石墨氧化物模型
- 格式:pdf
- 大小:1.06 MB
- 文档页数:5
第六单元碳和碳的氧化物在引导学生走进化学世界,从化学角度认识了身边的物质,初步了解了物质构成的奥秘,学习了一些基本的化学概念和化学技能之后,本单元开始深入、细致地研究碳和碳的氧化物。
本单元包括三个课题。
课题1主要介绍碳的几种单质:金刚石、石墨和C60等。
课题2引导学生探究实验室中制取二氧化碳的装置,并利用设计的装置制取二氧化碳。
课题3探究二氧化碳和一氧化碳的性质。
在《课程标准》中,关于碳和碳的氧化物是分散提出的。
例如,知道二氧化碳的主要性质和用途;初步学习在实验室制取二氧化碳;了解自然界中的碳循环;知道某些物质(如一氧化碳……)有损人体健康;认识物质的多样性等等。
本单元根据全书体系结构的设计,采取了集中编排、集中处理的方式。
这样安排主要基于以下设计思想:第一,碳单质非常重要,有必要介绍。
无论是从教材内容现代化、反映化学学科发展的角度,还是从物质组成多样性的角度都应该介绍碳的单质:金刚石、石墨和C60等。
第二,碳的化合物种类繁多,尤其是有机化合物在国民经济发展中起着非常重要的作用。
而碳的氧化物(CO和CO2)不仅与学生的日常生活密切相关,同时也是初中化学元素化合物知识中非常重要的一部分:初中化学的许多反应都与碳和碳的氧化物有关。
因此,本单元课题3介绍二氧化碳和一氧化碳的性质和用途,可为学生后续阶段化学的学习打基础。
第三,课程改革倡导科学探究。
化学实验是进行科学探究的重要方式,学生具备基本的化学实验技能是学习化学和进行探究活动的基础和保证。
制取气体的实验技能是初中化学实验的重点和难点。
本单元课题2二氧化碳制取的研究,在学生已学过的氧气的制取的基础上,探究气体的制备问题。
本单元教材具有以下特点:1.注意采用体验学习与探究学习的方式。
例如,课题2在给出了实验室中制取二氧化碳的反应原理以后,引导学生在制取氧气的基础上,探究实验室中制取二氧化碳的装置。
2.教材内容在呈现方式上注意教学情境的创设和联系学生的生活实际。
初中化学石墨模型教案主题:石墨模型教学目标:1. 了解石墨的化学性质和结构特点。
2. 掌握石墨的应用和重要性。
3. 学会制作石墨模型。
教学重点:1. 理解石墨的化学结构。
2. 熟悉石墨的应用领域。
教学难点:1. 制作石墨模型的技巧和方法。
2. 理解石墨的导电性和导热性原理。
教学准备:1. 石墨棒或碳棒。
2. 剪刀。
3. 黏土或蜡笔。
4. 黑色细线。
教学过程:一、导入新知识(5分钟)介绍石墨的概念和重要性,引导学生思考石墨在日常生活中的应用。
二、学习石墨模型制作(10分钟)1. 按照指导老师的示范,学生使用剪刀将石墨棒或碳棒削成合适长度。
2. 将削好的石墨棒或碳棒用黑色细线串起,模拟石墨的层状结构。
3. 使用黏土或蜡笔固定模型,使其更加稳固。
三、讨论石墨的结构和性质(10分钟)1. 学生观察制作好的石墨模型,了解石墨的层状结构和碳元素的排列方式。
2. 引导学生讨论石墨的导电性和导热性原理,以及应用领域。
四、展示和分享(10分钟)学生展示他们制作的石墨模型,并分享制作过程中的心得和体会。
五、总结与反思(5分钟)老师总结本节课的教学内容,强调石墨的重要性和应用领域。
鼓励学生在日常生活中关注石墨的应用。
六、作业布置要求学生写一篇关于石墨的小短文,描述石墨的结构和应用,并谈谈自己对石墨的认识和看法。
教学延伸:1. 组织学生参观工厂或实验室,了解更多关于石墨的生产和应用。
2. 鼓励学生动手制作更加复杂的石墨模型,探索石墨结构的多样性和应用的创新性。
教学反思:本节课主要通过制作石墨模型,引导学生了解石墨的结构和应用,培养学生的动手能力和实践能力。
在今后的教学中,可以结合更多实例和案例,拓展学生对化学知识的理解和应用能力。
初中化学石墨模型教案设计
一、教学目标
1. 了解石墨的结构和特性。
2. 掌握石墨分子模型的组成和结构。
3. 能够运用石墨模型解释石墨的性质和用途。
二、教学重点和难点
1. 重点:理解石墨的分子结构和特性。
2. 难点:掌握石墨分子模型的组成和结构。
三、教学准备
1. 实验器材:石墨模型制作材料、显微镜等。
2. 教学 PPT 材料:介绍石墨的结构和特性。
3. 实验操作指导书:指导学生制作石墨模型。
4. 石墨样品:供学生观察和实验使用。
四、教学过程
1. 导入:通过 PPT 介绍石墨的结构和特性,引导学生了解石墨的基本概念。
2. 学习:让学生观察石墨样品,通过显微镜观察石墨的结构。
然后,引导学生制作石墨模型,让他们了解石墨的分子结构。
3. 实验:让学生进行实验,探究石墨的导电性和润滑性等特性。
通过实验结果,加深学生对石墨性质的理解。
4. 总结:引导学生总结石墨的特性和用途,并探讨石墨在日常生活中的应用。
5. 拓展:可以进一步探讨其他碳元素的结构和特性,扩展学生的知识。
五、课堂小结
通过石墨模型的教学,学生可以更加深入地理解石墨的结构和特性,提高他们的化学实验能力和科学素养。
同时,通过本节课的学习,学生可以对碳元素有更深入的认识,为后续的学习打下良好的基础。
石墨化反应的动力学模拟和实验研究石墨化反应是一种通过化学反应将非晶态碳材料转化为石墨结构的过程。
在材料科学和能源领域,石墨化反应被广泛研究和应用,因为石墨材料具有良好的导电性和热导性,适用于电池、催化剂、复合材料等方面的应用。
为了深入理解石墨化反应的机理和优化反应条件,动力学模拟和实验研究成为必要的手段。
一、动力学模拟动力学模拟是通过计算机模拟分子或原子尺度上的相互作用和运动来研究化学反应动力学的方法。
在石墨化反应的研究中,动力学模拟可以帮助研究人员探索反应机理,确定反应速率,并预测材料的性质。
首先,研究人员需要构建石墨化反应的模型。
这可以通过分子动力学模拟或密度泛函理论等方法来实现。
模型的构建需要考虑反应体系的组成、反应条件、采用的模拟算法和力场参数等方面的因素。
其次,研究人员可以通过动力学模拟来模拟石墨化反应的过程。
例如,可以考虑原子的迁移和碳原子的重排等过程,以及温度、压力和化学势等条件的影响。
通过计算反应的能垒和能量变化,可以获得反应的速率常数和反应路径等信息。
最后,研究人员可以进一步利用动力学模拟的结果来预测材料的性质。
例如,可以计算石墨材料的导电性、热导性和力学性能等,并与实验结果进行比较和验证。
二、实验研究实验研究在石墨化反应的理解和应用方面起着重要作用。
通过实验可以验证动力学模拟的结果,同时也可以探索新的反应条件和材料制备方法。
首先,研究人员可以选择适当的实验方法进行石墨化反应的研究。
例如,可以采用高温热解法、化学气相沉积法或溶胶凝胶法等实验方法来制备石墨材料,并通过X射线衍射、扫描电子显微镜等手段来表征材料的结构和形态。
其次,研究人员可以改变反应条件,例如温度、压力、反应时间等,来探索石墨化反应的动力学特性。
通过调节反应条件,可以实现不同速率和程度的石墨化反应,并进一步了解反应动力学的影响因素。
最后,研究人员可以将实验结果与动力学模拟的结果进行对比和分析。
通过比较实验数据和模拟结果,可以验证模拟的准确性并进一步改进模型的参数和算法。
弄了好久,终于会构建石墨烯模型了,看了好多帖子,觉得写的不是很详细,对于刚入门的童靴来说,有些困难,所以特发此贴。
越简单的问题越容易被人忽略~
1、打开material studio,新建一个工程,导入石墨graphite.msi(也可以自己build,然后添加原子)。
2、build->make p1(目的是消除对称性,这样才能够删除一层原子)。
3、删除一层原子(选中原子->delete)。
4、修改晶格参数:build->crystal->rebuild crystal,设置方位角,,
5、构建supercell(方便掺杂,也为了好看):build->symetry->supercell,构建一个5x5x1的超原胞。
6、cleave surface(为了能够添加真空层):build->surface->cleave surface,(h,k,l)改为(0,0,-1)
7、添加20埃真空层(添加真空层是为了减小层与层之间的影响,至少20埃,大点没关系,最多是计算时时间长一点):build->srystal->build vacuum。
构建好后,模型如下:。
通用版初中化学九年级化学上册第六单元碳和碳的氧化物知识点归纳总结(精华版)单选题1、如图为金刚、石墨和C60的结构模型图,图中小球代表碳原子。
下列说法不正确的是()A.原子的排列方式改变,则构成的物质种类改变B.相同元素组成的不同物质,在足量的氧气中完全燃烧,产物相同C.相同元素组成的不同物质,化学性质相同D.在特定的条件下,石墨既可转化为金刚石,也可转化为C60答案:CA、金刚石、石墨、C60的碳原子排列方式不同,构成物质的种类不同,说法正确;故不符合题意;B、金刚石、石墨、C60在足量的氧气中完全燃烧,产物都是二氧化碳,说法正确;故不符合题意;C、相同元素组成的不同物质,化学性质不相同,同种分子性质相同,不同分子性质不同,说法错误;故符合题意;D、金刚石、石墨、C60的组成元素相同,可以相互转化,说法正确;故不符合题意;故选C小提示:本题主要考查学生对题干中有用信息的提取能力。
2、“碳家族”的成员很多,用途很广。
下列说法正确的是A.石墨不具有导电性B.C60单质是由碳原子直接构成的C.活性炭具有吸附性D.金刚石和石墨里碳原子的排列方式相同答案:CA、石墨具有良好的导电性,不符合题意;B、C60由C60分子构成,不符合题意;C、活性炭结构疏松多孔,具有吸附性,符合题意;D、金刚石和石墨均是碳原子构成,但是碳原子的排列方式不同,不符合题意。
故选C。
3、下列有关碳和碳的化合物说法错误的是A.金刚石是天然存在的最硬的物质B.金刚石、石墨、C60都是由碳元素组成的单质C.金刚石、石墨物理性质有很大差异的原因是碳原子排列方式不同D.CO2、CO的组成元素相同,化学性质也相同答案:DA、金刚石是天然存在的最硬的物质,说法正确;故不符合题意;B、金刚石、石墨、C60都是由碳元素组成的单质,说法正确;故不符合题意;C、金刚石、石墨物理性质有很大差异的原因是碳原子排列方式不同,说法正确;故不符合题意;D、CO2、CO的组成元素相同,但分子的构成不同,决定了化学性质不相同,说法错误;故符合题意;故选D小提示:了解碳和碳的化合物的性质、结构的知识即可分析解答。
毕业论文题目:氧化还原法制备石墨烯的方法概述学院:专业:毕业年限:学生姓名:学号:指导教师:目录摘要 (2)关键词 (2)Abstract (2)Key words (2)I前言 (3)Ⅱ氧化还原法制备石墨烯 (3)2.1氧化石墨(GO)的制备 (4)2.1.1Brodie法 (5)2.1.2Staudenmaier法 (6)2.1.3Hummers法 (6)2.2氧化石墨(GO)的还原 (6)2.2.1热还原法 (6)2.2.2溶剂热还原 (7)2.2.3光照还原. (7)2.2.4化学液相还原 (7)Ш展望 (9)参考文献 (10)致谢 (13)氧化还原法制备石墨烯的方法概述摘要:近年来 , 石墨烯以其独特的结构和优异的性能, 在化学、物理和材料学界引起了广泛的研究兴趣。
人们已经在石墨烯的制备方面取得了积极的进展, 为石墨烯的基础研究和应用开发提供了原料保障。
本文大量引用近年来最新参考文献 , 综述了用氧化还原法制备石墨烯,并对它的发展前景进行了展望!关键词:氧化石墨,石墨烯 , 氧化还原法The Summarize of oxidation-reduction method for grapheneShaoqing Ma , Zhongai Hu(Northwest normal university, chemical engineering college, lanzhou, 730070)Abstract :In recent years, graphene with its unique structure and the outstanding performance, caused wide interests in the chemical, physical and material fields. People have made positive progress in the preparation of graphene,and have provided raw material guarantee for graphene of basic research and application development. This paper largely applied the latest references in recent years , reviewed the legal system with oxidation-reduction method for graphene and presented the development prospects.Key words : graphite oxide, graphene, oxidation-reduction methodI前言Partoens 等[1]研究发现 , 当石墨层的层数少于 10 层时 , 就会表现出较普通三维石墨不同的电子结构。
第六单元碳和碳的氧化物单元说明本单元包括三个课题。
课题1主要介绍了碳的几种单质(金刚石、石墨和C60等)和单质碳的化学性质。
课题2引导学生探究在实验室中如何制取二氧化碳。
课题3介绍了二氧化碳和一氧化碳的主要性质和用途。
本单元教科书的内容具有以下特点:1. 注意采用探究的呈现方式。
2. 紧密联系生活实际。
3. 既充分体现科技的发展,又紧密联系社会热点问题。
4. 呈现方式图文并茂。
教学重点1. 碳及碳的氧化物的性质。
2. 实验室里制取二氧化碳的原理和装置。
3.以碳的单质为例,引导学生认识物质的多样性,培养学生关注社会和环境的责任感。
教学难点探究实验室里制取二氧化碳的装置。
课时安排课题1 金刚石、石墨和C602课时课题2 二氧化碳制取的研究1~2课时课题3 二氧化碳和一氧化碳2课时课题1 金刚石、石墨和C60教学目标1. 了解金刚石和石墨的物理性质和主要用途。
2. 知道碳单质的化学性质。
3. 知道不同的元素可以组成不同的物质,同一种元素也可以组成不同的物质。
4.以碳的单质为载体,引导学生形成“物理的性质在很大程度上决定了物质的用途”以及“科学发展是无止境的”的观念。
教学重点1. 解金刚石、石墨、活性炭、木炭的性质和用途。
2. 了解结构、性质、用途三者的关系。
教学难点培养学生实验设计的能力。
教具准备教师用具:金刚石、石墨、C60分子模型、玻璃刀、6B铅笔芯、干电池、石墨电极、投1 / 8影仪、电视媒体、防毒面具、导线、灯泡。
学生用具:小锥形瓶、试管(大小各一个)、铁架台、酒精灯、网罩、带导管的塞子;红墨水、烘烤过的木炭(活性炭)、木炭粉、CuO粉末、澄清石灰水。
课时安排2课时教学过程教案A第1课时一、导入新课我们已经知道,丰富多彩的物质世界是由元素组成的。
氧气是由氧元素组成的,水是由氢、氧两种元素组成的。
不同的元素组成不同的物质。
那么,在物质世界里,有没有一种元素可以组成不同的物质呢?二、新课教学大家讨论。
第42卷第11期2023年11月硅㊀酸㊀盐㊀通㊀报BULLETIN OF THE CHINESE CERAMIC SOCIETY Vol.42㊀No.11November,2023基于分子动力学的氧化石墨烯对PVA 纤维-CSH界面影响机理研究臧㊀芸,王㊀攀,王慕涵,王鑫鹏,侯东帅,赵铁军(青岛理工大学土木工程学院,青岛㊀266520)摘要:纤维增强混凝土的宏观力学性能与纤维/基体的界面结合密切相关㊂本文通过分子动力学模拟,研究氧化石墨烯(GO)对聚乙烯醇纤维(PVA)/基体界面结合的影响㊂结果表明,当GO 与PVA 纤维以共价键连接时,PVA 纤维从混凝土中被拉出所需的拉力最大,GO 的存在能提升纤维与基体的界面黏结性能㊂混凝土基体与GO 主要以钙氧键和氢键连接,其中钙氧键数量多且化学键强度高㊂但GO 与PVA 纤维物理连接时,GO 与PVA 纤维仅依靠强度较弱的氢键连接,对界面的黏结性能带来负面作用㊂此外,GO 受到更多离子键和氢键的束缚,原子平移运动减少,与基体的界面黏结性能提高㊂关键词:氧化石墨烯;PVA 纤维;混凝土;界面;分子动力学中图分类号:TU528㊀㊀文献标志码:A ㊀㊀文章编号:1001-1625(2023)11-3799-08Influence Mechanism of Graphite Oxide on PVA Fiber-CSH Interface Based on Molecular DynamicsZANG Yun ,WANG Pan ,WANG Muhan ,WANG Xinpeng ,HOU Dongshuai ,ZHAO Tiejun (Department of Civil Engineering,Qingdao University of Technology,Qingdao 266520,China)Abstract :The macroscopic mechanical properties of fiber reinforced concrete are closely related to the interfacial bonding of fiber /matrix.In this paper,the effect of graphene oxide (GO)on the interfacial bonding of polyvinyl alcohol fiber (PVA)/matrix was studied by molecular dynamics simulation.The results show that when GO and PVA fiber are connected by covalent bond,the tensile force required for PVA fiber to be pulled out from concrete is the largest,and the presence of GO can improve the interfacial bonding performance between fiber and matrix.The concrete matrix and GO are mainly connected by calcium-oxygen bonds and hydrogen bonds,in which the number of calcium-oxygen bonds is large and the strength of chemical bonds is high.However,when GO and PVA fiber are physically connected,GO and PVA fiber are only connected by weak hydrogen bonds,which has a negative effect on the bonding performance of interface.In addition,GO is bound by more ionic bonds and hydrogen bonds,the atomic translational motion is reduced,and the interfacial bonding performance with matrix is improved.Key words :graphene oxide;PVA fiber;concrete;interface;molecular dynamics 收稿日期:2023-06-01;修订日期:2023-08-12基金项目:国家自然科学基金(U2006224,51978352,51908308)作者简介:臧㊀芸(1986 ),女,博士研究生㊂主要从事土木工程材料方面的研究㊂E-mail:zangyun001@通信作者:侯东帅,博士,教授㊂E-mail:dshou@ 0㊀引㊀言水泥基材料是应用最广泛的建筑材料之一,然而它存在脆性大㊁韧性差㊁易发生突然破坏和耐久性差等缺点㊂添加纤维是提高水泥基材料抗拉强度和韧性的常用方法[1],纤维的主要作用是在断裂区起到桥接作用㊂聚乙烯醇(polyvinyl alcohol,PVA)纤维因其优异的耐碱性能㊁高强度和高弹性而备受关注,已被广泛应用于应变硬化水泥基材料(strain hardening cementitious composites)的制造[2]㊂然而,PVA 纤维尚未被证明可以防止微裂纹的形成或细化孔隙结构,它不能显著提高水泥基材料的耐久性㊂随着纳米技术的兴起,将纳米3800㊀水泥混凝土硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷材料(如碳纳米管(carbon nanotubes,CNTs)[3-5]㊁石墨烯和氧化石墨烯(graphene oxide,GO)[6-8])应用于水泥基材料来提高性能已成为近年来新的研究热点㊂与疏水碳纳米管和石墨烯不同,氧化石墨烯引入了含氧基团,如羟基㊁羰基和羧基,是一种优秀的亲水材料[9-10]㊂研究表明,氧化石墨烯的加入可以提高混凝土的抗压抗折强度[11]和耐久性[12-14]㊂因此,利用PVA纤维和氧化石墨烯的协同效应,有望大幅提高水泥基材料的综合性能㊂李相国等[15]研究证明GO复掺PVA纤维可以显著改善水泥基材料孔结构,降低孔隙率,提高水泥基材料抗氯离子渗透性能并降低水泥基材料收缩率㊂Jiang等[16]研究发现在水泥基材料中添加氧化石墨烯可以起到细化孔隙结构的作用,同时提高水化产物在PVA纤维上的黏附性,有利于PVA纤维与水泥基体的结合㊂氧化石墨烯与PVA纤维耦合改性的水泥基材料表现出优异的力学强度和耐久性㊂Yao等[17]利用氧化石墨烯对PVA纤维表面改性,使其化学键能提高80倍以上,混凝土试样抗拉强度提高35.6%㊂然而,GO的存在打破了原有的界面结构,纤维与基体之间的界面变成纤维与GO之间的界面和GO与基体间的界面,界面中化学键的键合也发生了改变㊂在纤维增强水泥基复合材料中,纤维和基体分担载荷,应力通过纤维和基体间的界面传递㊂因此,界面的组成和性能是决定纤维增强水泥基复合材料性能的关键㊂Wang等[18]通过分子动力学分析发现,PVA纤维中的羟基与水化产物中的钙离子可以形成稳定的离子键,因此PVA纤维与水化产物有较好的黏结力㊂GO对界面的影响尚不清晰,而这将直接影响纤维增强水泥基材料的性能㊂本文先通过拉拔模拟计算纤维从界面中拉出所需要的拉拔力,借助力学响应描述界面黏附行为㊂通过静态结构和动态结构分析,探究GO对PVA/CSH界面黏结性能的影响机理㊂本研究有助于指导GO和PVA 在水泥基复合材料中发挥最佳的协同作用㊂1㊀模拟方法1.1㊀模型建立依据Pellenq等[19]和Manzano等[20]提出的方法,基于托贝莫来石(11Å)结构构建了Ca/Si比值为1.7的水化硅酸钙(CSH)模型㊂选取无水托贝莫来石(11Å)层状结构作为建模的初始构型㊂根据硅链的Q n分布结果,随机删除桥接的SiO2和二聚体结构(Si2O4),得到复合硅链的钙硅骨架和层状结构㊂再通过巨正则蒙特卡洛法(GCMC)模拟水分子逐渐吸附在钙硅骨架孔隙上直至饱和这一过程㊂根据液态水在室温下的性质,设定化学势为0,温度为300K,成功建立CSH初始模型,如图1(a)所示㊂根据Allington等[21]提出的方法构建氧化石墨烯模型㊂将石墨烯的单位单元(x=4.62Å,y=3.69Å,z=3.40Å,α=β=γ=90ʎ)在x和y 方向分别扩大,再将环氧( O )㊁羟基( OH)和羧基( COOH)三个官能团修饰到石墨烯上㊂其中 O 和 OH基团分布在石墨烯表面, COOH基团分布在石墨烯边缘,如图1(b)所示㊂氧化石墨烯薄片的化学成分为C10O1(OH)1(COOH)0.5,符合氧化石墨烯典型官能团覆盖率,即含氧量为20%~30%[22]㊂PVA纤维模型如图1(c)所示,每个PVA纤维链具有50个碳原子㊂参照文献[23]结果,本文建立了两种GO/PVA模型:第一种PVA模型如图1(d)所示,GO物理附着在PVA表面,无共价键连接;第二种PVA模型如图1(e)所示,GO与PVA纤维通过脱水缩聚,形成酯基 COO ,使GO与PVA纤维以共价键形式连接㊂因模型中含有多种氧原子和氢原子,为了方便后面的分析将其进行区分㊂O s表示CSH中硅氧四面体中的非桥接氧原子,O hs表示CSH的羟基氧原子,O hp表示PVA纤维中的氧原子,O o表示GO片中C O C中的氧原子, O hg表示GO片中 OH中的氧原子㊂此外, COOH中有两种位置的氧原子,O 表示以双键连接碳的氧原子,O hg表示以单键连接碳的氧原子㊂H op表示PVA纤维中的羟基氢原子,H og表示GO片中含氧官能团中的氢原子㊂从所建立的CSH分子模型层间处切开,并向外平移以预留足够空间插入GO和PVA纤维,并在y方向预留足够的空间保证纤维可以拉出㊂将PVA纤维插入CSH形成的纤维界面定义为界面CP,如图1(f)所示㊂将PVA/GO(物理附着)插入CSH,纤维与GO形成的界面定义为界面CGP1,如图1(g)所示㊂将PVA-GO(形成共价键)插入CSH,纤维与GO成为一体后与CSH形成的界面定义为界面CGP2,如图1(h)所示㊂三个模拟盒子尺寸大小一致,均为x=44.10Å,y=160.70Å,z=67.47Å,α=β=γ=90ʎ㊂㊀第11期臧㊀芸等:基于分子动力学的氧化石墨烯对PVA纤维-CSH界面影响机理研究3801图1㊀氧化石墨烯㊁PVA纤维㊁CSH的结构及连接方式Fig.1㊀Structures and connection modes of graphene oxide,PVA fiber and CSH1.2㊀力㊀场力场的选择对模拟的准确性十分关键,CSH基底采用CLAYFF力场,此力场已被成功用于黏土㊁水泥水化产物㊁多组分矿物体系的模拟[24-25]㊂PVA纤维采用CVFF力场,CVFF已被广泛应用于有机物建模[26-27]㊂CLAYFF与CVFF联合力场已证明适用于模拟胶凝材料与聚合物㊁有机物之间的界面特性[28]㊂此联合力场3802㊀水泥混凝土硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷采用Lorentz-Berthelot 混合规则[29]㊂1.3㊀模拟过程模拟过程分为预平衡阶段㊁平衡阶段和拉拔阶段㊂所有模拟均采用大尺度原子/分子大规模并行模拟器(LAMMPS)平台进行计算㊂所有原子在NPT 系统中弛豫1000ps,时间步长设置为1fs,温度为300K㊂平衡后再运行1000ps,此阶段保持系统与环境变量均不变,每1ps 记录一次轨迹数据,收集到1000帧原子轨迹,用于平衡状态下界面结构和动力学行为分析㊂此后,在NVT 系综下对已经平衡的模型进行拉拔模拟,每根纤维链最右侧的碳原子作为外力的位置[30],时间步长设置为1fs㊂外力和界面能每100s 记录一次㊂拉拔力计算如式(1)所示㊂F =K [(x 0+vt )-x com ](1)式中:F 为拉拔力,x 0为所选碳原子在纤维y 方向上的初始质心,K 为弹簧常数,v 为拉力的速度,t 为模拟时间,x com 为所选碳原子质心沿y 方向的动态位置㊂2㊀结果与讨论2.1㊀拉拔过程图2㊀三个界面的拉力-时间关系Fig.2㊀Pull-out force-time relations of three interfaces 通过拉拔模拟计算得到拉拔力-时间曲线,如图2所示㊂在没有GO 的情况下纤维与CSH 形成界面CP㊂加入GO 后,纤维与GO 形成了新的界面CP1㊂从图2中可以清楚地看到,PVA 纤维从CSH 中被拉出所需要的拉力明显高于PVA /GO 从CSH 中被拉出所需要的拉力,这说明PVA /CSH 的界面黏结力优于PVA /GO界面的黏结力㊂此外,三个界面的拉拔力均波动较大,呈锯齿形逐渐减小㊂在模拟初期,拉拔力逐渐增大,主要原因是化学键的伸长㊂当化学键被过度拉伸直至断裂,拉力会突然下降,在松弛阶段又形成新的化学键,导致拉力再次增大,因此拉拔力呈波动状态㊂随着纤维拉出长度增加,界面处化学键减少,拉拔力逐渐减小㊂由此得出,纤维的拔出过程伴随化学键的断裂和重组㊂图3为拉拔过程第1000ps 快照,从图3(a)中可以发现,GO 与PVA 以物理方式连接时,纤维会从GO 之间很轻易地被拉出,说明GO /PVA 界面的黏结性能很差,GO 的加入对界面的黏结性能起到消极作用㊂如图3(b)所示,在PVA 纤维和GO 以共价键形式连接时,PVA 纤维和GO 作为一个整体同时被拉出㊂PVA-GO 与CSH 形成界面CGP2,此时纤维被拉出所需要的拉力最大,说明CGP2界面的黏结性能最好,GO 的加入对界面的黏结性能起到增强作用㊂图3㊀拉拔过程第1000ps 快照Fig.3㊀Snapshots of pull-out process at 1000ps㊀第11期臧㊀芸等:基于分子动力学的氧化石墨烯对PVA纤维-CSH界面影响机理研究3803 2.2㊀界面静态结构分析径向分布函数(radial distribution function,RDF)表示周围原子出现在中心原子一定范围内的可能性,是原子局部密度与系统的平均密度比值㊂RDF曲线可定性表征配位原子之间的空间相关性,曲线出现峰值的距离越近,表明两原子之间排列更规则,形成的化学键更强,峰值越高说明两原子相关性更高㊂同时,RDF也揭示了界面的连接机制㊂图4为径向分布函数计算结果㊂在CP界面中Ca O hp和氢键的RDF曲线均存在明显的峰值,说明在CSH与PVA纤维之间既存在Ca O hp离子键连接也存在氢键连接,如图4(a)所示㊂而在CP1界面(GO与PVA纤维之间),GO中的氧与PVA纤维中的氢形成脆弱的氢键,如图4(b)所示㊂与氢键相比,离子键的键能远大于氢键㊂键能越大,化学键越牢固,含有该键的分子越稳定,这充分说明了CSH与PVA纤维之间的联系远强于GO与PVA纤维的联系㊂图4㊀CGP1界面㊁CGP2界面和CP界面的径向分布函数Fig.4㊀RDF of CGP1,CGP2and CP interfaces在PVA纤维与GO以共价键连接时,PVA纤维与GO形成一个整体,与CSH之间形成了界面CGP2㊂Ca O o㊁Ca O hg㊁Ca O RDF曲线均存在明显的峰值,如图4(c)所示,这说明GO中的含氧官能团均可以与CSH中的钙离子形成离子键,钙离子与GO中氧原子连接,充当了GO与CSH之间的桥梁㊂其中Ca O hg 和Ca O o的RDF曲线峰值更高,说明离子键中的氧位主要由 OH和 O 提供㊂与CP界面相比,CGP2界面中的Ca O的RDF曲线峰值更高,这是因为在GO中拥有更多能够与CSH中阳离子形成有效化学键的极性位点㊂除了离子键外,界面CP和CGP2中氢键的RDF曲线都有明显的峰值,但在CGP2界面中氢键RDF曲线位置更为靠左,峰值更尖锐,这充分说明在这个界面中有更强的界面成键相互作用,如图4(d)所示㊂根据以上分析可以得出结论,在水泥基质中掺入的GO片可以通过离子键和氢键连接硅酸盐骨架,从而加强了有机相和无机相之间的界面连接㊂在拉拔模拟阶段,纤维从CSH中被拉出的过程中,大量的化学键会被拉伸甚至断裂㊂键长越短,原子核之间的距离越小,键能越大,化学键越稳定,破坏这种化学键需要克服的能量就越多㊂化学键越稳定,对原子3804㊀水泥混凝土硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷运动的阻碍就越大,化学键越难断裂㊂根据前面的分析,在CGP2界面中形成的Ca O离子键和氢键数量最多,稳定性高,这意味着需要克服很大的键能才能将纤维从CSH中拉出㊂而PVA纤维与GO之间只有较弱的氢键,键能很小,较小的拉力就能将纤维拉出㊂拉拔仿真结果与本节分析结果一致㊂键合结构图如图5所示㊂图5㊀界面键合示意图Fig.5㊀Interface bonding diagrams化学键的稳定性可以通过时间相关函数(temporal correlation function,TCF)来描述㊂TCF值接近1,表明化学键稳定㊂如果TCF的值降至零,则说明化学键易断开且不稳定㊂根据前面章节的分析可知,CP界面和CGP2界面是通过Ca O离子键和氢键连接,而CGP1界面仅仅通过氢键将PVA纤维与CSH连接㊂本小节计算了三种界面间的化学键的时间相关函数,计算结果如图6(a)所示㊂在CGP2界面中Ca O键的TCF 值略高于CP界面,这意味着PVA和CSH之间形成的化学键更频繁地断裂和重组㊂在CGP2界面中, Ca O 键㊁Ca O o键和Ca O hg键的TCF值分别稳定在0.80㊁0.90和0.98左右,略有波动㊂与Ca O hg键和Ca O o键的TCF曲线相比,Ca O 键的TCF曲线下降更快,这表明连接GO和CSH的离子键主要由羟基提供氧位㊂这一结果与RDF分析结果一致㊂此外,Ca O键的TCF曲线大都在最初略有下降,然后几乎保持不变㊂这表明CSH中Ca和氧形成的离子键可以长时间连接㊂图6㊀Ca O键和H O键的时间相关函数Fig.6㊀Time correlation function of Ca O and H O bond第11期臧㊀芸等:基于分子动力学的氧化石墨烯对PVA 纤维-CSH 界面影响机理研究3805㊀三个界面中的氢键的TCF 曲线如图6(b)所示㊂相比于Ca O 键,氢键的TCF 曲线明显下降得更快,这也证明了离子键在界面连接中起到主导作用㊂界面之间化学键稳定性的差异解释了纤维与基体之间相互作用的差异㊂PVA 纤维和GO 之间没有稳定的离子键连接,导致PVA 纤维更容易被拉出㊂界面动态分析表明,三种界面结合强度依次为:CGP2>CP >CGP1,这说明如果GO 与PVA 纤维之间没有形成共价键,而只是以物理形式附着在PVA 纤维表面,不利于提升界面黏结性能,当PVA 纤维与GO 以共价键形式连接时,GO 才能发挥拥有更多极性氧位的优势,对界面的黏结性能才能起到增强作用㊂这与试验中的结果保持一致[23]㊂图7㊀不同界面的黏附能Fig.7㊀Adhesion energy of different interfaces 作用在PVA 纤维上的恢复力来自界面的相互作用,由黏附能提供[31]㊂在分子水平上,黏附能也可以用作表征界面黏结性能的参数㊂在CSH /PVA 模型中,只有存在CP (CSH /PVA)界面㊂而在CSH /GO /PVA 模型中虽然存在两个界面CSH /GO 和GO /PVA,但根据2.1节的分析,当纤维被拔出时,对纤维拉出行为产生影响的是GO /PVA 界面,所以仅计了CGP1(GO /PVA)界面的黏附能㊂在CSH /GO-PVA 模型中,GO 与PVA 纤维以共价键连接,只有界面CGP2(GO /CSH)影响到纤维被拉出行为㊂界面黏附能计算结果如图7所示,CGP1界面的黏附能仅为1979.3kcal /mol(1kJ =4.184kcal),而CP 界面的黏附能为3780.7kcal /mol,明显比界面CGP1要高出很多,这说明CSH /PVA 界面有更强的相互作用㊂CGP2界面的黏附能绝对值最大,为5515.9kcal /mol,这意味着当GO 与PVA 纤维形成共价键连接时,GO 对界面黏结性能起到增强作用㊂3㊀结㊀论1)PVA /CSH 界面主要是以钙氧离子键和氢键连接,而PVA /GO 界面仅依靠氢键连接㊂2)CGP2界面的黏结性能优于CP 界面和CGP1界面,其中CGP1界面的黏结性能最差㊂3)当PVA 纤维与GO 以共价键方式连接时,GO 发挥多极性氧位的优势,与CSH 之间形成更强的键合作用,从而加强了有机相和无机相之间的界面连接㊂当GO 以物理形式附着在PVA 纤维表面时,对界面的黏结性能起负面作用㊂参考文献[1]㊀杨宇林.纤维混凝土复合材料耐久性能研究综述[J].混凝土,2012(2):78-80+85.YANG Y L.Review on durability of complex fiber concrete[J].Concrete,2012(2):78-80+85(in Chinese).[2]㊀KANDA T,LI V C.Practical design criteria for saturated pseudo strain hardening behavior in ECC [J].Journal of Advanced ConcreteTechnology,2006,4(1):59-72.[3]㊀KONSTA-GDOUTOS M S,METAXA Z S,SHAH S P.Multi-scale mechanical and fracture characteristics and early-age strain capacity of highperformance carbon nanotube /cement nanocomposites[J].Cement and Concrete Composites,2010,32(2):110-115.[4]㊀KONSTA-GDOUTOS M S,METAXA Z S,SHAH S P.Highly dispersed carbon nanotube reinforced cement based materials[J].Cement andConcrete Research,2010,40(7):1052-1059.[5]㊀SUN G X,LIANG R,LU Z Y,et al.Mechanism of cement /carbon nanotube composites with enhanced mechanical properties achieved byinterfacial strengthening[J].Construction and Building Materials,2016,115:87-92.[6]㊀PAN Z,HE L,QIU L,et al.Mechanical properties and microstructure of a graphene oxide-cement composite [J].Cement and ConcreteComposites,2015,58:140-147.[7]㊀LV S H,MA Y J,QIU C C,et al.Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites[J].Construction and Building Materials,2013,49:121-127.[8]㊀LU Z Y,HOU D S,MA H Y,et al.Effects of graphene oxide on the properties and microstructures of the magnesium potassium phosphate3806㊀水泥混凝土硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷cement paste[J].Construction and Building Materials,2016,119:107-112.[9]㊀GEIM A K,NOVOSELOV K S.The rise of graphene[J].Nature Materials,2007,6(3):183-191.[10]㊀LU Z Y,CHEN G C,HAO W B,et al.Mechanism of UV-assisted TiO2/reduced graphene oxide composites with variable photodegradation ofmethyl orange[J].RSC Advances,2015,5(89):72916-72922.[11]㊀LONG W J,WEI J J,MA H Y,et al.Dynamic mechanical properties and microstructure of graphene oxide nanosheets reinforced cementcomposites[J].Nanomaterials,2017,7(12):407.[12]㊀何㊀威,许吉航.少层石墨烯对普通混凝土性能的影响[J].硅酸盐通报,2021,40(5):1477-1488.HE W,XU J H.Effect of few-layer graphene on properties of ordinary concrete[J].Bulletin of the Chinese Ceramic Society,2021,40(5): 1477-1488(in Chinese).[13]㊀陈㊀旭,汉光昭,裴玉胜,等.不同含量石墨烯对混凝土抗冻性能的影响[J].建筑施工,2021,43(8):1659-1663.CHEN X,HAN G Z,PEI Y S,et al.Influence of different content of graphene on frost resistance of concrete[J].Building Construction,2021, 43(8):1659-1663(in Chinese).[14]㊀徐义洪,范颖芳.氧化石墨烯分散液对混凝土抗盐冻性能的影响[J].混凝土,2022(2):1-5.XU Y H,FAN Y F.Effects of graphene oxide dispersion on the salt-frost resistance of concrete[J].Concrete,2022(2):1-5(in Chinese).[15]㊀李相国,任钊锋,徐朋辉,等.氧化石墨烯复合PVA纤维增强水泥基材料的力学性能及耐久性研究[J].硅酸盐通报,2018,37(1):245-250.LI X G,REN Z F,XU P H,et al.Research on mechanical properties and durability of graphene oxide composite PVA fiber reinforced cement-based material[J].Bulletin of the Chinese Ceramic Society,2018,37(1):245-250(in Chinese).[16]㊀JIANG W G,LI X G,LV Y,et al.Cement-based materials containing graphene oxide and polyvinyl alcohol fiber:mechanical properties,durability,and microstructure[J].Nanomaterials,2018,8(9):638.[17]㊀YAO X P,SHAMSAEI E,CHEN S J,et al.Graphene oxide-coated poly(vinyl alcohol)fibers for enhanced fiber-reinforced cementitiouscomposites[J].Composites Part B:Engineering,2019,174:107010.[18]㊀WANG P,QIAO G,ZHANG Y,et al.Molecular dynamics simulation study on interfacial shear strength between calcium-silicate-hydrate andpolymer fibers[J].Construction and Building Materials,2020,257:119557.[19]㊀PELLENQ R J M,KUSHIMA A,SHAHSAVARI R,et al.A realistic molecular model of cement hydrates[J].Proceedings of the NationalAcademy of Sciences of the United States of America,2009,106(38):16102-16107.[20]㊀MANZANO H,MOEINI S,MARINELLI F,et al.Confined water dissociation in microporous defective silicates:mechanism,dipole distribution,and impact on substrate properties[J].Journal of the American Chemical Society,2012,134(4):2208-2215.[21]㊀ALLINGTON R D,ATTWOOD D,HAMERTON I,et al.A model of the surface of oxidatively treated carbon fibre based on calculations ofadsorption interactions with small molecules[J].Composites Part A:Applied Science and Manufacturing,1998,29(9/10):1283-1290. [22]㊀JIAO S P,XU Z P.Selective gas diffusion in graphene oxides membranes:a molecular dynamics simulations study[J].ACS Applied Materials&Interfaces,2015,7(17):9052-9059.[23]㊀LU C,LU Z Y,LI Z J,et al.Effect of graphene oxide on the mechanical behavior of strain hardening cementitious composites[J].Constructionand Building Materials,2016,120:457-464.[24]㊀WANG P,QIAO G,HOU D S,et al.Functionalization enhancement interfacial bonding strength between graphene sheets and calcium silicatehydrate:insights from molecular dynamics simulation[J].Construction and Building Materials,2020,261:120500.[25]㊀SHAHRIYARI R,KHOSRAVI A,AHMADZADEH A.Nanoscale simulation of Na-Montmorillonite hydrate under basin conditions,application ofCLAYFF force field in parallel GCMC[J].Molecular Physics,2013,111(20):3156-3167.[26]㊀KUNDALWAL S,KUMAR S.Multiscale modeling of stress transfer in continuous microscale fiber reinforced composites with nano-engineeredinterphase[J].Mechanics of Materials,2016,102:117-131.[27]㊀KUNDALWAL S,MEGUID S.Multiscale modeling of regularly staggered carbon fibers embedded in nano-reinforced composites[J].EuropeanJournal of Mechanics-A Solids,2017,64:69-84.[28]㊀HOU D S,YANG Q R,JIN Z Q,et al.Enhancing interfacial bonding between epoxy and CSH using graphene oxide:an atomistic investigation[J].Applied Surface Science,2021,568:150896.[29]㊀ALLEN M P,TILDESLEY D puter simulation of liquids[M].New York:Oxford University Press,2017.[30]㊀LU Z,YU J,YAO J,et al.Experimental and molecular modeling of polyethylene fiber/cement interface strengthened by graphene oxide[J].Cement and Concrete Composites,2020(112):103676.[31]㊀LI X Y,LU Z Y,CHUAH S,et al.Effects of graphene oxide aggregates on hydration degree,sorptivity,and tensile splitting strength of cementpaste[J].Composites Part A:Applied Science and Manufacturing,2017,100:1-8.。
Modeling of Graphite OxideD.W.Boukhvalov*and M.I.KatsnelsonInstitute for Molecules and Materials,Radboud Uni V ersity Nijmegen,Heyendaalseweg 135,6525AJ Nijmegen,The NetherlandsReceived March 26,2008;E-mail:D.Bukhvalov@science.ru.nlAbstract:Based on density functional calculations,optimized structures of graphite oxide are found for various coverages by oxygen and hydroxyl groups,as well as their ratio corresponding to the minimum of total energy.The model proposed describes well-known experimental results.In particular,it explains why it is so difficult to reduce the graphite oxide up to pure graphene.Evolution of the electronic structure of graphite oxide with the coverage change is investigated.1.IntroductionDespite the fact that graphite oxide (GO)was first derived more than a century ago 1,2its structure and chemical composi-tion remains unclear.GO can be used for production of graphite nanoparticles and an insulating material for nanodevices.3,4Recently,after discovery of extraordinary electronic properties of single-layer carbon,graphene,5–8and successful exfoliation of layers in GO 9,10it is considered as a perspective source of a “cheap graphene”.3Direct structural information about GO can hardly be obtained (for most structural methods,the use of bulk crystals are desirable whereas the GO exists mainly in solutions)which makes theoretical modeling of its structure and properties especially important.Original methods of preparation of GO have been modified 11–14which allows slight variation of its chemical composition.In a report by Nakajima and Matsuo 11the chemical compositions of GO derived by the methods developed by Brodie 1and Staudenmaier 2were determined as C 8H 2.54O 3.91and C 8H 4.61O 6.70,respectively.This means that both hydroxyl groups connected with single carbon atoms and oxygen atoms con-nected with two carbon atoms present in GO (see Figure 1).According to Szabo ´and co-workers,12the chemical compositionof different samples of GO varies from C 8H 1.20O 3.12to C 8H 1.60O 3.92,according to Hontora-Lucas et al.13from C 8-(OH)1.38O 0.63to C 8(OH)1.64O 0.79,and according to Cassagneau and co-workers 15from C 12HO 2to C 15H 3O 4.In general,one can conclude that the chemical composition of GO,not considering groups coupled with graphene edges,varies in a range from C 8H 2O 3to C 8H 4O 5.It is a common opinion (see the papers cited above)that oxygen in GO is mainly present in hydroxyl groups or in bridges connecting two carbon atoms in graphene layers whereas the amount of carboxyl,as well as carbonyl,groups is relatively small.Thus,the two limiting compositions of GO can be presented as C 8(OH)2and C 8(OH)4O.All chemical(1)Brodie,B.C.Ann.Chim.Phys.1860,59,466.(2)Staudenmaier,L.Ber.Dtsch.Chem.Ges.1898,31,1481.(3)Ruoff,R.Nature Nanotechnol.2008,3,10.(4)Hirata,M.;Gotou,T.;Horiuchi,S.;Fujiwara,M.;Phba,M.Carbon 2005,43,503.(5)Geim,A.K.;and Novoselov,K.S.Nat.Mater.2007,6,183.(6)Katsnelson,M.I.Mater.Today 2007,10,20.(7)Castro Neto,A.H.;Guinea,F.;Peres,N.M.R.;Novoselov,K.S.;Geim,A.K.Re V .Mod.Phys.2008,80,315.(8)Katsnelson,M.I.;Novoselov,K.S.Solid State Commun.2007,143,3.(9)Stankovich,S.;Dikin,D.A.;Dommett,G.H.B.;Kohlhaas,K.M.;Zimney,E.J.;Stach,E.A.;Piner,R.D.;Nguyen,S.T.;Ruoff,R.S.Nature (London)2006,442,282.(10)Dikin,D.A.;Stankovich,S.;Zimney,E.J.;Piner,R.D.;Dommett,G.H.B.;Eremenko,G.;Nguyen,S.T.;and Ruoff,R.S.Nature (London)2007,448,457.(11)Nakajima,T.;and Matsuo,Y.Carbon 1988,26,357.(12)Szabo ´,T.;Tomba ´cz,E.;Ille’s,E.;De ´ka ´ny,I.Carbon 2006,44,537.(13)Hontora-Lucas,C.;Lo ´pez-Peinado,A.J.;de D.Lo ´pez-Gonza ´lez,J.;Rojas-Cervantes,M.L.;Martı´n-Aranda,R.M.Carbon 1995,33,1585.(14)Stankovich,S.;Piner,R.D.;Nguyen,S.T.;Ruoff,R.S.Carbon 2006,44,3342.(15)Cassagneau,T.;Gue ´rin,F.;and Fendler,ngmuir 2000,16,7318.Figure 1.The most stable configurations of graphene functionalized by oxygen only (a),hydroxyl groups only (b),and both oxygen and hydroxyl groups (c).Carbon,oxygen,and hydrogen atoms are shown in green,blue,and violet,respectively.Published on Web 07/16/200810.1021/ja8021686CCC:$40.75 2008American Chemical SocietyJ.AM.CHEM.SOC.2008,130,10697–10701910697formulas of GO obtained experimentally manifest the coverage of graphene between25%and75%,which means that,at least, a quarter of the carbon-carbon bonds in the graphene layer are double bonds whereas the rest are single bonds like in a diamond.Indeed,both XPS13,16and infrared17spectroscopy data confirm coexistence of sp3and sp2electron configurations of carbon.Based on experimental data11and additional measurement results,a model of GO has been suggested by Nakajima and co-workers.18According to this model,the GO structure is intermediate between two ideal structures,C8O2and C8(OH)4 (Figure2c and2h,respectively).Later models19,20differ mainly by assumptions concerning edge groups.As a result,the GO structure is described as a combination of completely covered and completely uncovered stripes of graphene which is con-firmed also by recent theoretical results.21,22Recently,mechan-ical properties of GO have been simulated,based on modeling of nanoobjects functionalized by oxygen from one side23or on experimental data on chemical composition of GO.24 However,due to the stripes of uncovered graphene,GO should be conducting,according to these models.At the same time,experimentally GO becomes conducting only after a very strong reduction4,25whereas typically GO is insulating.Here, based on density functional calculations,we formulate a model of insulating GO.We also investigate a transition to conducting state at the reduction and explain why it is so difficult to clean GO completely and to derive pure graphene from GO.putational MethodsSome general factors determining chemical functionalization of graphene have been investigated in our previous work26using hydrogenization as an example.First,graphene is a veryflexible material,a chemisorption of even a single hydrogen atom leads toessential distortions of the graphene sheet with a radius ap-proximately5Å,and these lattice distortions are of crucial importance for energetics of the process.Second,for the chemi-sorption of two hydrogen atoms,the configuration where they are bonded with two neighboring carbon atoms from opposite sides of the sheet turns out to be the most energetically favorable.Third, complete coverage by hydrogen provides the global minimum of energy.These features are relevant,as we will show here,also for the case of GO.We used the pseudopotential density functional SIESTA package for electronic structure calculations27,28with the generalized gradient approximation for the density functional,29with energy mesh cutoff400Ry,and k-point11×11×1mesh in the Monkhorst-Park scheme.30During the optimization,the electronic ground states were found self-consistently by using norm-conserving pseudopotentials to cores and a double- plus polarization basis of localized orbitals for carbon and oxygen,and double- one for hydrogen.Optimization of the bond lengths and total energies was performed with an accuracy0.04eV/Åand1meV,respectively. This method is frequently used for computations of the electronic structure of graphene.26,31–33To compute the properties of layered GO we have carried out calculations of the corresponding structures for the case of25% coverage by hydroxyl groups.Instead of GGA,we use here the LDA approximation which is known to be more accurate to describe interlayer coupling in graphite and other van der Waals systems.34(16)Jeong,H.-K.;Lee,Y.P.;Lahaye,R.J.W.E.;Park,M.-H.;An,K.H.;Kim,I.J.;Yang,C.-W.;Park,C.Y.;Ruoff,R.S.;and Lee,Y.H.J.Am.Chem.Soc.2008,130,1362.(17)Fuente,E.;Mene´ndez,J.A.;Dı´ez,M.A.;Sua´rez,D.;Montes-Mora´n,M.A.J.Phys.Chem.B2003,107,6350.(18)Nakajima,T.;Mabuchi,A.;and Hagiwara,R.Carbon1988,26,357.(19)He,H.;Klinowski,J.;Forster,M.;Lerf,A.Chem.Phys.Lett.1998,287,53.(20)Lerf,A.;He,H.;Forster,M.;Klinowski,J.J.Phys.Chem.B1998,102,4477.(21)McAllister,M.J.;Li,J.-L.;Adamson,D.H.;Schniepp,H.C.;Abdala,A.A.;Liu,J.;Herrera-Alonso,M.;Milius,D.L.;Car,R.;Prud’homme,R.K.;and Aksay,I.A.Chem.Mater.2007,19,4396.(22)Kudin,K.N.;Ozbas,B.;Schniepp,H.C.;Prud’homme,R.K.;Aksay,I.A.;Car,R.Nano Lett.2008,8,36.(23)Li,J.-L.;Kudin,K.N.;McAllister,M.J.;Prud’homme,R.K.;Aksay,I.A.;Car,R.Phys.Re V.Lett.2007,96,176101.(24)Paci,J.Y.;Belytschko,T.;Schatz,G.C.J.Chem.Phys.2007,111,18099.(25)Gilije,S.;Han,S.;Wang,K.L.;Kaner,R.B.Nano Lett2007,7,3394.(26)Boukhvalov,D.W.;Katsnelson,M.I.;Lichtenstein,A.I.Phys.Re V.B2008,77,035427.(27)Artacho,E.;Gale,J.D.;Garsia,A.;Junquera,J.;Martin,R.M.;Orejon,P.;Sanchez-Portal,D.;Soler,J.M.SIESTA,Version1.3,2004. (28)Soler,J.M.;Artacho,E.;Gale,J.D.;Garsia,A.;Junquera,J.;Orejon,P.;Sanchez-Portal,D.J.Phys.:Condens.Matter2002,14,2745.(29)Perdew,J.P.;Burke,K.;Ernzerhof,M.Phys.Re V.Lett.1996,77,3865.(30)Monkhorst,H.J.;Park,J.D.Phys.Re V.B1976,13,5188.(31)Yazyev,O.V.;Helm,L.Phys.Re V.B2007,75,125408.(32)Son,Y.-W.;Cohen,M.L.;Loui,S.G.Nature(London)2006,444,347.(33)Wang,W.L.;Meng,S.;Kaxiras,E.Nano Lett.2008,8,241.(34)Janotti,J.;Wei,S.-H.;Singh,D.J.Phys.Re V.B2001,64,174107. Figure2.A sketch of functionalization of graphene by(a-e)oxygens (blue circles),and(f,g)hydroxy groups(green circles).10698J.AM.CHEM.SOC.9VOL.130,NO.32,2008A R T I C L E S Boukhvalov and KatsnelsonThe basis for carbon atoms was optimized as proposed earlier for pure graphite.35Chemisorption energies were calculated by standard formulas used,e.g.,earlier for the case of chemisorption of hydrogen on graphene 26and a solution of carbon in γ-iron.36Thus,energy of chemisorption of a single oxygen atom at eight carbon atoms (Figure 2a)is calculated as E form )E C 8O -E C 8-E O 2/2where E C 8O is the total energy of the supercell found by self-consistent calculations after optimization of geometric structure,E C 8is the total energy of graphene supercell,and E O 2is the energy of oxygen molecule.For the case of hydroxyl group,instead of oxygen,its energy was calculated with respect to water in gaseous phase:E OH )E H 2O -E H 2/2.Alternatively,the chemisorption energy can be calculated as E OH )E H 2O /2+E O 2/4.These two expressions estimate the chemisorption energy from above and from below (see Figure 3b where the results corresponding to the first and to the second expression are shown by dashed green and dotted blue,respec-tively).To be specific,in further discussions we will use the first estimation (the dashed green line).Actually,the chemisorption energy for GO containing both oxygen and hydroxyl groups depend on its chemical composition.For example,the chemisorption energy of oxygen and the OH group in the system C 8(OH)4O are E chem )E C 8(OH)4+E O 2/2-E C 8(OH)4O and E chem )(E C 8(OH)2O +2E OH -E C 8(OH)4O )/2,respectively.To check accuracy of the method used,we have calculated formation energy of the water from molecular oxygen and hydrogen in the gaseous phase.We have found the value 213.4kJ/mol which is rather close to the experimental value 241.8kJ/mol.Underesti-mation of the energy by approximately 10%is typical for GGA calculations.36Also,we have calculated equilibrium interatomic distances for graphene,molecular oxygen,hydrogen,and water,as well as interlayer distances in graphene.When drawing the pictures of density of states,we used a smearing by 0.3eV.3.Results and DiscussionWe start our simulations with the case of oxygen chemisorp-tion and then consider the chemisorption of hydroxyl st,we investigate their various combinations.Let us consider first a supercell of graphene containing eight carbon atoms,the chemisorption of two of them corresponding to 25%coverage.In contrast with hydrogen,oxygen forms a bridge between two carbon atoms,as shown in Figure 1a.As well as for the case of hydrogen,the chemisorption leads to distortions of graphene sheets when the atoms coupled to oxygen are shifted up and their neighbors are moved in the opposite direction.This makes chemisorption of the next oxygen atom from the opposite side of graphene sheet the most energetically profitable (Figure 1a).Various oxygen configurations for various coverages are sketched in Figure 2a -e,and the computational results for carbon -carbon distances,chemisorption energies,and electron energy gaps are presented in Figure 3.One can see from Figure 3a that the length of bonds between functionalized carbon atoms grows from the standard value for graphene,1.42Å,to the standard value for diamond,1.54Å,at the coverage increase which corresponds to the transition from sp 2to sp 3hybridization of carbon atoms.The chemisorption energy increases in absolute value with the coverage increase,and the most stable is the configuration displayed in Figure 1a.The gap in electron energy spectrum opens starting from 75%coverage where its value is 1.8eV;with the coverage increase,it grows up to 2.9eV.Hydroxyl groups are bonded with graphene similar to that of hydrogen,26that is,they sit at neighboring carbon atoms from opposite sides of the graphene sheet (Figure 1b).Distortion of the sheet is stronger in this case than in the case of hydrogen,partially because of interaction between the hydroxyl groups leading to ordering of distortion (see Figure 1b,c).Various calculated configurations are sketched in Figure 2f,g.The chemisorption energy was calculated with respect to water which is probably the most informative to consider reduction of GO.With the coverage increase,the carbon -carbon distance grows,as shown in Figure 3a.For the case of complete coverage it turns out to be larger than a standard one for a single bond (sp 3hybridization)which means a situation close to a break of the graphene sheet.In contrast with the cases of hydrogen and oxygen,the chemisorption energy is not monotonous as a function of coverage reaching the minimum at 75%which should correspond,therefore,to the most optimal configuration (Figure 1b).Let us consider now a general case of functionalization of graphene by both hydroxyl groups and oxygen atoms.Typical combinations are shown in Figure 4.Total energy calculations demonstrate that for all the combinations under consideration the chemisorption energy per hydroxyl group is 60meV lower,and per oxygen atom,30meV lower than for the pure cases with the same degrees of coverage.Thus,mixed coverage is energetically favorable in these cases (coverage between 25%and 75%),diminishing the energy of both O and OH groups.For coverage less than 25%,the chemisorption energy for hydroxyl groups turns out to be lower than for oxygen;therefore,one can conclude that GO with 25%coverage contains only OH groups whereas some oxygen atoms can appear only as edge groups.Optimal configurations for 25%,50%,and 100%coverage are shown in Figures 4a,e and c,and h,respectively.One should stress that a structure with staggered stripes of sp 2and sp 3carbon atoms is formed at 50%,in agreement with the previous works.21,22For maximal coverage,as well as for the case of OH groups only,carbon -carbon distances exceed 1.54(35)Junquera,J.;Paz,O.;Sanchez-Portal,D.;Artacho,E.Phys.Re V .B2001,64,235111.(36)Boukhvalov,D.W.;Gornostyrev,Y.N.;Katsnelson,M.I.;Lichten-stein,A.I.Phys.Re V .Lett.2007,99,247205.Figure 3.Dependence of carbon -carbon bond length (a),chemisorptionenergy (b),and electron energy gap (c)on coverage (see the text).J.AM.CHEM.SOC.9VOL.130,NO.32,200810699Modeling of Graphite Oxide A R T I C L E SÅwhich makes,again,100%coverage less favorable than 75%coverage.The most stable configuration of GO is presented in Figure 1c.As a result,one can suggest the following chemical formulas for GO with various coverages:25%,C 8(OH)2;50%,C 8(OH)2O,75%,C 8(OH)4O.They are rather close to the formulas suggested by experimentalists and discussed in the Introduction.Minor discrepancies can be related with the presence of some small amount of carboxyl and carbonyl groups,as well as atomic oxygen adsorbed at the edges of GO,as was discussed in detail within the model proposed by Lerf et al.19,20Electron densities of states for GO are presented in Figure 5.One can see that the energy gap varies between 2.8and 1.8eV at the decrease of coverage from 75%to 50%.At further reduction of GO it becomes conducting,according to our calculations.It seems to be in agreement with the available experimental data.4,25,37The chemisorption energy difference per group for 25%and 75%coverage is less than 1eV (Figure 3a)which explains a possibility of partial reduction of GO,both thermally and chemically.Actually,the carbon to oxygen ratio 4:1considered above is a bit larger than experimental values for strongly reduced GO 14,25,38,39and almost twice larger than the maximalratio 10:1.37To study dependence of the chemisorption energy on the C:O ratio we have performed calculations for the cases of two hydroxyl groups (see Figure 2f)per supercells containing 8,18,32,50,and 72carbon atoms,the latter case corresponding to the C:O ratio 32:1.The computational results are presented in Figure 6a.One can see that the chemisorption energy is weakly concentration-dependent between the ratio values 4:1and 16:1whereas for smaller concentrations of hydroxyl groups,it decreases roughly twice,between 16:1and 25:1.A weakening of chemical bonding between OH groups and graphene at small(37)Stankovich,S.;Dikin, D. A.;Piner,R. D.;Kohlhaas,K. A.;Kleinhammes,A.;Jia,Y.;Wu,Y.;Nguyen,S.T.;Ruoff,R.S.Carbon 2007,45,1558.(38)Bourlinos,A.B.;Gournis,D.;Petridis,D.;Szabo ´,T.;Szeri,A.;De ´ka ´ny,ngmuir 2003,19,6050.(39)Stankovich,S.;Piner,R.D.;Chen,X.;Wu,N.;Nguyen,S.T.;Ruoff,R.S.J.Mater.Chem.2006,16,155.Figure 4.A sketch of functionalization of graphene by oxygens (bluecircles)and hydroxyl groups (greencircles).Figure 5.Electronic densities of states for the most stable configurationsat various degrees of coverage.Number of hydroxyl groups and oxygen atoms per C 8isshown.Figure 6.(a)Chemisorption energy of OH groups as a function of C:Oratios.(b)Total densities of states per atom for C:O ratios 16:1(solid red line)and 32:1(dashed green line).10700J.AM.CHEM.SOC.9VOL.130,NO.32,2008A R T I C L E S Boukhvalov and Katsnelsonconcentrations(C:O ratio from25:1in comparison with16:1) is connected with essential changes of the electronic structure. At very small concentrations,the latter is more similar to that of pure graphene(see Figure6b).It can be caused by the changes of distances between OH groups which is17Åfor the carbon-to-oxygen ratio16:1.It was shown at the simulation of hydrogenization of graphene26that typical radius of interaction between the hydrogen atoms is about8Å,and the defects can be considered as independent ones for larger distances.For the case of OH groups,the distortions of the graphene sheet is larger than for the case of hydrogen,and therefore interaction between them is still essential for the ration16:1whereas for smaller concentrations,the hydroxyl groups can be considered as almost noninteracting.In a real experimental situation where the ratio 10:1has been reached37finite-size effects of the GOflakes can be important.Indeed,the size of theseflakes is smaller than for the case of graphene,9,23and various groups can be chemisorbed at the edges.Also,theflakes can contain various topological defects10,23which can also change local chemisorp-tion energy.At last,let us discuss the cases of bilayer and periodic (graphite-like)GO.To this aim we have carried out calculations for corresponding structures with25%coverage by hydroxylgroups.We consider the Bernal(AB)stacking,similar to pure graphite,which was observed also in GO.16The optimized structure is shown in Figure7.The width of the layer was found to be,in both cases,about7Å,as well as interlayer distances, which seems to be in a good agreement with experimental data.38,40,41To calculate interlayer coupling energy per carbon atom we have computed the energy differences between single layer and periodic structure.For the case of pure graphite,it equals32meV,in a good agreement with the experimental value 35meV.42For the periodic GO structure and for GO bilayer, the corresponding values turn out to be17and6meV, respectively.This decrease of the energy explains possibility of easy exfoliation in GO.9,10Because of weakness in the interlayer coupling,the electronic structure of GO is almost identical for single layer,bilayer,and periodic structure,in contrast with the cases of pure graphene.434.ConclusionTo summarize,we have proposed a model structure of GO which seems to be consistent with all known experimental data. We have demonstrated,in particular,that(i)100%coverage of GO is less energetically favorable than75%,(ii)functionaliza-tion by both oxygen and hydroxyl groups is more favorable for coverage than25%than by hydroxyl groups only,(iii)a reduction of GO from75%to6.25%(C:O ratio16:1)coverage is relatively easy but further reduction seems to be rather difficult,and(iv)GO becomes conducting at25%coverage, being an insulator at larger coverage.Acknowledgment.The work isfinancially supported by Stich-ting voor Fundamenteel Onderzoek der Materie(FOM),The Netherlands.Supporting Information Available:Cartesian coordinates for all species,and values of calculated formation energies.This material is available free of charge via the Internet at http:// .JA8021686(40)De´ka´ny,I.;Kru¨ger-Grasser,R.;Weiss,A.Colloid Polym.Sci.1998,276,570.(41)Kovtykhova,N.I.;Olliver,P.J.;Martin,B.R.;Mallok,T.E.;Chizhik,S.A.;Buzaneva,E.V.;Gorchinskiy,A.D.Chem.Mater.1999,11, 771.(42)Benedict,L.X.;Chopra,N.G.;Cohen,M.L.;Zettl,A.;Loui,S.G.;Crespi,V.G.Chem.Phys.Lett.1998,286,490.(43)Boukhvalov,D.W.;Katsnelson,M.I.Phys.Re V.B,submitted,cond-mat:0802.4256.Figure7.Optimized geometric structures of strongly reduced GO.Numbers are distances,inÅ,for the periodic structure(and for bilayer in parentheses). Right upper corner:a top view.Carbon,oxygen,and hydrogen atoms are shown in green,blue,and violet,respectively.J.AM.CHEM.SOC.9VOL.130,NO.32,200810701Modeling of Graphite Oxide A R T I C L E S。