x+1≥3x,∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)当x≥1时,得x﹣1+x+1≥3x⇒x≤0,与x≥1矛盾,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)综上得原不等式的解集为=﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(II)证明:|f(x2)+x|=|a(x2﹣1)+x|≤|a(x2﹣1)|+|x|﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)∵|a|≤1,|x|≤1∴|f(x2)+x|≤|a|(1﹣x2)+|x|≤1﹣x2+|x|﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)=,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)当时取“=”,得证.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)。
甘肃省高台县第一中学2016-2017学年高二下学期期末考试数学(文)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{}{}{}1,2,3,4,5,1,2,2,3,4U A B ===,则()U C A B = ( ) A .{}3,4 B .{}3,4,5 C .{}2,3,4,5 D .{}1,2,3,42.已知复数i 2iz -=(其中i 是虚数单位),那么z 的共轭复数是( ) A .12i - B .1+2i C .-1-2i D .-1+2i 3. 已知角α的终边经过点()4,3P -,则2sin cos αα+的值是( ) A .1 或1- B .25或25- C .1或25- D .254. 已知向量()()2,1,1,3a b =-=-,则( )A .//a bB .a b ⊥ C.()//a a b - D .()a ab ⊥-5. 书架上有2本不同的语文书,1本数学书,从中任意取出2本,取出的书恰好都是语文书的概率为( ) A .13 B 12. C.23 D .346. 一个空间几何体的三视图如图所示,則该几何体的体积为( )A .365cm π B .33cm π C.332cm π D .373cm π7.已知,x y 满足14210x x y x y ≥⎧⎪+≤⎨⎪--≤⎩,则2z x y =+的最大值为( )A .3B .4 C.6 D .78. 函数2212x x y -⎛⎫= ⎪⎝⎭的值域是( )A .RB .()0,+∞ C.()2,+∞ D .1,2⎡⎫+∞⎪⎢⎣⎭9. 根据此程序桥输出的s 值1112为,则判断框内应填入的是( )A .8?i ≤B .6?i ≤ C.8?i ≥ D .6?i ≥10.设()1111,1...234n N f n n∈=+++++,计算()()()()()3572,42,8,163,32222f f f f f =>>>>,由此猜测( )A .()2122n f n +>B .()222n f n +≥C.()222nn f +≥ D .以上都不对11. 若双曲线()222210,0x y a b a b-=>>的一条渐近线的倾斜角是:210l x y -+=,直线的倾斜角的两倍,则双曲线的离心率为( ) A .53 BC.54 D .43 12. 已知抛物线24y x =的焦点为F ,过焦点F 的直线交抛物线于,A B 两点,O 坐标原点,若AOB ∆的面积为,则AB =( )A .24B .8 C. 12 D .16第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知1x >,则()11f x x x =+-的最小值是 . 14.已知()f x 是定义域为R 的偶函数,且()()22f x f x +=-,当[]0,2x ∈时,()22f x x x =-,则()5f -= .15. 己知长方体的长宽高分别为3,2,1,則该长方体外接球的表面积为 . 16.已知ABC ∆的一个内角为120,并且三边长构成公差为2的等差数列,则ABC ∆的面积等于 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图象如图所示,求(1)函数()f x 的解析式;(2)函数()cos y A x ωϕ=+的单调增区间. 18. 等差数列{}n a 中,2474,15a a a =+=. (1)求数列{}n a 的通项公式; (2)设22n a n b -=,求12310...b b b b ++++的值.19. 如图,在三棱锥V ABC -中,平面VAB ⊥平面,4,2ABC VA VB AC BC ====,且,,AC BC O M ⊥分别为,AB VA 的中点.VB平面MOC;(1)求证://(2)求证:平面MOC⊥平面VAB;-的体积.(3)求三棱锥V ABC20. 电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称“体育述”,已知“体育迷”中10名女性.⨯列联表,并据此资料你是否认为“体育迷”与性別有关?(1)根据已知条件完成下面的22(2)将日均收看该体育项目不低于50分钟的观众称为“超级体育迷”,已知“超级体育述”中有2名女性,若从“超级体育述”中任意选取2人,求至少有1名女性观众的概率.附:()()()()()22n ad dc K a b c d a c b d -=++++,21. 已知点()0,2A -,椭圆()2222:10x y E a b a b+=>>F 是椭圆的焦点,直线AF 的为坐标原点. (1)求椭圆E 的方程;(2)设过点A 的直线l 与椭圆E 相交于,P Q 两点,当OPQ ∆的面积最大时,求直线l 的方程.22. 已知函数()323f x x ax bx =--,其中,a b 为实数. (1)若()f x 在1x =处取得的极值为2,求,a b 的值;(2)若()f x 在区间[]1,2-上为减函数,且9b a =,求a 的取值范围.甘肃省高台县第一中学2016-2017学年高二下学期期末考试数学(文)试题参考答案一、选择题1-5: CADDA 6-10: DDDBC 11-12:AA二、填空题13.3 14. 1- 15. 14π三、解答题17. 解:(1)由五点作图法知,1221,3A ππωϕπωϕπ⎧⨯+=⎪⎪=⎨⎪⨯+=⎪⎩,解得2,3πωϕ==,所以函数解析式为2sin 23y x π⎛⎫=+⎪⎝⎭. (2)令222,3k x k k Z ππππ-≤+≤∈,解得236k x k ππππ-≤≤-,所以()cos y A x ωϕ=+的单调增区间为2,,36k k k Z ππππ⎡⎤--∈⎢⎥⎣⎦.18. 解:(1)设等差数列{}n a 的公差为d ,由已知得11143615a d a d a d +=⎧⎨+++=⎩,解得131a d =⎧⎨=⎩,()311n a n ∴=+-⨯,即2n a n =+.(2)由(1)知2nn b =,()10121012310212...22 (2204612)b b b b -++++=+++==-.19. 解:(1) ,O M 分别为,AB VA 的中点,//OM VB ,又VB ⊄平面,MOC MO ⊂平面,//MOC VB ∴平面MOC .(2)AC BC = ,且O 是AB 的中点,CO AB ∴⊥又平面VAB ⊥平面,ABC CO ∴⊥平面VAB ,又CO ⊂平面MOC ,∴平面MOC ⊥平面VAB ;(3)AC BC ⊥,且2,AC BC AB ==∴==,连VO ,又4VA VB ==,所以VO ==2)知:CO ⊥平面,VAB ∴三棱锥V ABC -的体积:111332V ABC C VAB VAB V V S CO --∆===⨯⨯=20. 解:(1) 根据频率发布直方图计算出“体育迷”共计:()1000.020.051025⨯+⨯=(名),其中女生:10名;非体育迷:1002575-=(名),其中女生为:551045-=(名);男生:35名;填入列联表如下:计算观测值()()()()()22n ad dc K a b c d a c b d -=++++()2100301045151007525455533⨯⨯-⨯==⨯⨯⨯ 3.030≈,因为3.030 3.841<,所以没有0095的把握认为“体育迷”与性别有关.(2) 由频率分布直方图知,“超级体育迷”为5人,从而一切可能的结果所组成的基本事件Ω为,,,,,,,,,AB AC Ad Ae BC Bd Be Cd Ce de ;其中,,A B C 表示男性,,d e 表示女性,Ω由10个基本事件组成,而且这些基本事件出现是等可能的,由A 表示“任选2人中,至少有1人是女性”这一事件,有,,,,,,Ad Ae Bd Be Cd Ce de ;则A 中有7个基本事件组成,所以()710P A =. 21. 解:(1)设()2,0,F c c =c =2,1c a b a =∴==,∴椭圆22:14x E y +=.(2)当l x ⊥轴时,不合题意;当直线l 斜率存在时,设直线()()1122:2,,,,l y kx P x y Q x y =-,联立222:14y kx x E y =-⎧⎪⎨+=⎪⎩,得()221416120k x kx +-+=,由()216430k ∆=->,得234k >,即k <k >1212221612,1414k x x x x k k+==++,从而==,又点O到直线PQ的距离d OPQ =∴∆的面积12S =t =,则0t >, 24441444t S t t t∴==≤=++,当且仅当2t =,即k =0∆>,此时:2,2l y x y x =-=-. 22. 解:(1)由题设可知:()'10f =且()12f =,即360132a b a b --=⎧⎨--=⎩,解得4,53a b ==-.(2)()22'36369f x x ax b x ax a =--=-- ,又()f x 在[]1,2-上为减函数,()'0f x ∴≤对[]1,2x ∈-恒成立,即23690x ax a --≤对[]1,2x ∈-恒成立,()'10f ∴-≤且()'20f ≤,即13690141212907a a a a a a a ≥⎧+-≤⎧⎪⇒⇒≥⎨⎨--≤≥⎩⎪⎩,a ∴的取值范围是1a ≥.。
甘肃省高台县第一中学2017届高三第一次模拟考试文科数学试卷第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}{}21,0,1,2,3,|20A B x x x =-=->,则A B =A .{}3B .{}2,3C .{}1,3-D .{}0,1,2 2.在复平面内,复数11i i++对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.将函数sin 6y x π⎛⎫=+⎪⎝⎭的图象上所有点向左平移4π个单位长度,再把所得图象上各点的横坐标扩大为原来的2倍(纵坐标不变),则所得图象的解析式为 A .5sin 212y x π⎛⎫=+⎪⎝⎭ B .5sin 212x y π⎛⎫=+ ⎪⎝⎭ C .5sin 212x y π⎛⎫=- ⎪⎝⎭D .5sin 224x y π⎛⎫=+ ⎪⎝⎭4.若两个球的表面积之比为1:4,则这两个球的体积之比为 A .1:2 B .1:4 C .1:8 D .1:165.若抛物线22y px =的焦点与双曲线22122x y -=的右焦点重合,则p 的值为 A .4 B .2 C .-2 D .-46. 直线250x y +-=被圆22240x y x y +--=截得的弦长为( )A .1B .2C .D . 47. 某几何体的三视图如图所示,且该几何体的体积是32,则主视图中x 的值是( )A .2B .92C .32D .38. 公元263年左右,我国数学家刘徽发现,当圆内接多边形的边数无限增加时,多边形面积可无限逼近圆的面积,由此创立了割圆术,利用割圆术刘徽得到了圆周率精确到小数点后面两位的近似值3.14,这就是著名的徽率.如图是利用刘徽的割圆术设计的程序框图,则输出的n 值为( )1.732=,sin150.2588︒≈,sin 7.50.1305︒≈. A .12 B .24C .48D .969.函数()()2l n 0,fx x x b x a b a R =+-+>∈的图象在点()(),b f b处的切线斜率的最小值为 A..1 D .210.从正六边形的6个顶点中随机选择4个,则以它们为顶点的四边形是矩形的概率为 A .110B .18C .16D .1511.函数()()log 320,1a y x a a =-+>≠的图象过定点P ,且角α的终边过点P ,则的值为sin 2cos 2αα+A .75B .65 C .4 D .512.已知定义在R 上的函数()f x 满足()()2f x f x +=-,当(]1,3x ∈-时,()(]()(],1,112,1,3x f x t x x ∈-=--∈⎪⎩其中0t >,若方程()3x f x =有3个不同的实数根,则t 的取值范围是A .40,3⎛⎫ ⎪⎝⎭ B .2,23⎛⎫ ⎪⎝⎭ C .4,33⎛⎫ ⎪⎝⎭ D .2,3⎛⎫+∞ ⎪⎝⎭第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上。
甘肃省张掖市高台一中2017-2018学年高二(下)期末数学试卷(文科)一、选择题(共16小题,每小题4分,共64分.在每小题给出的四个选项中,只有一个是符合要求的,请选出.)1.集合A={x∈N|x≤6},B={x∈R|x2﹣3x>0},则A∩B=()A.{3,4,5} B.{4,5,6} C.{x|3<x≤6} D.{x|3≤x<6}2.已知i是虚数单位,则等于()A.﹣i B.i C.D.3.曲线的参数方程为(t是参数),则曲线是()A.线段B.双曲线的一支C.圆D.射线4.函数f(x)=+lg(3x+1)的定义域是()A.(﹣,+∞)B.(﹣,1)C.(﹣,)D.(﹣∞,﹣)5.下列函数中,既是奇函数又是增函数的为()A.y=x|x| B.y=﹣x2C.y=x+1 D.y=﹣6.下表为某班5位同学身高x(单位:cm)与体重y(单位kg)的数据,身高170 171 166 178 160体重75 80 70 85 65若两个量间的回归直线方程为=1.16x+a,则a的值为()A.﹣122.2 B.﹣121.04 C.﹣91 D.﹣92.37.函数f(x)=2x+x3的零点所在区间为()A.(0,1)B.(﹣1,0)C.(1,2)D.(﹣2,﹣l)8.如图是调查某地区男女中学生喜欢理科的等高条形图,阴影部分表示喜欢理科的百分比,从图可以看出()A.性别与喜欢理科无关B.女生中喜欢理科的比为80%C.男生比女生喜欢理科的可能性大些D.男生不喜欢理科的比为60%9.设f(x)=,则f(f(2))的值为()A.0 B.1 C.2 D.310.已知三角形的三边分别为a,b,c,内切圆的半径为r,则三角形的面积为s=(a+b+c)r;四面体的四个面的面积分别为s1,s2,s3,s4,内切球的半径为R.类比三角形的面积可得四面体的体积为()A.∀=(s1+s2+s3+s4)R B.∀=(s1+s2+s3+s4)RC.∀=(s1+s2+s3+s4)R D.∀=(s1+s2+s3+s4)R11.函数f(x)=ln(x﹣)的图象是()A.B.C.D.12.已知函数f(x)是定义在(﹣3,3)上的奇函数,当0<x<3时,f(x)的图象如图所示,则不等式f(﹣x)•x>0的解集是()A.(﹣1,0)∪(0,1)B.(﹣1,1)C.(﹣3,﹣1)∪(0,1) D.(﹣1,0)∪(1,3)13.已知双曲线C:的离心率为,则C的渐近线方程为()A.B.C.D.y=±x14.已知△ABC的周长为20,且顶点B (0,﹣4),C (0,4),则顶点A的轨迹方程是()A.(x≠0)B.(x≠0)C.(x≠0)D.(x≠0)15.已知函数f(x)=x3﹣3x,若过点A(0,16)且与曲线y=f(x)相切的切线方程为y=ax+16,则实数a的值是()A.﹣3 B.3 C.6 D.916.椭圆上的点到直线2x﹣y=7距离最近的点的坐标为()A.(﹣,)B.(,﹣)C.(﹣,)D.(,﹣)二、填空题(本大题共4小题,每小题4分,共16分)17.如果直线2x﹣y﹣1=0和y=kx+1互相垂直,则实数k的值为.18.已知x>0,y>0,且x+y=1,求+的最小值是.19.{a n}为等比数列,若a3和a7是方程x2+7x+9=0的两个根,则a5=.20.y=x3﹣2x2+3的单调递减区间是.三、解答题(21-27题,要写出必要的解题过程,共70分)21.围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:m),修建此矩形场地围墙的总费用为y(单位:元).(Ⅰ)将y表示为x的函数:(Ⅱ)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用.22.在数列{a n}中,a1=1,;(1)设.证明:数列{b n}是等差数列;(2)求数列{a n}的通项公式.23.若双曲线与椭圆有相同的焦点,与双曲线有相同渐近线,求双曲线方程.24.已知函数f(x)=x3﹣3x,(1)求函数f(x)在上的最大值和最小值.(2)求曲线y=f(x)在点P(2,f(2))处的切线方程.25.已知椭圆的中心在原点,焦点在x轴上,一个顶点为B(0,﹣1),且其右焦点到直线的距离为3.(1)求椭圆方程;(2)设直线l过定点,与椭圆交于两个不同的点M、N,且满足|BM|=|BN|.求直线l的方程.26.已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点P(1,f(1))处的切线方程为y=3x+1.(1)若函数y=f(x)在x=﹣2时有极值,求f(x)表达式;(2)若函数y=f(x)在区间[﹣2,1]上单调递增,求实数b的取值范围.甘肃省张掖市高台一中2017-2018学年高二(下)期末数学试卷(文科)参考答案与试题解析一、选择题(共16小题,每小题4分,共64分.在每小题给出的四个选项中,只有一个是符合要求的,请选出.)1.集合A={x∈N|x≤6},B={x∈R|x2﹣3x>0},则A∩B=()A.{3,4,5} B.{4,5,6} C.{x|3<x≤6} D.{x|3≤x<6}考点:交集及其运算.专题:计算题.分析:根据所给的两个集合,整理两个集合,写出两个集合的最简形式,再求出两个集合的交集.解答:解:∵集合A={x∈N|x≤6}={0,1,2,3,4,5,6},B={x∈R|x2﹣3x>0}={x∈R|x<0或x>3}∴A∩B={4,5,6}.故选B.点评:本题考查集合的表示方法,两个集合的交集的定义和求法.化简A、B两个集合,是解题的关键.2.已知i是虚数单位,则等于()A.﹣i B.i C.D.考点:复数代数形式的乘除运算.专题:计算题.分析:将的分子与分母同乘以分母的共轭复数,将分母实数化即可.解答:解:∵===﹣i.∴=﹣i.故选A.点评:本题考查复数代数形式的乘除运算,分母实数化是关键,属于基础题.3.曲线的参数方程为(t是参数),则曲线是()A.线段B.双曲线的一支C.圆D.射线考点:直线的参数方程.专题:计算题;数形结合.分析:判断此曲线的类型可以将参数方程化为普通方程,再依据变通方程的形式判断此曲线的类型,由此参数方程的形式,可采用代入法消元的方式将其转化为普通方程解答:解:由题意由(2)得t2=y+1代入(1)得x=3(y+1)+2,即x﹣3y﹣5=0,其对应的图形是一条直线又由曲线的参数方程知y≥﹣1,x≥2,所以此曲线是一条射线故选D点评:本题考查直线的参数方程,解题的关键是掌握参数方程转化为普通方程的方法代入法消元,本题易因为忘记判断出x,y的取值范围而误判此曲线为直线,好在选项中没有这样的干扰项,使得本题的出错率大大降低.4.函数f(x)=+lg(3x+1)的定义域是()A.(﹣,+∞)B.(﹣,1)C.(﹣,)D.(﹣∞,﹣)考点:对数函数的定义域;函数的定义域及其求法.专题:计算题.分析:依题意可知要使函数有意义需要1﹣x>0且3x+1>0,进而可求得x的范围.解答:解:要使函数有意义需,解得﹣<x<1.故选B.点评:本题主要考查了对数函数的定义域.属基础题.5.下列函数中,既是奇函数又是增函数的为()A.y=x|x| B.y=﹣x2C.y=x+1 D.y=﹣考点:函数奇偶性的判断.专题:函数的性质及应用.分析:根据奇偶性及单调性的定义逐项判断即可.解答:解:y=x|x|=,作出其图象,如下图所示:由图象知y=x|x|在R上为增函数,又﹣x|﹣x|=﹣x|x|,所以y=x|x|为奇函数.故选A.点评:本题考查函数奇偶性、单调性的判断,属基础题,定义是解决该类问题的基本方法.6.下表为某班5位同学身高x(单位:cm)与体重y(单位kg)的数据,身高170 171 166 178 160体重75 80 70 85 65若两个量间的回归直线方程为=1.16x+a,则a的值为()A.﹣122.2 B.﹣121.04 C.﹣91 D.﹣92.3考点:线性回归方程.专题:概率与统计.分析:利用回归直线经过样本中心,通过方程求解即可.解答:解:由题意可得:==169.==75.因为回归直线经过样本中心.所以:75=1.16×169+a,解得a=﹣121.04.故选:B.点评:本题考查回归直线方程的应用,注意回归直线经过样本中心是解题的关键,考查计算能力.7.函数f(x)=2x+x3的零点所在区间为()A.(0,1)B.(﹣1,0)C.(1,2)D.(﹣2,﹣l)考点:二分法求方程的近似解.专题:计算题;函数的性质及应用.分析:由函数的解析式求得f(﹣1)•f(0)<0,根据函数零点的判定定理,可得f(x)=2x+x3的零点所在区间.解答:解:∵连续函数f(x)=2x+x3,f(﹣1)=﹣1=﹣,f(0)=1+0=1,∴f(﹣1)•f(0)=﹣×1<0,根据函数零点的判定定理,f(x)=2x+x3的零点所在区间为(﹣1,0),故选:B.点评:本题主要考查函数的零点的判定定理的应用,连续函数只有在某区间的端点处函数值异号,才能推出此函数在此区间内存在零点,属于基础题.8.如图是调查某地区男女中学生喜欢理科的等高条形图,阴影部分表示喜欢理科的百分比,从图可以看出()A.性别与喜欢理科无关B.女生中喜欢理科的比为80%C.男生比女生喜欢理科的可能性大些D.男生不喜欢理科的比为60%考点:频率分布直方图.专题:常规题型.分析:本题为对等高条形图,题目较简单,注意阴影部分位于上半部分即可.解答:解:由图可知,女生喜欢理科的占20%,男生喜欢理科的占60%,显然性别与喜欢理科有关,故选为C.点评:本题考查频率分布直方图的相关知识,属于简单题.9.设f(x)=,则f(f(2))的值为()A.0 B.1 C.2 D.3考点:分段函数的解析式求法及其图象的作法.专题:计算题.分析:考查对分段函数的理解程度,f(2)=log3(22﹣1)=1,所以f(f(2))=f(1)=2e1﹣1=2.解答:解:f(f(2))=f(log3(22﹣1))=f(1)=2e1﹣1=2,故选C.点评:此题是分段函数当中经常考查的求分段函数值的小题型,主要考查学生对“分段函数在定义域的不同区间上对应关系不同”这个本质含义的理解.10.已知三角形的三边分别为a,b,c,内切圆的半径为r,则三角形的面积为s=(a+b+c)r;四面体的四个面的面积分别为s1,s2,s3,s4,内切球的半径为R.类比三角形的面积可得四面体的体积为()A.∀=(s1+s2+s3+s4)R B.∀=(s1+s2+s3+s4)RC.∀=(s1+s2+s3+s4)R D.∀=(s1+s2+s3+s4)R考点:类比推理.专题:规律型.分析:根据三角形的边应与四面体中的各个面进行类比,而面积与体积进行类比,进行猜想.解答:解:根据几何体和平面图形的类比关系,三角形的边应与四面体中的各个面进行类比,而面积与体积进行类比:∴△ABC的面积为s=(a+b+c)r,对应于四面体的体积为V=(s1+s2+s3+s4)R.故选B.点评:本题考查了立体几何和平面几何的类比推理,一般平面图形的边、面积分别于几何体中的面和体积进行类比,从而得到结论.11.函数f(x)=ln(x﹣)的图象是()A.B.C.D.考点:函数的图象.专题:计算题;函数的性质及应用.分析:由x﹣>0,可求得函数f(x)=ln(x﹣)的定义域,可排除A,再从奇偶性上排除D,再利用函数在(1,+∞)的递增性质可排除C,从而可得答案.解答:解:∵f(x)=ln(x﹣),∴x﹣>0,即=>0,∴x(x+1)(x﹣1)>0,解得﹣1<x<0或x>1,∴函数f(x)=ln(x﹣)的定义域为{x|﹣1<x<0或x>1},故可排除A,D;又f′(x)=>0,∴f(x)在(﹣1,0),(1+∞)上单调递增,可排除C,故选B.点评:本题考查函数的图象,着重考查函数的奇偶性与单调性,属于中档题.12.已知函数f(x)是定义在(﹣3,3)上的奇函数,当0<x<3时,f(x)的图象如图所示,则不等式f(﹣x)•x>0的解集是()A.(﹣1,0)∪(0,1)B.(﹣1,1)C.(﹣3,﹣1)∪(0,1) D.(﹣1,0)∪(1,3)考点:函数奇偶性的性质.专题:函数的性质及应用.分析:由f(﹣x)•x>0,得f(x)•x<0,由图象知,当x∈(0,3)时不等式的解,根据奇函数性质可得x∈(﹣3,0]时不等式的解.解答:解:f(﹣x)•x>0即﹣f(x)•x>0,所以f(x)•x<0,由图象知,当x∈(0,3)时,可得0<x<1,由奇函数性质得,当x∈(﹣3,0]时,可得﹣1<x<0,综上,不等式f(﹣x)•x>0的解集是(﹣1,0)∪(0,1),故选A.点评:本题考查函数奇偶性的应用,考查数形结合思想,属基础题.13.已知双曲线C:的离心率为,则C的渐近线方程为()A.B.C.D.y=±x考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由题意可得=,由此求得=,从而求得双曲线的渐近线方程.解答:解:已知双曲线C:的离心率为,故有=,∴=,解得=.故C的渐近线方程为,故选C.点评:本题主要考查双曲线的定义和标准方程,以及双曲线的简单性质的应用,属于中档题.14.已知△ABC的周长为20,且顶点B (0,﹣4),C (0,4),则顶点A的轨迹方程是()A.(x≠0)B.(x≠0)C.(x≠0)D.(x≠0)考点:椭圆的定义.专题:计算题.分析:根据三角形的周长和定点,得到点A到两个定点的距离之和等于定值,得到点A的轨迹是椭圆,椭圆的焦点在y轴上,写出椭圆的方程,去掉不合题意的点.解答:解:∵△ABC的周长为20,顶点B (0,﹣4),C (0,4),∴BC=8,AB+AC=20﹣8=12,∵12>8∴点A到两个定点的距离之和等于定值,∴点A的轨迹是椭圆,∵a=6,c=4∴b2=20,∴椭圆的方程是故选B.点评:本题考查椭圆的定义,注意椭圆的定义中要检验两个线段的大小,看能不能构成椭圆,本题是一个易错题,容易忽略掉不合题意的点.15.已知函数f(x)=x3﹣3x,若过点A(0,16)且与曲线y=f(x)相切的切线方程为y=ax+16,则实数a的值是()A.﹣3 B.3 C.6 D.9考点:利用导数研究曲线上某点切线方程.专题:导数的概念及应用.分析:设出切点,求导函数可得切线方程,将A坐标代入,求得切线方程,从而可求实数a的值.解答:解:设切点为P(x0,x03﹣3x0)∵f(x)=x3﹣3x,∴f′(x)=3x2﹣3,∴f(x)=x3﹣3x在点P(x0,x03﹣3x0)处的切线方程为y﹣x03+3x0=(3x02﹣3)(x﹣x0),把点A(0,16)代入,得16﹣x03+3x0=(3x02﹣3)(0﹣x0),解得x0=﹣2.∴过点A(0,16)的切线方程为y=9x+16,∴a=9.故选D.点评:本题考查利用导数求曲线的切线方程,考查导数的几何意义,正确确定切线方程是关键.16.椭圆上的点到直线2x﹣y=7距离最近的点的坐标为()A.(﹣,)B.(,﹣)C.(﹣,)D.(,﹣)考点:直线与圆锥曲线的关系.专题:圆锥曲线的定义、性质与方程.分析:设与直线2x﹣y=7平行且与椭圆相切的直线l的方程为:2x﹣y=t,与椭圆的方程联立化为关于x的一元二次方程,令△=0,进而解出点的坐标.解答:解:设与直线2x﹣y=7平行且与椭圆相切的直线l的方程为:2x﹣y=t,联立,化为9x2﹣8tx+2t2﹣2=0.(*)∴△=64t2﹣36(2t2﹣2)=0,化为t2=9,解得t=±3.取t=3,代入(*)可得:9x2﹣24x+16=0,解得,∴y==﹣.∴椭圆上的点到直线2x﹣y=7距离最近的点的坐标为.故选B.点评:本题考查了直线与椭圆相切问题转化为方程联立得到△=0、相互平行的直线之间的斜率公式等基础知识与基本技能方法,属于中档题.二、填空题(本大题共4小题,每小题4分,共16分)17.如果直线2x﹣y﹣1=0和y=kx+1互相垂直,则实数k的值为﹣.考点:直线的一般式方程与直线的垂直关系.专题:直线与圆.分析:利用直线与直线垂直的性质求解.解答:解:∵直线2x﹣y﹣1=0和y=kx+1互相垂直,∴2k=﹣1,解得k=﹣.故答案为:﹣.点评:本题考查实数值的求法,是基础题,解题时要认真审题,注意直线与直线垂直的性质的合理运用.18.已知x>0,y>0,且x+y=1,求+的最小值是4.考点:基本不等式.专题:不等式的解法及应用.分析:把+转化为(+)(x+y)展开后利用基本不等式求得答案.解答:解:∵x+y=1,∴+=(+)(x+y)=1+++1=2++≤2+2=4,当且仅当x=y=时等号成立,故答案为:4.点评:本题主要考查了基本不等式的应用.解题的关键是凑出+的形式.19.{a n}为等比数列,若a3和a7是方程x2+7x+9=0的两个根,则a5=±3.考点:等比数列的性质.专题:等差数列与等比数列.分析:求出方程的根,利用等比数列通项的性质,可得结论.解答:解:∵a3和a7是方程x2+7x+9=0的两个根,∴a3+a7=﹣7,a3a7=9,∴=a3a7=9,∴a5=±3.故答案为:±3.点评:本题考查等比数列通项的性质,考查学生的计算能力,属于基础题.20.y=x3﹣2x2+3的单调递减区间是(0,).考点:利用导数研究函数的单调性.专题:导数的综合应用.分析:求出函数的导函数,令导函数小于0,求出x的范围,写成区间的形式即为函数的单调递减区间.解答:解:因为y′=3x2﹣4x=x(3x﹣4),令y′=x(3x﹣4)<0,解得所以函数y=x3﹣2x2+x+a(a为常数)的单调递减区间.故答案为:.点评:本题考查根据导函数的符号与函数单调性的关系,求函数的单调区间,属于基础题.三、解答题(21-27题,要写出必要的解题过程,共70分)21.围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:m),修建此矩形场地围墙的总费用为y(单位:元).(Ⅰ)将y表示为x的函数:(Ⅱ)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用.考点:函数模型的选择与应用;函数的值域;基本不等式在最值问题中的应用.专题:计算题;应用题.分析:(I)设矩形的另一边长为am,则根据围建的矩形场地的面积为360m2,易得,此时再根据旧墙的维修费用为45元/m,新墙的造价为180元/m,我们即可得到修建围墙的总费用y 表示成x的函数的解析式;(II)根据(I)中所得函数的解析式,利用基本不等式,我们易求出修建此矩形场地围墙的总费用最小值,及相应的x值.解答:解:(Ⅰ)设矩形的另一边长为am,则y=45x+180(x﹣2)+180•2a=225x+360a﹣360.由已知ax=360,得,所以.(II)因为x>0,所以,所以,当且仅当时,等号成立.即当x=24m时,修建围墙的总费用最小,最小总费用是10440元.点评:函数的实际应用题,我们要经过析题→建模→解模→还原四个过程,在建模时要注意实际情况对自变量x取值范围的限制,解模时也要实际问题实际考虑.将实际的最大(小)化问题,利用函数模型,转化为求函数的最大(小)是最优化问题中,最常见的思路之一.22.在数列{a n}中,a1=1,;(1)设.证明:数列{b n}是等差数列;(2)求数列{a n}的通项公式.考点:数列递推式;等比关系的确定.专题:等差数列与等比数列.分析:(1)由于,可得.由于,于是得到b n+1=b n+1,因此数列{b n}是等差数列.(2)由(1)利用等差数列的通项公式可得:b n,进而得到a n.解答:解:(1)∵,∴.∵,∴b n+1=b n+1,∴数列{b n}是以=1为首项,1为公差的等差数列.(2)由(1)可知:b n=1+(n﹣1)×1=n.∴,∴.点评:本题考查了可化为等差数列的数列的通项公式的求法、等差数列的通项公式等基础知识与基本技能方法,属于中档题.23.若双曲线与椭圆有相同的焦点,与双曲线有相同渐近线,求双曲线方程.考点:双曲线的标准方程;双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:设出双曲线的方程,利用双曲线与椭圆有相同的焦点,求出参数,即可得出结论.解答:解:依题意可设所求的双曲线的方程为…(3分)即…(5分)又∵双曲线与椭圆有相同的焦点∴λ+2λ=25﹣16=9…(9分)解得λ=3…(11分)∴双曲线的方程为…(13分)点评:本题考查双曲线的标准方程,考查椭圆、双曲线的几何性质,属于中档题.24.已知函数f(x)=x3﹣3x,(1)求函数f(x)在上的最大值和最小值.(2)求曲线y=f(x)在点P(2,f(2))处的切线方程.考点:利用导数研究曲线上某点切线方程;函数单调性的性质;利用导数研究函数的单调性;利用导数求闭区间上函数的最值.专题:导数的综合应用.分析:(1)先求函数的导数,然后利用研究函数f(x)在上单调性,从而求出函数的最值;(2)利用导数先求f′(2),即切线的斜率k=f′(2),代入点斜式方程,即可求出对应的切线方程.解答:解:(1)f′(x)=3x2﹣3=3(x﹣1)(x+1),f'(x)=0即x=﹣1,或x=1都在[﹣3,],且f(1)=﹣2,f(﹣1)=2,又f(﹣3)=(﹣3)3﹣3×(﹣3)=﹣18,,从而f(﹣1)最大,f(﹣3)最小.∴函数f(x)在上的最大值是2,最小值是﹣18.(2)因为f′(x)=3x2﹣3,f'(2)=3×22﹣3=9即切线的斜率k=f′(2)=9,又f(2)=2,运用点斜式方程得:y﹣2=9(x﹣2)即9x﹣y﹣16=0所以曲线y=f(x)在点P(2,f(2))处的切线方程是9x﹣y﹣16=0点评:本题主要考查导数的计算,利用导数研究函数的单调性,以及利用导数的几何意义求切线方程.属于中档题.25.已知椭圆的中心在原点,焦点在x轴上,一个顶点为B(0,﹣1),且其右焦点到直线的距离为3.(1)求椭圆方程;(2)设直线l过定点,与椭圆交于两个不同的点M、N,且满足|BM|=|BN|.求直线l 的方程.考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:综合题;圆锥曲线的定义、性质与方程.分析:(1)设椭圆方程为,易知b=1,设右焦点F(c,0),由条件得,可求得c值,根据a2=b2+c2,可得a值;(2)易判断直线l斜率不存在时不合题意,可设直线l:,与椭圆方程联立消掉y得x的二次方程,则△>0,设M(x1,y1),N(x2,y2),MN的中点P(x0,y0),由|BN|=|BM|,则有BP⊥MN,所以=﹣,由韦达定理及中点坐标公式可得关于k的方程,解出k后验证是否满足△>0,从而可得直线l的方程;解答:解(1)设椭圆方程为,则b=1.设右焦点F(c,0)(c>0),则由条件得,得.则a2=b2+c2=3,∴椭圆方程为.(2)若直线l斜率不存在时,直线l即为y轴,此时M,N为椭圆的上下顶点,|BN|=0,|BM|=2,不满足条件;故可设直线l:,与椭圆联立,消去y得:.由,得.设M(x1,y1),N(x2,y2),MN的中点P(x0,y0),由韦达定理得,而.则由|BN|=|BM|,则有BP⊥MN,,可求得,检验,所以k=,所以直线l的方程为或.点评:本题考查直线方程、椭圆方程及其位置关系,考查分类讨论思想,判别式、韦达定理是解决该类题目常用知识,要熟练掌握,属中档题.26.已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点P(1,f(1))处的切线方程为y=3x+1.(1)若函数y=f(x)在x=﹣2时有极值,求f(x)表达式;(2)若函数y=f(x)在区间[﹣2,1]上单调递增,求实数b的取值范围.考点:函数在某点取得极值的条件;函数的单调性与导数的关系.分析:(1)求出导函数,令导函数在1处的值为3,在﹣2处的值为0,函数在1处的值为4,列出方程组求出a,b,c的值.(2)令导函数大于等于0在[﹣2,1]上恒成立,通过对对称轴与区间关系的讨论求出导函数在区间的最小值,令最小值大于等于0,求出b的范围.解答:解:(1)f′(x)=3x2+2ax+b∵曲线y=f(x)在点P(1,f(1))处的切线方程为y=3x+1.∴即∵函数y=f(x)在x=﹣2时有极值∴f′(﹣2)=0即﹣4a+b=﹣12∴解得a=2,b=﹣4,c=5∴f(x)=x3+2x2﹣4x+5(2)由(1)知,2a+b=0∴f′(x)=3x2﹣bx+b∵函数y=f(x)在区间[﹣2,1]上单调递增∴f′(x)≥0即3x2﹣bx+b≥0在[﹣2,1]上恒成立f′(x)的最小值为f′(1)=1﹣b+b≥0∴b≥6f′(﹣2)=12+2b+b≥0∴b∈∅,f′(x)的最小值为∴0≤b≤6总之b的取值范围是b≥0.点评:本题考查导数的几何意义:导数在切点处的值是切线的斜率;考查函数单调递增对应的导函数大于等于0恒成立,.。
2017年甘肃省高考数学二诊试卷(文科)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合A={|﹣1<<2},B={|﹣2<<1},则集合A∪B=()A.{|﹣1<<1} B.{|﹣2<<1} C.{|﹣2<<2} D.{|0<<1} 2.如图所示,向量所对应的复数分别为1,2,则1?2=()A.4+2i B.2+i C.2+2i D.3+i3.某研究性学习小组调查研究性别对喜欢吃甜食的影响,部分统计数据如表:女生男生合计喜欢吃甜食 8 4 12不喜欢吃甜食216 18合计 10 20 30附表:P(2≥0) 0.15 0.10 0.050.0250.0100.0050.0012.072 2.7063.841 5.024 6.6357.87910.828经计算2=10,则下列选项正确的是()A.有99.5%的把握认为性别对喜欢吃甜食无影响B.有99.5%的把握认为性别对喜欢吃甜食有影响C.有99.9%的把握认为性别对喜欢吃甜食无影响D.有99.9%的把握认为性别对喜欢吃甜食有影响4.已知tan=,且在第三象限,则cos=()A.B. C.D.5.函数,则f(3)的值为()A.﹣1 B.﹣2 C.1 D.26.如图所示,四面体ABCD的四个顶点是长方体的四个顶点(长方体是虚拟图形,起辅助作用),则四面体ABCD的三视图是(用①②③④⑤⑥代表图形)()A.①②⑥B.①②③C.④⑤⑥D.③④⑤7.设D为△ABC的所在平面内一点,,则=()A.B.C.D.8.某品牌洗衣机专柜在国庆期间举行促销活动,茎叶图1中记录了每天的销售量(单位:台),把这些数据经过如图2所示的程序框图处理后,输出的S=()A.196 B.203 C.28 D.299.已知函数满足一下两个条件:①任意1,2∈(0,+∞),且1≠2时,(1﹣2)[f (1)﹣f(2)]<0;②对定义域内任意有f()+f(﹣)=0,则符合条件的函数是()A.f()=2 B.f()=1﹣|| C.D.f()=ln(+1)10.已知点A是直角三角形ABC的直角顶点,且A(2a,2),B(﹣4,a),C(2a+2,2),则△ABC的外接圆的方程是()A.2+(y﹣3)2=5 B.2+(y+3)2=5 C.(﹣3)2+y2=5 D.(+3)2+y2=5 11.已知三棱锥S﹣ABC的各顶点都在一个球面上,△ABC所在截面圆的圆心O 在AB上,SO⊥平面,若三棱锥的体积是,则球体的表面积是()A.B.C.D.25π12.将函数的图象向左平移个单位,在向上平移1个单位,得到g()的图象,若g(1)g(2)=16,且,则21﹣2的最大值为()A.B.C.D.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上..13.数列{a n}中,若a n+1(a n+1)=a n,a1=1,则a6= .14.已知实数,y满足,则=﹣3y的最大值是.15.已知抛物线y2=8上一点P到焦点的距离为4,则△PFO的面积为.16.已知函数与函数y=﹣2的图象恰有两个交点,则实数的取值范围是.三、解答题:本大题共5小题,满分60分,解答应写出文字说明、证明过程或演算步骤17.设数列{a n+1}是一个各项均为正数的等比数列,已知a3=7,a7=127.(1)求的a1值;(2)求数列{a n}的前n项和.18.甘肃省瓜州县自古就以生产“美瓜”面名扬中外,生产的“瓜州蜜瓜”有4个系列30多个品种,质脆汁多,香甜可口,清爽宜人,含糖量达14%~19%,是消暑止渴的佳品,调查表明,蜜瓜的甜度与海拔高度,日照时长,温差有极强的相关性,分别用,y,表示蜜瓜甜度与海拔高度,日照时长,温差的相关程度,big对它们进行量化:0表示一般,1表示良,2表示优,在用综合指标w=+y+的值平定蜜瓜的顶级,若w≥4,则为一级;若2≤w≤3,则为二级;若0≤w≤1,则为三级,今年,周边各省也开始发展蜜瓜种植,为了了解目前蜜瓜在周边各省的种植情况,研究人员从不同省份随机抽取了10块蜜瓜种植地,得到如下结果:种植地编A B C D E号(,y,)(1,0,0)(2,2,1)(0,1,1)(2,0,2)(1,1,1)种植地编F G H I J号(,y,)(1,1,2)(2,2,2)(0,0,1)(2,2,1)(0,2,1)(1)若有蜜瓜种植地110块,试估计等级为三家的蜜瓜种植地的数量;(2)从样本里等级为一级的蜜瓜种植地中随机抽取两块,求这两块种植地的综合指标w至少有一个为4的概率.19.如图,在△ABC中,AB⊥BC,点D,E分别在AB,AC上,AD=2DB,AC=3EC,沿DE将△ADE翻折起,使得点A到P的位置,满足.(1)证明:DB⊥平面PBC;(2)若,点M在PC上,且,求三棱锥P﹣BEM的体积.20.已知椭圆的顶点到直线l:y=的距离分别为.(1)求椭圆C1的离心率;(2)过圆O:2+y2=4上任意一点P作椭圆C1的两条切线PM和PN分别与圆交于点M,N,求△PMN面积的最大值.21.已知函数f()=sin+cos.(1)当时,求函数f()的单调区间;(2)若存在,使得f()>2+cos成立,求实数的取值范围.请考生在第(22)、(23)题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B铅笔在答题卡上把所选题目的题号涂黑,把答案填在答题卡上.[选修4-4坐标系与参数方程]22.已知直线为参数),曲线为参数).(1)使判断l与C的位置关系;(2)若把曲线C1上个点的横坐标压缩为原的倍,纵坐标压缩为原的倍,得到曲线C2,设点P是曲线C2上一个动点,求它到直线l的距离的最小值.[选修4-5不等式选讲]23.设函数f()=|﹣3|,g()=|﹣2|(1)解不等式f()+g()<2;(2)对于实数,y,若f()≤1,g(y)≤1,证明:|﹣2y+1|≤3.2017年甘肃省高考数学二诊试卷(文科)参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合A={|﹣1<<2},B={|﹣2<<1},则集合A∪B=()A.{|﹣1<<1} B.{|﹣2<<1} C.{|﹣2<<2} D.{|0<<1}【考点】1D:并集及其运算.【分析】根据并集的定义写出A∪B即可.【解答】解:集合A={|﹣1<<2},B={|﹣2<<1},则集合A∪B={|﹣2<<2}.故选:C.2.如图所示,向量所对应的复数分别为1,2,则1?2=()A.4+2i B.2+i C.2+2i D.3+i【考点】A5:复数代数形式的乘除运算.【分析】读图求出复数1,2,根据复数的乘法运算法则计算即可【解答】解:由图可得,1=1+i,2=3﹣i,∴1?2=(1+i)(3﹣i)=3+1+3i﹣i=4+2i,故选:A.3.某研究性学习小组调查研究性别对喜欢吃甜食的影响,部分统计数据如表:女生男生合计喜欢吃甜食 8 4 12不喜欢吃甜食216 18合计 10 20 30附表:P(2≥0) 0.15 0.10 0.050.0250.0100.0050.0012.072 2.7063.841 5.024 6.6357.87910.828经计算2=10,则下列选项正确的是()A.有99.5%的把握认为性别对喜欢吃甜食无影响B.有99.5%的把握认为性别对喜欢吃甜食有影响C.有99.9%的把握认为性别对喜欢吃甜食无影响D.有99.9%的把握认为性别对喜欢吃甜食有影响【考点】BL:独立性检验.【分析】根据观测值与对照临界值的关系,即可得出结论.【解答】解:根据观测值2=10,对照临界值表得10>7.879,所以有99.5%的把握认为性别对喜欢吃甜食有影响.故选:B.4.已知tan=,且在第三象限,则cos=()A.B. C.D.【考点】G9:任意角的三角函数的定义.【分析】利用正切化为正弦、余弦函数,结合的象限,同角三角函数的基本关系式,求出cos即可.【解答】解:因为,且在第三象限,所以并且sin2+cos2=1解得cos=﹣,sin=﹣;故选D.5.函数,则f(3)的值为()A.﹣1 B.﹣2 C.1 D.2【考点】5B:分段函数的应用;3P:抽象函数及其应用.【分析】利用分段函数,化简求解即可.【解答】解:函数,则f(3)=f(2)=f(1)=f(0)=log33=1.故选:C.6.如图所示,四面体ABCD的四个顶点是长方体的四个顶点(长方体是虚拟图形,起辅助作用),则四面体ABCD的三视图是(用①②③④⑤⑥代表图形)()A.①②⑥B.①②③C.④⑤⑥D.③④⑤【考点】L7:简单空间图形的三视图.【分析】由已知中的四面体ABCD的直观图,分析出四面体ABCD的三视图的形状,可得答案.【解答】解:由已知中四面体ABCD的四个顶点是长方体的四个顶点,可得:四面体ABCD的正视图为①,四面体ABCD的左视图为②,四面体ABCD的俯视图为③,故四面体ABCD的三视图是①②③,故选:B7.设D为△ABC的所在平面内一点,,则=()A.B.C.D.【考点】9H:平面向量的基本定理及其意义.【分析】取BC的中点E,则D为CE的中点,用表示出即可得出关于的不等式.【解答】解:∵,∴D是BC的靠近C点的四等分点,取BC的中点E,则D为CE的中点,∴=,,∴=+.故选B.8.某品牌洗衣机专柜在国庆期间举行促销活动,茎叶图1中记录了每天的销售量(单位:台),把这些数据经过如图2所示的程序框图处理后,输出的S=()A.196 B.203 C.28 D.29【考点】EF:程序框图.【分析】由茎叶图可知n=7,模拟程序的运行,依次写出每次循环得到的S,i 的值,当i=8时不满足条件i≤7,退出循环,输出S的值为29.【解答】解:由茎叶图可知n=7,模拟程序的运行,可得S=0,i=1满足条件i≤7,执行循环体,S=20,i=2满足条件i≤7,执行循环体,S==21,i=3满足条件i≤7,执行循环体,S==,i=4满足条件i≤7,执行循环体,S==,i=5满足条件i≤7,执行循环体,S==,i=6满足条件i≤7,执行循环体,S==,i=7满足条件i≤7,执行循环体,S==29,i=8不满足条件i≤7,退出循环,输出S的值为29.故选:D.9.已知函数满足一下两个条件:①任意1,2∈(0,+∞),且1≠2时,(1﹣2)[f (1)﹣f(2)]<0;②对定义域内任意有f()+f(﹣)=0,则符合条件的函数是()A.f()=2 B.f()=1﹣|| C.D.f()=ln(+1)【考点】3P:抽象函数及其应用.【分析】由①可知f()在(0,+∞)上是减函数,由②可知f()是奇函数.逐个分析各选项是否符合两条件即可.【解答】解:由①可知f()在(0,+∞)上是减函数,由②可知f()是奇函数.对于A,f()=2是增函数,不符合题意;对于B,f(﹣)+f()=1﹣|﹣|+1﹣||=2﹣2||≠0,不符合题意,对于D,f()的定义域为(﹣1,+∞),故f()不是奇函数,不符合题意;故选C.10.已知点A是直角三角形ABC的直角顶点,且A(2a,2),B(﹣4,a),C(2a+2,2),则△ABC的外接圆的方程是()A.2+(y﹣3)2=5 B.2+(y+3)2=5 C.(﹣3)2+y2=5 D.(+3)2+y2=5【考点】J1:圆的标准方程.【分析】根据点A是直角三角形ABC的直角顶点,求出a,B,C的坐标求得圆心的坐标和圆的半径,则圆的方程可得.【解答】解:由题意,2a=﹣4,∴a=﹣2∴圆的半径为==,圆心为(﹣3,0)∴圆的方程为(+3)2+y2=5故选D.11.已知三棱锥S﹣ABC的各顶点都在一个球面上,△ABC所在截面圆的圆心O 在AB上,SO⊥平面,若三棱锥的体积是,则球体的表面积是()A.B.C.D.25π【考点】LG:球的体积和表面积;LR:球内接多面体.【分析】利用条件,求出SO,利用勾股定理,求出R,即可求出球体的表面积.【解答】解:∵△ABC所在截面圆的圆心O在AB上,SO⊥平面,三棱锥的体积是,∴=,∴SO=2,设球体的半径=R,则R=,∴R=,∴球体的表面积是=,故选:A.12.将函数的图象向左平移个单位,在向上平移1个单位,得到g()的图象,若g(1)g(2)=16,且,则21﹣2的最大值为()A.B.C.D.【考点】HJ:函数y=Asin(ω+φ)的图象变换.【分析】利用函数y=Asin(ω+φ)的图象变换规律,正弦函数的图象特征,求得21﹣2的最大值.【解答】解:将函数的图象向左平移个单位,在向上平移1个单位,得到g()=3sin(2++)+1=3sin(2+)+1的图象,∵g(1)g(2)=16,∴g(1)=g(2)=4,都为最大值,令,可得,∈,又因为,可以取,则21﹣2的最大值=,故选:B.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上..13.数列{a n}中,若a n+1(a n+1)=a n,a1=1,则a6= .【考点】8H:数列递推式.【分析】a n+1(a n+1)=a n,a1=1,可得:a2=,同理可得:a3,a4,a5,a6,即可得出.【解答】解:a n+1(a n+1)=a n,a1=1,∴a2=,同理可得:a3=,a4=,a5=,则a6=.故答案为:.14.已知实数,y满足,则=﹣3y的最大值是.【考点】7C:简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得A(,).化目标函数=﹣3y为y=,由图可知,当直线y=过A时,直线在y轴上的截距最小,有最大值为.故答案为:.15.已知抛物线y2=8上一点P到焦点的距离为4,则△PFO的面积为 4 .【考点】8:抛物线的简单性质.【分析】利用抛物线的定义,求出P的坐标,然后求出三角形的面积.【解答】解:由抛物线定义,|PF|=P+2=4,所以P=2,|y P|=4,所以,△PFO的面积S=|OF||y P|=×2×4=4.故答案为:4.16.已知函数与函数y=﹣2的图象恰有两个交点,则实数的取值范围是(﹣1,1)∪(1,5).【考点】57:函数与方程的综合运用;54:根的存在性及根的个数判断.【分析】化简函数的解析式,画出两个函数的图象,判断的范围即可.【解答】解:直线y=﹣2过定点(0,﹣2),由函数图象:可知结果为:(﹣1,1)∪(1,5).给答案为:(﹣1,1)∪(1,5).三、解答题:本大题共5小题,满分60分,解答应写出文字说明、证明过程或演算步骤17.设数列{a n+1}是一个各项均为正数的等比数列,已知a3=7,a7=127.(1)求的a1值;(2)求数列{a n}的前n项和.【考点】8E:数列的求和.【分析】(I)利用等比数列的通项公式及其性质即可得出.(II)利用等比数列的求和公式即可得出.【解答】解:(I)由题可知a3+1=8,a7+1=128,…又数列{a n+1}是一个各项均为正数的等比数列,则,可得a5+1=32=(a1+1)×,解得a1=1.…(II){a n+1}是一个以2为首项,2为公比的等比数列,∴,∴,…利用分组求和可得.…18.甘肃省瓜州县自古就以生产“美瓜”面名扬中外,生产的“瓜州蜜瓜”有4个系列30多个品种,质脆汁多,香甜可口,清爽宜人,含糖量达14%~19%,是消暑止渴的佳品,调查表明,蜜瓜的甜度与海拔高度,日照时长,温差有极强的相关性,分别用,y,表示蜜瓜甜度与海拔高度,日照时长,温差的相关程度,big对它们进行量化:0表示一般,1表示良,2表示优,在用综合指标w=+y+的值平定蜜瓜的顶级,若w≥4,则为一级;若2≤w≤3,则为二级;若0≤w≤1,则为三级,今年,周边各省也开始发展蜜瓜种植,为了了解目前蜜瓜在周边各省的种植情况,研究人员从不同省份随机抽取了10块蜜瓜种植地,得到如下结果:A B C D E种植地编号(,y,)(1,0,0)(2,2,1)(0,1,1)(2,0,2)(1,1,1)F G H I J种植地编号(,y,)(1,1,2)(2,2,2)(0,0,1)(2,2,1)(0,2,1)(1)若有蜜瓜种植地110块,试估计等级为三家的蜜瓜种植地的数量;(2)从样本里等级为一级的蜜瓜种植地中随机抽取两块,求这两块种植地的综合指标w至少有一个为4的概率.【考点】CC:列举法计算基本事件数及事件发生的概率.【分析】(1)计算10块种植地的综合指标,列出表格可知:等级为三级的有A,H 2块,其频率为,由此能估计等级为三级的块数.(2)等级是一级的(ω≥4)有B,D,F,G,I,共5块,从中随机抽取两块,列举法能求出两块种植地的综合指标ω至少有一个为4的概率.【解答】解:(1)计算10块种植地的综合指标,可得下表:编号A B C D E F G H I J综合指标1524346153由上表可知:等级为三级的有A,H 2块,其频率为,…用样本的频率估计总体的频率,可估计等级为三级的块数为.…(2)由(1)可知:等级是一级的(ω≥4)有B,D,F,G,I,共5块,从中随机抽取两块,所有的可能结果为:(B,D),(B,F),(B,G),(B,I),(D,F),(D,G),(D,I),(F,G),(F,I),(G,I),共计10个;…其中综合指标ω=4的有:D,F 2个,符合题意的可能结果为:(B,D),(B,F),(D,F),(D,G),(D,I),(F,G),(F,I)共7个,设“两块种植地的综合指标ω至少有一个为4”为事件M所以概率为.…19.如图,在△ABC中,AB⊥BC,点D,E分别在AB,AC上,AD=2DB,AC=3EC,沿DE将△ADE翻折起,使得点A到P的位置,满足.(1)证明:DB⊥平面PBC;(2)若,点M在PC上,且,求三棱锥P﹣BEM的体积.【考点】LF:棱柱、棱锥、棱台的体积;LW:直线与平面垂直的判定.【分析】(1)设,由此利用勾股定理得BD⊥PB,再由BD⊥BC,能证明BD⊥面PBC.(2)由勾股定理得PB⊥BC,再由BD⊥PB,得PB⊥面BCE,从而三棱锥P﹣BEM 的体积.【解答】证明:(1)设,∵BD2+PB2=PD2∴BD⊥PB…∵BD⊥BC,PB∩BC=B,∴BD⊥面PBC.…解:(2)∵,∴PB⊥BC∵BD⊥PB且BD∩BC=B,∴PB⊥面BCE,∴三棱锥P﹣BEM的体积.…20.已知椭圆的顶点到直线l:y=的距离分别为.(1)求椭圆C1的离心率;(2)过圆O:2+y2=4上任意一点P作椭圆C1的两条切线PM和PN分别与圆交于点M,N,求△PMN面积的最大值.【考点】4:椭圆的简单性质.【分析】(1)根据点到直线的距离公式,即可求得a和b的值,即可求得椭圆的离心率;(2)分类讨论,当一条切线的斜率不存在时,,y P=±1,即可求得△PMN面积,当切线的斜率存在时,设切线方程,代入椭圆方程,由△=0,由PM ⊥PN,MN|=4.,即可求得△PMN面积的最大值.【解答】解:(1)由直线l1的方程知,直线l1与两坐标轴的夹角均为45°,故长轴端点到直线l1的距离为,短轴端点到直线l1的距离为,求得,…∴C1的离心率.…(2)设点P(P,y P),则.(ⅰ)若两切线中有一条切线的斜率不存在,则,y P=±1,另一切线的斜率为0,从而PM⊥PN.此时,.…(ⅱ)若切线的斜率均存在,则,设过点P的椭圆的切线方程为y﹣y P=(﹣P),,消y并整理得:.依题意△=0,得.设切线PM,PN的斜率分别为1,2,从而,…即PM⊥PN,线段MN为圆O的直径,|MN|=4.所以,当且仅当时,S△PMN取最大值4.综合(ⅰ)(ⅱ)可得:S△PMN取最大值4.…21.已知函数f()=sin+cos.(1)当时,求函数f()的单调区间;(2)若存在,使得f()>2+cos成立,求实数的取值范围.【考点】6B:利用导数研究函数的单调性.【分析】(1)求出函数的导数,通过讨论的范围,求出函数的单调区间即可;(2)分离参数,问题转化为.令,则,根据函数的单调性求出h()的最大值,从而求出的范围即可.【解答】解:( 1)f'()=sin+cos﹣sin=cos,…∴时,f'()=cos>0,∴函数f()在上是增函数;时,f'()=cos<0,∴函数f()在上是减函数;…( 2)由题意等价于sin+cos>2+cos,整理得.令,则,令g()=cos﹣sin,g'()=﹣sin<0,∴g()在上单调递减,∴,即g()=cos﹣sin<0,…∴,即在上单调递减,∴,即.…请考生在第(22)、(23)题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B铅笔在答题卡上把所选题目的题号涂黑,把答案填在答题卡上.[选修4-4坐标系与参数方程]22.已知直线为参数),曲线为参数).(1)使判断l与C的位置关系;(2)若把曲线C1上个点的横坐标压缩为原的倍,纵坐标压缩为原的倍,得到曲线C2,设点P是曲线C2上一个动点,求它到直线l的距离的最小值.【考点】HJ:函数y=Asin(ω+φ)的图象变换;Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【分析】(1)将参数方程化为普通方程,求出圆心到直线的距离,即可得解.(2)将直线的参数方程化为普通方程,曲线C2任意点P的坐标,利用点到直线的距离公式P到直线的距离d,分子合并后利用两角和与差的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,与分母约分化简后,根据正弦函数的值域可得正弦函数的最小值,进而得到距离d的最小值即可.【解答】(本题满分为10分)解:( I),…,所以直线与曲线相离.…( II)变化后的曲线方程是设点,…则点到直线的距离是,则最小距离是.…[选修4-5不等式选讲]23.设函数f()=|﹣3|,g()=|﹣2|(1)解不等式f()+g()<2;(2)对于实数,y,若f()≤1,g(y)≤1,证明:|﹣2y+1|≤3.【考点】R6:不等式的证明.【分析】(1)分类讨论,解不等式f()+g()<2;(2)利用绝对值不等式,即可证明结论.【解答】(1)解:解不等式|﹣3|+|﹣2|<2.①当≤2时,原不等式可化为3﹣+2﹣<2,可得.所以.②当2<≤3时,原不等式可化为3﹣+﹣2<2,可得1<2.所以2<≤3.③当≥3时,原不等式可化为﹣3+﹣2<2,可得.所以.由①②③可知,不等式的解集为.…(2)证明:|﹣2y+1|=|(﹣3)﹣2(y﹣2)|≤|﹣3|+2|y﹣2|≤1+2=3.当且仅当时等号成立.…2017年5月24日。
2017年甘肃省张掖市高台一中高考数学二模试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x>2},B={x|(x﹣1)(x﹣3)<0},则A∩B=()A.{x|x>1}B.{x|2<x<3}C.{x|1<x<3}D.{x|x>2或x<1}2.(5分)在复平面内,复数z=对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)已知=(3,﹣1),=(1,﹣2),则与的夹角为()A.B.C.D.4.(5分)设等差数列{a n}的前n项和为S n,若S9=54,则a2+a4+a9=()A.9 B.15 C.18 D.365.(5分)某人从甲地去乙地共走了500m,途经一条宽为xm的河流,该人不小心把一件物品丢在途中,若物品掉在河里就找不到,若物品不掉在河里,则能找到,已知该物品能被找到的概率为,则河宽为()A.80m B.100m C.40m D.50m6.(5分)若x=,则sin4x﹣cos4x的值为()A.B.﹣ C.﹣D.7.(5分)某空间几何体的三视图如图所示,则该几何体的体积为()A.10 B.5 C.20 D.308.(5分)程序框图如图,如果程序运行的结果为s=132,那么判断框中可填入()A.k≤10 B.k≥10 C.k≤11 D.k≥119.(5分)已知命题p:∃φ∈R,使f(x)=sin(x+φ)为偶函数;命题q:∀x ∈R,cos2x+4sinx﹣3<0,则下列命题中为真命题的是()A.p∧q B.(¬p)∨q C.p∨(¬q)D.(¬p)∧(¬q)10.(5分)设函数f(x)=﹣,[x]表示不超过x的最大整数,则y=[f(x)]的值域是()A.{0,1}B.{0,﹣1}C.{﹣1,1}D.{1,1}11.(5分)已知球O的半径为R,A,B,C三点在球O的球面上,球心O到平面ABC的距离为R.AB=AC=2,∠BAC=120°,则球O的表面积为()A.πB.πC.πD.π12.(5分)设奇函数f(x)在[﹣1,1]上是增函数,且f(﹣1)=﹣1,若函数f (x)≤t2﹣2at+1对所有的x∈[﹣1,1]都成立,则当a∈[﹣1,1]时,t的取值范围是()A.﹣2≤t≤2 B.C.t≥2或t≤﹣2或t=0 D.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)已知P(x,y)满足,则z=x﹣y最小值是.14.(5分)在△ABC中,AB=,∠A=75°,∠B=45°,则AC=.15.(5分)设x,y为正数,且x,a1,a2,y成等差数列,x,b1,b2,y成等比数列,则的最小值是.16.(5分)图形的对称,正弦曲线的流畅都能体现“数学美”.“黄金分割”也是数学美得一种体现,如图,椭圆的中心在原点,F为左焦点,当时,其离心率为,此类椭圆被称为“黄金椭圆”,类比“黄金椭圆”,可推算出“黄金双曲线”的离心率e等于.三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(12分)设数列{a n}满足:a1=1,a n+1=3a n,n∈N+.(Ⅰ)求{a n}的通项公式及前n项和S n;(Ⅱ)已知{b n}是等差数列,T n为前n项和,且b1=a2,b3=a1+a2+a3,求T20.18.(12分)如图,三棱锥P﹣ABC中,PA⊥底面ABC,△ABC为正三角形,D、E分别是BC、CA的中点.(1)证明:平面PBE⊥平面PAC;(2)如何在BC上找一点F,使AD∥平面PEF?并说明理由;(3)若PA=AB=2,对于(2)的点F,求三棱锥B﹣PEF的体积.19.(12分)已知某中学联盟举行了一次“盟校质量调研考试”活动,为了解本次考试学生的某学科成绩情况,从中抽取了部分学生的分数(满分100分),得分取整数,抽取得学生的分数均在[50,100]内作为样本(样本容量为n)进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出的频率分布直方图,并作出样本分数的茎叶图(茎叶图中仅列出了得分在[50,60),[90,100]的数据).(1)求样本容量n和频率分布直方图中x,y的值;(2)在选取的样本中,从成绩在80分以上(含80分)的学生中随机抽取2名学生参加“升级学科基础知识竞赛”,求所抽取的2名学生中恰有1人得分在[90,100]内的概率.20.(12分)已知函数f(x)=lnx,g(x)=ax2﹣bx(a、b为常数).(1)当函数g(x)在x=2处取得极值﹣2.求函数g(x)的解析式;(2)当a=时,设h(x)=f(x)+g(x),若函数h(x)在定义域上存在单调减区间,求实数b的取值范围.21.(12分)已知椭圆C:(a>b>0)的离心率,左、右焦点分别为F1、F2,点满足:F2在线段PF1的中垂线上.(1)求椭圆C的方程;(2)若斜率为k(k≠0)的直线l与x轴、椭圆C顺次相交于点A(2,0)、M、N,且∠NF2F1=∠MF2A,求k的取值范围.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,以原点为O极点,以x轴正半轴为极轴,圆C的极坐标方程为ρ=4.(1)将圆C的极坐标方程化为直角坐标方程;(2)过点P(2,0)作斜率为1直线l与圆C交于A,B两点,试求的值.[选修4-5;不等式选讲].23.已知函数f(x)=|x﹣a|(1)若f(x)≤m的解集为[﹣1,5],求实数a,m的值(2)当a=2且0≤t<2时,解关于x的不等式f(x)+t≥f(x+2)2017年甘肃省张掖市高台一中高考数学二模试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x>2},B={x|(x﹣1)(x﹣3)<0},则A∩B=()A.{x|x>1}B.{x|2<x<3}C.{x|1<x<3}D.{x|x>2或x<1}【解答】解:集合A={x|x>2},B={x|(x﹣1)(x﹣3)<0}={x|1<x<3},则A∩B={x|2<x<3}.故选:B.2.(5分)在复平面内,复数z=对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:z==,在复平面内,复数z=对应的点的坐标为:(,﹣1),位于第三象限.故选:C.3.(5分)已知=(3,﹣1),=(1,﹣2),则与的夹角为()A.B.C.D.【解答】解:∵=3+2=5,==,==.两向量的夹角θ的取值范围是,θ∈[0,π],∴===,∴与的夹角为,故选:B.4.(5分)设等差数列{a n}的前n项和为S n,若S9=54,则a2+a4+a9=()【解答】解:由等差数列的求和公式可得:S9=(a1+a9)=54,又由等差数列的性质可得a1+a9=2a5,即9a5=54,解得a5=6,而a2+a4+a9=a5+a4+a6=3a5=18.故选:C.5.(5分)某人从甲地去乙地共走了500m,途经一条宽为xm的河流,该人不小心把一件物品丢在途中,若物品掉在河里就找不到,若物品不掉在河里,则能找到,已知该物品能被找到的概率为,则河宽为()A.80m B.100m C.40m D.50m【解答】解:由已知易得:l从甲地到乙=500l途中涉水=x,故物品遗落在河里的概率P==1﹣=∴x=100(m).故选:B.6.(5分)若x=,则sin4x﹣cos4x的值为()A.B.﹣ C.﹣D.【解答】解:∵x=,∴sin4x﹣cos4x=sin2x﹣cos2x=﹣cos2x=﹣cos=﹣,故选:C.7.(5分)某空间几何体的三视图如图所示,则该几何体的体积为()【解答】解:由空间几何体的三视图得:该几何体是倒放的四棱锥S﹣ABCD,其中,ABCD是矩形,AB=4,AD=5,BC⊥底面ABS,△ABS中,AB∥BS,BS=3,∴该几何体的体积:V===20.故选:C.8.(5分)程序框图如图,如果程序运行的结果为s=132,那么判断框中可填入()A.k≤10 B.k≥10 C.k≤11 D.k≥11【解答】解:由题意知,程序框图的功能是求S=1×12×11×…,∵程序运行的结果为S=132,∴终止程序时,k=10,∴不满足判断框的条件是k≥11,退出循环.故选:D.9.(5分)已知命题p:∃φ∈R,使f(x)=sin(x+φ)为偶函数;命题q:∀x∈R,cos2x+4sinx﹣3<0,则下列命题中为真命题的是()A.p∧q B.(¬p)∨q C.p∨(¬q)D.(¬p)∧(¬q)【解答】解:∵当φ=时,f(x)=sin(x+φ)=cosx,此时f(x)为偶函数,所以命题p为真命题;∵y=cos2x+4sinx﹣3=1﹣2sin2x+4sinx﹣3=﹣2sin2x+4sinx﹣2=﹣2(sinx﹣1)2,当sinx=1时y=0,所以y≤0即cos2x+4sinx﹣3≤0所以命题q为假命题;¬q为真命题;所以p∨¬q为真命题故选:C.10.(5分)设函数f(x)=﹣,[x]表示不超过x的最大整数,则y=[f(x)]的值域是()A.{0,1}B.{0,﹣1}C.{﹣1,1}D.{1,1}【解答】解:函数f(x)=﹣,[x]表示不超过x的最大整数,∴f(x)=﹣,分析可得,﹣<f(x)<,∴[f(x)]={0,﹣1},故选:B.11.(5分)已知球O的半径为R,A,B,C三点在球O的球面上,球心O到平面ABC的距离为R.AB=AC=2,∠BAC=120°,则球O的表面积为()A.πB.πC.πD.π【解答】解:在△ABC中,∵AB=AC=2,∠BAC=120°,∴BC==2,由正弦定理可得平面ABC截球所得圆的半径(即△ABC的外接圆半径),r==2,又∵球心到平面ABC的距离d=R,∴球O的半径R=,∴R2=故球O的表面积S=4πR2=π,故选:D.12.(5分)设奇函数f(x)在[﹣1,1]上是增函数,且f(﹣1)=﹣1,若函数f (x)≤t2﹣2at+1对所有的x∈[﹣1,1]都成立,则当a∈[﹣1,1]时,t的取值范围是()A.﹣2≤t≤2 B.C.t≥2或t≤﹣2或t=0 D.【解答】解:奇函数f(x)在[﹣1,1]上是增函数,且f(﹣1)=﹣1,在[﹣1,1]最大值是1,∴1≤t2﹣2at+1,当t=0时显然成立当t≠0时,则t2﹣2at≥0成立,又a∈[﹣1,1]令r(a)=﹣2ta+t2,a∈[﹣1,1]当t>0时,r(a)是减函数,故令r(1)≥0,解得t≥2当t<0时,r(a)是增函数,故令r(﹣1)≥0,解得t≤﹣2综上知,t≥2或t≤﹣2或t=0故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)已知P(x,y)满足,则z=x﹣y最小值是﹣1.【解答】解:不等式组表示的平面区域如图,根据目标函数z=x﹣y,即y=x﹣z,当直线y=x﹣z经过A时z最小,由得到A(0,1),所以z=x﹣y的最小值是0﹣1=﹣1.故答案为:﹣1;14.(5分)在△ABC中,AB=,∠A=75°,∠B=45°,则AC=2.【解答】解:∠A=75°,∠B=45°,则∠C=180°﹣75°﹣45°=60°,由正弦定理可得,=,即有AC==2.故答案为:2.15.(5分)设x,y为正数,且x,a1,a2,y成等差数列,x,b1,b2,y成等比数列,则的最小值是4.【解答】解:由等差数列的性质知a1+a2=x+y;由等比数列的性质知b1b2=xy,所以,当且仅当x=y时取等号.故答案为:4.16.(5分)图形的对称,正弦曲线的流畅都能体现“数学美”.“黄金分割”也是数学美得一种体现,如图,椭圆的中心在原点,F为左焦点,当时,其离心率为,此类椭圆被称为“黄金椭圆”,类比“黄金椭圆”,可推算出“黄金双曲线”的离心率e等于.【解答】解:在黄金双曲线中,|OA|=a,|OB|=b,|OF|=c,由题意可知,|BF|2+|AB|2=|AF|2,∴b2+c2+c2=a2+c2+2ac,∵b2=c2﹣a2,整理得c2=a2+ac,∴e2﹣e﹣1=0,解得e=,或e=,由e>1,则e=,故黄金双曲线的离心率e=,故答案为:,三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(12分)设数列{a n}满足:a1=1,a n+1=3a n,n∈N+.(Ⅰ)求{a n}的通项公式及前n项和S n;(Ⅱ)已知{b n}是等差数列,T n为前n项和,且b1=a2,b3=a1+a2+a3,求T20.【解答】解:(Ⅰ)由a n=3a n,得,+1又a1=1,∴数列{a n}是以1为首项,以3为公比的等比数列,则,;(Ⅱ)∵b1=a2=3,b3=a1+a2+a3=1+3+9=13,∴b3﹣b1=10=2d,则d=5.故.18.(12分)如图,三棱锥P﹣ABC中,PA⊥底面ABC,△ABC为正三角形,D、E分别是BC、CA的中点.(1)证明:平面PBE⊥平面PAC;(2)如何在BC上找一点F,使AD∥平面PEF?并说明理由;(3)若PA=AB=2,对于(2)的点F,求三棱锥B﹣PEF的体积.【解答】(1)证明:∵PA⊥底面ABC,BE⊂底面ABC,∴PA⊥BE.又∵△ABC是正三角形,且E为AC的中点,∴BE⊥CA.∵PA∩CA=A,∴BE⊥平面PAC.∵BE⊂平面PBE,∴平面PBE⊥平面PAC;(2)解:取CD的中点F,连接EF,则F即为所求.∵E,F分别为CA,CD的中点,∴EF∥AD.又EF⊂平面PEF,AD⊄平面PEF,∴AD∥平面PEF;(3)解:在等边三角形ABC中,∵AB=2,E、F分别为AC、DC的中点,∴BF=,EF=,又PA=2,由等积法可得V B=V P﹣BEF=S△BEF•PA﹣PEF==.19.(12分)已知某中学联盟举行了一次“盟校质量调研考试”活动,为了解本次考试学生的某学科成绩情况,从中抽取了部分学生的分数(满分100分),得分取整数,抽取得学生的分数均在[50,100]内作为样本(样本容量为n)进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出的频率分布直方图,并作出样本分数的茎叶图(茎叶图中仅列出了得分在[50,60),[90,100]的数据).(1)求样本容量n和频率分布直方图中x,y的值;(2)在选取的样本中,从成绩在80分以上(含80分)的学生中随机抽取2名学生参加“升级学科基础知识竞赛”,求所抽取的2名学生中恰有1人得分在[90,100]内的概率.【解答】解:(1)由题意可知,样本容量n==50,y==0.004,x=0.1﹣0.004﹣0.010﹣0.016﹣0.004=0.030.(2)由题意可知,分数在[80,90)有5人,分数在[90,100)有2人,共7人.从成绩在80分以上(含80分)的学生中随机抽取2名学生参加“升级学科基础知识竞赛”,基本事件总数n==21,所抽取的2名学生中恰有1人得分在[90,100]内包含的基本事件个数:m==10,∴所抽取的2名学生中恰有1人得分在[90,100]内的概率p=.20.(12分)已知函数f(x)=lnx,g(x)=ax2﹣bx(a、b为常数).(1)当函数g(x)在x=2处取得极值﹣2.求函数g(x)的解析式;(2)当a=时,设h(x)=f(x)+g(x),若函数h(x)在定义域上存在单调减区间,求实数b的取值范围.【解答】解:(1)由g(x)=ax2﹣bx可得g′(x)=2ax﹣b,且g(x)在x=2处取得极值﹣2.∴,可得解得a=,b=2.所求g(x)=x2﹣2x,(x∈R).(2)∵h(x)=f(x)+g(x)=lnx+x2﹣bx,h′(x)=(x>0).依题存在x>0使h′(x)=<0(x>0),即存在x>0使x2﹣bx+1<0,∵不等式x2﹣bx+1<0等价于b>x+,∵x+≥2=2,当且仅当x=1时取等号,∴b>2.所求b∈(2,+∞).21.(12分)已知椭圆C:(a>b>0)的离心率,左、右焦点分别为F 1、F2,点满足:F2在线段PF1的中垂线上.(1)求椭圆C的方程;(2)若斜率为k(k≠0)的直线l与x轴、椭圆C顺次相交于点A(2,0)、M、N,且∠NF2F1=∠MF2A,求k的取值范围.【解答】解:(1)解法一:椭圆C的离心率,得,其中椭圆C的左、右焦点分别为F1(﹣c,0),、F2(c,0),又点F2在线段PF1的中垂线上,∴F1F2=PF2,∴解得c=1,a2=2,b2=1,∴椭圆C的方程为.…(6分)解法二:椭圆C的离心率,得,其中椭圆C的左、右焦点分别为F1(﹣c,0),、F2(c,0),设线段PF1的中点为D,∵F1(﹣c,0),,∴,又线段PF 1的中垂线过点F2,∴,即c=1,a2=2,b2=1,∴椭圆方程为(2)由题意,直线l的方程为y=k(x﹣2),且k≠0,联立,得(1+2k2)x2﹣8k2x+8k2﹣2=0,由△=8(1﹣2k2)>0,得,且k≠0设M(x1,y1),N(x2,y2),则有,,(*)∵∠NF 2F1=∠MF2A,且由题意∠NF2A≠90°,∴,又F2(1,0),∴,即,∴,整理得2x1x2﹣3(x1+x2)+4=0,将(*)代入得,,知上式恒成立,故直线l的斜率k的取值范围是.…(12分)请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,以原点为O极点,以x轴正半轴为极轴,圆C的极坐标方程为ρ=4.(1)将圆C的极坐标方程化为直角坐标方程;(2)过点P(2,0)作斜率为1直线l与圆C交于A,B两点,试求的值.【解答】解:(1)圆C的极坐标方程为ρ=4,展开可得:ρ2=4×ρ(cosθ﹣sinθ),可得直角坐标方程:x2+y2﹣4x+4y=0.(2)直线l的参数方程为:(t为参数),代入上述方程可得:t2+2t﹣4=0.t1+t2=﹣2,t1t2=﹣4,则=====.[选修4-5;不等式选讲].23.已知函数f(x)=|x﹣a|(1)若f(x)≤m的解集为[﹣1,5],求实数a,m的值(2)当a=2且0≤t<2时,解关于x的不等式f(x)+t≥f(x+2)【解答】解:(1)∵f(x)≤m,∴|x﹣a|≤m,即a﹣m≤x≤a+m,∵f(x)≤m的解集为{x|﹣1≤x≤5},∴,解得a=2,m=3.(2)当a=2时,函数f(x)=|x﹣2|,则不等式f(x)+t≥f(x+2)等价为|x﹣2|+t≥|x|.当x≥2时,x﹣2+t≥x,即t≥2与条件0≤t<2矛盾.当0≤x<2时,2﹣x+t≥x,即0≤x≤,成立.当x<0时,2﹣x+t≥﹣x,即t≥﹣2恒成立.综上不等式的解集为(﹣∞,].赠送初中数学几何模型【模型三】双垂型:图形特征:60°运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC. (1)如图,当∠APB=90°时,若AC=5,PC=62,求BC的长;(2)当∠APB=90°时,若AB=45APBC的面积是36,求△ACB的周长.2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。