15Tool materials & fluids
- 格式:ppt
- 大小:206.50 KB
- 文档页数:16
中考英语手工制作的创意启发单选题40题1.I need a tool to cut the paper. Which one should I choose?A.scissorsB.glueC.paintbrushD.ruler答案:A。
本题考查手工制作工具词汇。
scissors 是剪刀,可以用来剪纸;glue 是胶水,不能剪纸;paintbrush 是画笔,也不能剪纸;ruler 是尺子,主要用于测量和画线,不能剪纸。
2.In handicraft making, we often use ______ to stick things together.A.knifeB.penC.glueD.scissors答案:C。
本题考查手工制作工具词汇。
glue 是胶水,可以用来把东西粘在一起;knife 是刀,不能用来粘东西;pen 是笔,不能粘东西;scissors 是剪刀,不能粘东西。
3.What tool do we use to draw straight lines in handicraft?A.pencilB.rulerC.crayonD.paint答案:B。
本题考查手工制作工具词汇。
ruler 是尺子,可以用来画直线;pencil 是铅笔,主要用来写字和画画,但不太容易画很直的线;crayon 是蜡笔,主要用于画画,也不太容易画直的线;paint 是颜料,不能画直线。
4.When making a paper crane, we need ______ to fold the paper.A.fingersB.scissorsC.paper clipsD.none of the above答案:A。
本题考查手工制作过程。
在制作纸鹤时,我们通常用手指来折纸;scissors 是剪刀,用来剪纸,不是折纸;paper clips 是回形针,也不是用来折纸的。
5.Which of the following is NOT a tool for handicraft making?A.bookB.paintbrushC.scissorsD.glue答案:A。
Journal of Materials Science and Engineering B 1 (2011) 636-640Formerly part of Journal of Materials Science and Engineering, ISSN 1934-8959Development of New Tool Steels for Forging DiesPavel Šuchmann1, Jiří Krejčík 2 and Ludvík Martínek31. COMTES FHT a.s., Průmyslová 995, 33441 Dobřany, Czech Republic2. SVÚM a.s., areál VÚ, Podnikatelská 565, 190 11 Praha 9, Běchovice, Czech Republic3. ŽĎAS a. s., Strojírenská 6, 591 71 Žďár nad Sázavou, Czech RepublicReceived: March 30, 2011 / Accepted: April 10, 2011 / Published: October 25, 2011.Abstract: Forging dies used for close dies forging of small and middle-sized steel parts are required to possess an optimum combination of strength, toughness, resistance to tempering and other properties. Typical alloying elements include chromium, vanadium, molybdenum, or tungsten. This alloying strategy can be found e.g. in the steels 1.2343, 1.2344 and others. The present paper describes new alloying concepts of steels for forging dies based on the 1.2343 steel. By increasing the carbon content, and in some cases increasing the tungsten level and adding niobium, using a sufficient metallurgical procedure and subsequent special process for ingot forging, the hardness, toughness and wear resistance of the steel have been enhanced significantly. The lifetime of dies made from the improved steels is about 50%-100% longer than that of dies made from conventional 1.2343 steel.Key words: Tool steel, metallurgy, forging die, lifetime.1. IntroductionManufacturers of small closed-die forgings have been for a long time greatly interested in affordable tool steels with a good strength-toughness ratio and with a precisely specified metallurgical processing procedure. Such steels are fit for rather versatile applications involving most types of forging dies. The steel 1.2343 which is one of the most widely used materials in forging plants across Europe is a typical representative of such tool material. However, it is often difficult to find such a supplier of this steel on the Czech market which guarantees the required chemical composition and homogeneous microstructure with very low inclusion content, uniform carbide distribution and other parameters which are decisive for end-use properties of forging dies.In recent years, companies ZDAS a.s. and in cooperation with forge VIVA ZLIN Comp., and research institutes SVÚM a.s. and COMTES FHT a.s. have been working intensively on optimizing theCorresponding author: Pavel Šuchmann, research fields: tool steels, forging, heat treatment, wear resistance. E-mail: ***************************.production of steel 1.2343 with the aim of achieving best possible properties while keeping competitive price. Another goal of the proposed research was to define internal technical standards for metallurgical quality of tool steels to be applied at ŽĎAS a.s. in orderto update widely used but dated Poldi standards [1]. Besides the development of metallurgical processing of this steel, several chemical composition variants have been proposed for making dies with high hardness and wear-resistance requirements.2. Manufacturing of Experimental Materials2.1 Quality RequirementsOn the basis of long-term requirements of tool steel buyers, the following fundamental quality specifications for tool steel forgings have been identified:y sulphur level of no more than 0.005 wt%, very low content of phosphorus and other undesirable residual elements;y non-metallic inclusion content (according to ASTM E45-97) should not exceed values listed inTable 1;All Rights Reserved.Development of New Tool Steels for Forging Dies637Table 1 Highest acceptable amount of non-metallic inclusions in the tool steel acc. to ASTM E45-97.InclusionsType Fine CoarseA (sulphides) 1.0 0.5B (aluminates) 1.5 1.0C (silicates) 1.0 1.0D (globular oxides) 2.0 1.0y prior austenite grain size of G = 8 or finer (according to ASTM E 112).In addition to these fundamental criteria, microsegregation, carbide distribution and other standard microstructure parameters were evaluated according to NADCA 207. 2.2 Method of ProductionExperimental ingots were processed in vacuum (VD process). One of the ingots was arc-remelted in VAR equipment prior to forging. The above quality specifications have also been met by the materialproduced by the VD process without remelting. Asexpected, the vacuum remelting improved the quality parameters (resulting in zero inclusion content). However, due to high cost of this process and unavailability of the VAR equipment in the ŽĎAS company, remelted ingots ceased to be used.In order to achieve optimum amount of forging reduction, all the above materials were deformed along three axes (involving both drawing out and upsetting) with the forging reduction of at least 4.3. Modification of the Chemical Composition of 1.2343 SteelWith regard to special parameters of the trial die used for tool steel testing (see section 5), several chemical composition variants have been proposed(Table 2), leading primarily to higher hardness and wear resistance. In the variant no. 1 of the 1.2343chemical composition, an addition of niobium wasused. Niobium’s ability to form carbides is often used both in structural [2, 3] and tool steels [4, 5]. In the variant no. 2, carbon and vanadium levels have been increased in addition to alloying with niobium. Thepurpose was to increase hardness and hardenability ofthe material. The variant 3 included higher carbon content and additions of tungsten and vanadium in comparison with the 1.2343 standard composition. 4. Analysis of Properties of Experimental MaterialSpecimens taken from experimental melts were heat treated to hardnesses of 53 (all specimens) and 55 and 57 HRC (only those with modified chemical compositions). Subsequently, impact toughness tests were carried out for longitudinal and transverse directions (relative to the axis of the bar forged from the initial ingot) and abrasive wear resistance tests. Their results are listed in Table 3, showing that modifying the chemical composition significantly improved the material’s hardenability (hardness above 53 HRC is not achievable in the conventional 1.2343 steel) and wear resistance. However, all modified variants have been found to have lower impact toughness, in particular in the direction perpendicular to the axis of the forged workpiece. In order to eliminate this, the ingot forging process will be optimized further.In addition to mechanical tests, an evaluation of microstructure according to specification described in 2.1 was carried out. All experimental materials satisfied all testing criteria. Minute inclusion contentTable 2 Chemical composition of tool steels investigated.MaterialChemical composition (wt%)C Si Cr Mn Mo V Nb W1.2343-standard 0.37 1.0 5.00 0.4 1.20 0.45 0.00 0.00 Variant 1 (Nb) 0.39 1.0 4.95 0.4 1.16 0.42 0.18 0.00 Variant 2 (Nb, C, V) 0.54 1.0 4.95 0.4 1.15 0.62 0.18 0.00 Variant 3 (W, V, C) 0.49 1.0 4.90 0.4 1.17 1.60 0.00 1.63 All Rights Reserved.Development of New Tool Steels for Forging Dies638Table 3 Mechanical properties of specimens made from experimental alloys (tests at room temper). Steel typeHardness HRCImpact toughness KCU (J/cm 2) Resistance to wear ψII ┴ 1.2343-standard 53 2320 1.69Variant 1 (Nb)53 23 16 1.83 55 16 11 1.93 57 12 7 2.06 Variant 2 (Nb, C, V)53 20 15 1.85 55 15 11 1.95 57 11 7 2.08 Variant 3 (W, C)53 21 15 1.82 55 15 10 1.89 57 11 6 2.0was achieved. The prior austenite grain size in all testedspecimens was between G 8 and 10. An example of microstructure of standard 1.2343 grade produced in the ŽĎAS company with visible prior austenite grainboundaries is shown in Fig. 1.Tempering curves were obtained for the variants with modified chemical compositions. They are shown in Figs. 2-4.Fig. 1 Microstructure of a 1.2343 tool steel with visible prior austenite grain boundaries (G = 8).4547495153555759480500520540560580600620Annealing temperature [°C]H R CFig. 2 Annealing curves-variant 1 (Nb).4547495153555759480500520540560580600620Annealing temperature [°C]H R CFig. 3 Annealing curves-variant 2 (Nb, C, V).47495153555759616365460480500520540560580600620Annealing temperature [°C]H R CFig. 4 Annealing curves-variant 3 (W, C).5. Testing of Forging DiesThe forging die shown in Fig. 5 is used in Kovárna VIVA Zlín for manufacturing small forgings (with the weight of about 1 kg). With regard to production of large series (up to 100 thousand pieces yearly over several years), the die is considered a suitable candidate for testing of new tool materials. Prior to this testing initiative, the die used to be made from standardAll Rights Reserved.Development of New Tool Steels for Forging Dies639Fig. 5 Forging die used for field tests and its worn surface.1.2343 steel quenched and tempered to 47 HRC and its life was equal to 4,500 strokes. The nature of its wear (Fig. 5, bottom) indicates that during its service, abrasive wear and local plastic deformation rather than cracking are the chief phenomena taking place in the die. For this reason, the die material was proposed to be treated to higher hardness.A series of tests was performed on dies from standard 1.2343 steel and from the above described modified materials conventionally treated to a hardness above 50 HRC. Forging conditions were kept stable in the course of testing. The life of dies was monitored. Results of selected tests are shown in Table 4. They indicate that higher hardness led to a significant improvement in the die life (by about 70%) even in the variants with no modification of chemical composition. Using steel with modified chemical composition and equal hardness extended the life of the die even more. Its life was almost 100% longer than that of the initial die.All chemical composition variants tested have proven to be beneficial in practice and can be considered usable for manufacturing forging dies.6. ConclusionsThe above results indicate that the development of a high-quality hot work tool steel with chemical composition based on that of 1.2343 was successful. The newly implemented quality standards containing requirements on both micropurity and grain size make the quality management of the steel producer more efficient. Furthermore, test pieces from steels with three different modified chemical compositions were made. The modifications led to higher hardenability and abrasive wear resistance. All investigated materials have been field-tested as forging die materials in Kovárna VIVA Zlín. Their utilization greatly extended the life of forging dies. Testing in the forging plant has also shown that in some cases the dies can be quenched and tempered to a hardness significantly higher than 50 HRC without causing in-service cracking.With regard to favourable results of the tests, all examined variants of the steel 1.2343 can be regarded as usable hot work tool steels. Since 2009, the above variants have been protected by utility designs.AcknowledgmentsThe presented results have been achieved with support of Ministry of Industry and Trade of the Czech Republic within the project TANDEM FT-TA 3/091.Table 4 Results of field tests of forging dies.Die material Relative position of workpiece axis anddie parting planeHardnessHRCLife(No. of strokes)1.2343 perpendicular 474.3041.2343 perpendicular 537.0801.2343 parallel 537.628Variant 1 (Nb) perpendicular 54 8.499Variant 2 (Nb, C, V) perpendicular 54 9.388Variant 3 (W, V, C) perpendicular 54 8.470Variant 3 (W, V, C) parallel 56 7.759All Rights Reserved.Development of New Tool Steels for Forging Dies 640References[1] E. Přibil, A. Engst, V. Eichler, J. Průcha, B. Esterka, J.Krejčík, Tool Steel Poldi and Their Use, I. Part Prague, 1986.[2] E.V. Pereloma, I.B. Timokhina, P.D. Hodgson,Transformation behaviour in thermomechanical processedC-Mn-Si steel with and without Nb, Materials Science andEngineering A 273-275 (1999) 448-452.[3] D. Hauserová, H. Jirková, B. Mašek, Investigation ofphase transformations in high-strength low-alloyed steel,in: Proceedings of the 20th International DAAAM Symposium Intelligent Manufacturing and Automation: Theory, Practice and Education 20 (1) (2009) 1897-1898, [4]L.A. Dobrzanski, A. Zarychta, M. Ligarski, High-speedsteels with addition of niobium or titanium, Journal of Materials Processing Technology 63 (1997) 531-541.[5]P. Novak, D. Vojtech, J. Serak, Pulsed-plasma nitriding ofa niobium-alloyed PM tool steel, Materials Science andEngineering A 393 (2005) 286-293.All Rights Reserved.。
设计的分类与方法学1 设计Desgin2 现代设计Modern Desgign3 工艺美术设计Craft Design4 工业设计Industrial Design5 广义工业设计Genealized Industrial Design6 狭义工业设计Narrow Industrial Design7 产品设计Product Design8 传播设计Communication Design8 环境设计Environmental Design9 商业设计Comercial Design10 建筑设计Architectural11 一维设计One-dimension Design12 二维设计Tow-dimension Design 13 三维设计Three-dimension Design14 四维设计Four-dimension Design 15 装饰、装潢Decoration16 家具设计Furniture Design17 玩具设计Toy Design18 室内设计Interior Design19 服装设计Costume Design20 包装设计ackaging Design21 展示设计Display Design22 城市规划Urban Desgin23 生活环境Living Environment24 都市景观Townscape25 田园都市Gardon City26 办公室风致Office Landscape27 设计方法论Design Methodology28 设计语言Design Language29 设计条件Design Condition30 结构设计Structure Design31 形式设计Form Design32 设计过程Design Process33 构思设计Concept Design34 量产设计,工艺设计Technological Design35 改型设计Model Change36 设计调查Design Survey37 事前调查Prior Survey38 动态调查Dynamic Survey39 超小型设计Compact type40 袖珍型设计Pocktable Type41 便携型设计Protable type42 收纳型设计Selfcontainning Design43 装配式设计Knock Down Type44 集约化设计Stacking Type45 成套化设计Set (Design)46 家族化设计Family (Design)47 系列化设计Series (Design)48 组合式设计Unit Design49 仿生设计Bionics Design50 功能Function51 独创性Originality52 创造力Creative Power53 外装Facing54 创造性思维Creating Thinking55 等价变换思维Equivalent Transformationn Thought56 KJ法Method of K.J57 戈顿法Synectice58 集体创造性思维法Brain Storming59 设计决策(Design) Decision Making 60 T-W-M体系T-W-M system61 O-R-M体系O-R-M system62 印象战略Image Stralegy63 AIDMA原则Law of AIDMA64 功能分化Functional Differentiation65 功能分析Functional Analysis66 生命周期Life Cycle67 照明设计Illumination Design设计色彩方法1 色Color2 光谱Spectrum3 物体色Object Color4 固有色Propor Color5 色料Coloring Material6 色觉三色学说Three-Component Theary7 心理纯色Unique Color8 拮抗色学说Opponent Color Theory9 色觉的阶段模型Stage Model of the Color Perception10 色彩混合Color Mixing11 基本感觉曲线Trisimulus Valus Curves12 牛顿色环Newton's Color Cycle13 色矢量Color Vector14 三原色Three Primary Colors15 色空间Color Space16 色三角形Color Triangle17 测色Colourimetry18 色度Chromaticity19 XYZ表色系XYZ Color System20 实色与虚色Real Color and Imaginary Color21 色等式Color Equation22 等色实验Color Matching Experiment23 色温Color Temperature24 色问轨迹Color Temperature Locus25 色彩三属性Three Attribtes and Color 26 色相Hue27 色相环Color Cycle28 明度Valve29 彩度Chroma30 环境色Environmetal Color31 有彩色Chromatic Color32 无彩色Achromatic Colors33 明色Light Color34 暗色Dark Color35 中明色Middle Light Color36 清色Clear Color37 浊色Dull Color38 补色Complementary Color39 类似色Analogous Color40 一次色Primary Color41 二次色Secondary Color42 色立体Color Solid43 色票Color Sample44 孟塞尔表色系Munsell's Color System45 奥斯特瓦德表色系Ostwald's Color System46 日本色研色体系Practical Color Co-ordinate System47 色彩工程Color Engineering48 色彩管理Color Control49 色彩再现Color Reproduction50 等色操作Color Matching51 色彩的可视度Visibility Color52 色彩恒常性Color Constancy53 色彩的对比Color Contrast54 色彩的同化Color Assimilation55 色彩的共感性Color Synesthesia56 暖色与冷色Warm Color and Cold Color57 前进色与后退色Advancing Color Receding Color58 膨胀色与收缩色Expansive Color and Contractile Color59 重色与轻色Heavy Color and Light Color60 色价Valeur61 色调Color Tone62 暗调Shade63 明调Tint64 中间调Halftone65 表面色Surface Color66 平面色Film Color67 色彩调和Color Harmony68 配色Color Combination69 孟塞尔色彩调和Munsell's Color Harmony70 奥斯特瓦德色彩调和Ostwald's Color Harmony71 孟.斯本瑟色彩调和Moon.Spencer's Color Harmony72 色彩的感情Feeling of Color73 色彩的象征性Color Symbolism74 色彩的嗜好Color Preference75 流行色Fashion Color76 色彩的功能性Color Functionalism77 色彩规划Color Planning78 色彩调节Color Conditioning79 色彩调整Color Coordinetion80 色彩设计Color Design材料与加工成型技术1 材料 Material2 材料规划 Material Planning3 材料评价 Material Appraisal4 金属材料 Metal Materials5 无机材料 Inorganic Materials6 有机材料 Organic Materials7 复合材料 Composite Materials8 天然材料 Natural Materials9 加工材料 Processing Materials10 人造材料 Artificial Materials11 黑色金属 Ferrous Metal12 有色金属 Nonferrous Metal13 轻金属材料 Light Metal Materials14 辅助非铁金属材料 Byplayer Nonferrous Metal Materials15 高熔点金属材料 High Melting Point Metal Materials16 贵金属材料 Precions Metal Materials17 辅助非铁金属材料 Byplayer Nonferrous Metal Materials18 高熔点金属材料 High Melting Point Metal Materials19 贵金属材料 Precions Metal Materials20 陶瓷 Ceramics21 水泥 Cement22 搪瓷、珐琅 Enamel23 玻璃 Glass24 微晶玻璃 Glass Ceramics25 钢化玻璃 Tuflite Glass26 感光玻璃 Photosensitive Glass27 纤维玻璃 Glass Fiber28 耐热玻璃 Hear Resisting Glass29 塑料 Plastics30 通用塑料 Wide Plastics31 工程塑料 Engineering Plastics32 热塑性树脂 Thermoplastic Resin33 热固性树脂 Thermosetting Resin34 橡胶 Rubber35 粘接剂 Adhesives36 涂料 Paints37 树脂 Resin38 聚合物 Polymer39 聚丙烯树脂 Polypropylene40 聚乙烯树脂 Polyethylene Resin41 聚苯乙烯树脂 Polystyrene Resin42 聚氯乙烯树脂Polyvinyl Chloride Resin 43 丙烯酸树脂 Methyl Methacrylate Resin44 聚烯胺树脂,尼龙 Polyamide Resin 45 氟化乙烯树脂 Polyfurol Resin46 聚缩醛树脂 Polyacetal Resin47 聚碳酸脂树脂 Polycarbonate Resin48 聚偏二氯乙烯树脂 Polyvinylidene Resin 49 聚醋酸乙烯脂树脂 Polyvinyl Acetate Resin50 聚烯亚胺树脂 Polyimide Resin51 酚醛树脂 Phenolic Formaldehyde Resin52 尿素树脂 Urea Formaldehyde Resin53 聚酯树脂 Polyester Resin54 环痒树脂 Epoxy Resin55 烯丙基树脂 Allyl Resin56 硅树脂 Silicone Resin57 聚氨酯树脂 Polyurethane Resin58 密胺 Melamine Formaldehyde Resin59 ABS树脂 Acrylonitrile Butadiene Styrene Redin60 感光树脂 Photosensition Plastics61 纤维强化树脂 Fiber Reinforced Plastic 62 印刷油墨 Printing Ink63 印刷用纸 Printing Paper64 铜板纸 Art Paper65 木材 Wood66 竹材 Bamboo67 树脂装饰板 Decorative Sheet68 蜂窝机制板 Honey Comb Core Panel69 胶合板 Veneer70 曲木 Bent Wood71 浸蜡纸 Waxed Paper72 青铜 Bronge73 薄壳结构 Shell Construction74 技术 Technic75 工具 Tool76 金工 Metal Work77 铸造 Casting78 切削加工 Cutting79 压力加工 Plastic Working80 压力加工 Plastic Working 81 焊接 Welding82 板金工 Sheetmetal Woek83 马赛克 Mosaic84 塑性成型 Plastic Working85 灌浆成型 Slip Casting86 挤出成型 Sqeezing87 注压成型 Injection Molding88 加压成型 Pressing89 水压成型 Cold Isostatic Pressing90 加压烧结法 Hot Pressing91 HIP成型 Hot Isostatic Pressing92 压缩成型 Compression Molding Pressing 93 气压成型 Blow Molding94 压延成型 Calendering95 转送成型 Transfer Molding96 雌雄成型 Slash Molding97 铸塑成型 Casting98 喷涂成型 Spray Up99 层积成型 Laminating100 FW法 Fillament Winding101 粘接与剥离 Adhesion and Excoriation102 木材工艺 Woodcraft103 竹材工艺 Bamboo Work104 表面技术 Surface Technology105 镀饰 Plating106 涂饰 Coating107 电化铝 Alumite108 烫金 Hot Stamping109 预制作 Prefabrication110 预制住宅 Prefabricated House111 悬臂梁 Cantilever112 金属模具 Mold113 型板造型 Modeling of Teplate114 染料 Dyestuff115 颜料 Artist Color园林专业英语的词汇AAccessibility 可达性Accessible route 易达的路线advance notice 事先通知aerial photogrammetry 航空摄影测量aerobic digesters 需氧消化池aesthetic considerations 审美方面的考虑brick and concrete block walls 砖和混凝土砌块墙stone walls 石头墙wood and metal fences 木头和金属栅栏aesthetic controls 审美控制aggregate base 混合基础AIA 美国建筑师协会Anaerobic digesters 厌氧分解池APA 美国规划师协会arterial streets 主干道as-built records 施工记录ASLA 美国景观设计师协会athletic facility 运动设施average walking distance 平均步行距离axioms 原理Bbackfill 回填backhoe 挖沟机bar charts 横道图barrier design 障碍设计beams 大梁bearing capacity 承载力benchmarks 水准点billing 帐簿biodiversity 生物多样性bioengineering 生物工程biomass 生物量bioretention ponds 生物滞留池boardwalks 栈桥bonding company 担保公司bonuses 奖金boundary definition 边界确定boundary survey 边界测量brownfields 褐色土地bulldozers 推土机business development 商业开发business parks 商业园区Ccadastral survey 地籍测量camping 野营candlepower 烛光度cantilevered wall 悬臂墙cascading wate***lls瀑布叠水certificates of payment 付款证明书certifications of compliance 应允证明书cesspools 化粪池,污水坑,污水渗井,粪坑change orders 变更单changes, unauthorized 未经同意的变更channels, stormwater 雨水沟渠,槽,渠道circulation control 循环控制circulation patterns 环流模式clay lenses 粘土防渗层clay soil 粘土clean-up 清扫,清理,清除,提纯,净化clearing and grubbing 清理和除根client 业主climate zones 气候带closeout 竣工cluster treatment systems 集中式污水处理系统co-ordinates 坐标cold 寒带collected rainwater 收集起来的雨水collector streets 次干道colloidal soil 胶质土壤commercial center design 商业中心设计communication 电信community commercial 社区商业community facility standards 社区设施标准community parks and recreation planning data 社区公园和文娱体育规划资料community scale 社区尺度community standards 社区标准compaction 压实competition pools 竞赛用游泳池composting toilets 堆肥厕所conceptualization 概念化concrete crib wall 混凝土格笼墙cones of vision 视锥connected imperviousness 连续的非渗透地面conservation standards 保护标准constructed wetlands 人工湿地construction 施工brick and concrete block walls 砖和混凝土砌块墙stone walls 石头墙wood and metal fences 木头和金属栅栏construction document 施工文件construction layout 施工布局construction observation 施工监理construction permits 施工许可construction sequence 施工顺序construction survey 施工测量contingencies 临时费contingency allowance 临时津贴contract 合同responsibilities 责任types of 类型unauthorized changes 未经同意的变更contract documents 合同文件control points 控制点conveyance techniques, stormwater 雨水的输送技术corrective observation 校正性(补救性,修正性)检查(监理)corridors 廊道cost data 造价数据cost estimate components 造价估算内容equipment costs 设备费equipment crew costs 设备人工费general requirements costs 一般要求的费用labor cost 人工费location 位置,地点material 材料overtime 加班费productivity 生产率project scale 项目规模quantity take-off methods 起点数量法cost estimating 造价估算cost plus 造价累计court games 场地运动court su***ce 运动场地地面CPM 关键路径法Critical Path Method. See CPM 关键路径法,见CPMCSI 施工规范原理culverts 涵洞,暗沟,管道cut operations 挖方工程Ddatum 数据decking平台面,铺板decks平台,甲板basic components 基本内容design requirements 设计要求estimating design load 估算设计荷载framing method 结构方法plank-and-beam framing 厚木板梁框架platform framing 平台框架material 材料hardware 五金件wood 木料,木材site analysis 场地分析span tables 跨度表structural design 结构设计decks, function of 平台的功能deferred maintenance 延期维修(维护)demolition, general 整体破坏demolition ,selective 选择性破坏density 密度design development 设计扩初,设计深化design framework 设计框架design impacts 设计影响design quality 设计质量design speed 设计速度detail scale 细部尺度detention ponds 滞留池development 开发industrial. See industrial development 工业,见工业开发residential. See residential development 居住,见居住开发development programming 开发计划development types, industrial and business 开发类型,工业和商业dimensional Criteria 标注标准dimensions 标注dimension of human figures 人体尺度direct labor 直接人工费disconnected imperviousness 不连续的非渗透地面disposal 处理,处置,排除,清除DL. See direct labor DL.见直接人工费drainage 排水,流域面积,排洪,排水系统drinking water 饮用水dry detention ponds 干滞池durability 耐久性EEames, Charles and Ray 查理·埃姆斯和雷earthwork 土方ecological impact 生态影响economic impact 经济影响edge habitat 边缘栖息地edge restraint 边缘限制electrical lines 电力线embodied energy 蕴藏能量endwalls 尾墙energy 能量embodied. See embodied energy 具体化的,见蕴藏能量,具体能量energy costs 能量造价environmental impact analysis 环境影响分析environmental impact statement (EIS) 环境影响报告书(EIS)scoping process 确定范围程序environmental modification 环境修复equipment costs 设备费equipment crew costs 设备人工费equivalents 相等物,等同物estimating 估算stormwater runoff 雨水径流[量]estimating water flows 估算水流量evaluation 评价evapotranspiration rate 土壤水分蒸发蒸腾损失总量速率exotic plant species 外来植物物种eye levels 视平线Ffabric reinforcement 纤维加固,织物加强件facilities planning data 设施规划数据feasibility planning 可行性规划federal regulations 联邦规范flood protection 防洪historic preservation 历史保留National Environmental Policy Act(NEPA)国家环境政策法案(NEPA)NPDES general permits NPDES一般性许可Section 10 permit 第10条许可Section 404 permit 第404条许可fee 费用cost plus fixed 固定费用之和lump sum 总数,总合retainer 律师费fences and walls 栅栏和围墙fences, wood and metal 栅栏,木栅栏和金属栅栏aesthetic considerations 审美方面的考虑components 组分,内容construction 施工structural considerations 结构方面的考虑field orders 现场通知单field sports 田径运动field su***ces 田径运动场地面field surveys 现场测量fill operations 填方工程fill, general 一般性填方filter strips 滤器,滤池,过滤,滤水filtration 过滤filtration systems 过滤系统finish grading 设计标高flexible pavement 柔性地面铺装flood protection 防洪follow ups 连续footage 尺长footcandle 英尺烛光footing drains 基座处排水,立足点排水footings 立足点forward spatial bubblesfoundations 基础fragmentation 破碎Freeway or Distributor Systems 高速路或分配者系统French drains 法式排水friction coefficient 摩擦系数frost depth 结冻深度,冰冻深度frost-thaw cycle 结冻-融化周期functional requirement 功能要求Ggarden pool 花园游泳池general conditions 一般情况general contractor 总承包商general demolition 整体破坏general fill 总填方general requirements 一般要求general requirements costs 一般要求的费用general roadway standards 一般道路标准geodetic survey 测地学测量GIS 地理信息系统golf and driving ranges 高尔夫和高尔夫练习场grading 场地平整granular soil粒状土壤gravity wall 重力墙graywater 灰水greenfields 绿色用地,绿色土地groundwater protection 地下水保护groundwater recharge 地下水补给groundwater resources 地下水资源,地下水储量growing season 生长期guarantees 抵押物Hhand level 手动水平仪handrailings 扶手hazardous plants 有毒植物headwalls 头墙heavy duty 重型的,责任重大的herbaceous plants 草本植物highway 高速公路historic preservation 历史保留horizontal alignment 平面设计hot arid 炎热干燥hot humid 炎热潮湿hydrographic survey 水文测量hydrologic cycle 水文周期Iilluminance 亮度impervious su***ce ratio 不渗透地面比例industrial development 工业开发industrial parks 工业园区infiltration beds 渗透床infiltration ponds 渗透池infiltration wells 渗透井infiltration, stormwater 雨水渗透inspection 检查installation 安装Insurance Rate Maps (FIRMs) 保险赔偿比例地图interpretation 注释,解释invasive species 入侵物种irrigation 灌溉irrigation ponds 灌溉池塘irrigation systems 灌溉系统irrigation water, sources of 灌溉水水源Jjob meetings 工作会议joists 托梁Llabor costs 人工费lagoons 塘lamp characteristics 灯具的特点landscape assessment 景观评价Landscape Coefficient(KL) 景观系数(KL)landscape planning 景观规划landscape planning strategies 景观规划对策landscape plantings, calculating water景观种植用水量的计算large-scale sites 大型场地layout and surveying 布局和测量layout methods 布局方法layout plans 平面图,布局平面layout requirements 布局要求layout survey 布局测量leaching fields 沥滤场light depreciation 不强烈的light duty 轻型的lighting 照明atmosphere and character 气氛和特征orientation and identification 方位和识别safety and security 安全和治安limit-of-work line 工作期限local or minor streets 当地的或小街道local regulations 当地规范(规定)aesthetic controls 审美控制construction permits 施工许可planned unit development regulation 有规划的单元开发规范(规定)subdivision regulations (土地)再细分规范(规定)zoning regulations分区规划规范(规定)rezoning 再分区规划variances 变动lumen 流明luminance 亮度lump sum fee 总费用lux 勒克司(国际单位制的照明单位,即米烛光)Lyle, John Tillman 约翰·蒂尔曼·莱尔Mmagnetic declination 磁力偏差maintenance and disposal 维修和处理maintenance period 维修期maneuvering patterns 运行方式map projections 地图投影map scale 制图比例markup 涨价master planning 总体规划MASTERFORMAT 雇主表格material costs 材料费material lifecycle cost estimates 材料生命周期造价估算material samples 材料样品material selection 材料选择measures of intensity 强度衡量residential development 居住开发retail commercial development 零售商业开发mechanics lien 机械扣押权release 让度证书medium duty 中型medium-scale sites 中型场地metes and bounds 界石和边界线metric ratio 公制比例mitigation strategies, stormwater 缓解措施,暴雨mobilization cost 流通费moisture content 湿度,含水量,水汽含量monolithic pavement 整体路面,整体铺装moonlighting 月光式照明movement criteria 移动标准multi-family housing 多户住宅municipal sewer systems 市政排水系统NNational Environmental Policy Act (NEPA) 国家环境政策法案,简称(NEPA) natural drainageways 自然排水道natural resources 自然资源needs assessment 需求评估negotiation 协议,商议,协商neighborhood commercial 邻里商业neighborhood scale 邻里尺度net positive suction head 净吸真空高度noxious plants 有毒植物NEPA general permits 国家环境政策法案的一般许可Ooffice parks 办公园区OH. See overhead OH. 见经常性开支on-site treatment systems 分散式污水处理系统open space ratio 开敞空间比例orientation 超向,方位ornamental ponds 观赏性水池ornamental pools 观赏性水池overhead 经常性开支annual rate 年度比率overhead and profit 经常性开支和利润overruns, time 时间延误overtime 加班费overturning 翻腾,水的竖直循环现象owner 所有者Ppackage plants 丛生植物parking 停车场parking dimensions 停车场尺寸parking lot 停车场parking lots 停车场parking requirements 停车场要求patches 斑块path lighting 小径照明pathways 小径pavement铺装,路面pavement, flexible 柔性铺装,柔性路面pavement, rigid 刚性铺装,刚性路面pavements 道路paver 铺路材料,铺路机,铺石人paving 铺装,铺路payment 报酬;支付non-payment 无报酬的requests 申请pedestrian standards 步行标准penalties 罚金,罚款percentage of construction 施工的百分比permitting processes 申请程序personnel allocation 人员配备photometric charts 光度表physical characteristics 物理特征picnicking 野餐piers 支墩,支柱,防洪堤pipes 管道place scale 场地尺度plan discrepancies 平面的不符之处plane survey 平面测量planned multiuse developments 有计划的综合开发planned unit development regulations 有计划的单元开发规范planning 规划development feasibility planning 开发的可行性规划landscape planning 景观规划master planning 总体规划plant hardiness 植物的抗寒性plant mortality 植物的死亡率planting 种植clean-up and final inspection清理和检查ground covers 地被植物seeding and sodding 种草和铺草皮shrubs 灌木trees 乔木planting conditions 种植现状planting design 种植设计planting requirements 种植要求plants, hazardous 有害的植物plants, herbaceous草本的植物plants, noxious有毒的植物plants, salt tolerant 耐盐碱的植物,play su***ces 游戏场地地面playgrounds 游戏场地point of beginning 起始点pond systems 池塘系统clay lenses 粘土防渗层depth 深度synthetic liners 合成材料垫层,合成材料衬里(衬底)pools 游泳池competition 竞赛用游泳池recreational 娱乐用游泳池pools structure 游泳池结构depth 深度freeboard 干舷posts 柱potable water 饮用水Powers of Ten 十的力量precipitation 降雨,降水量precision 精确性;准确性prepared subgrade 素土夯实preventative observation 预防性监理pricing 报价material lifecycle cost estimates 材料生命周期造价估算overhead and profit 经常性开支和利润square meter cost estimates 平方米造价估算systems estimates 系统估算法unit price cost calculation 单位标价造价计算privacy 私密性private garden 私家花园product distribution 产品销售product packaging 产品包装productivity 生产率project budget 项目预算project closeout 项目竣工project meetings 项目会议project observation 项目检查project records 项目登记project scale 项目规模proprietary su***ces 地上有房产public garden 公共花园public plaza 公共广场pumps 水泵punch list 打孔登记表punch lists 打孔登记表Qquantity take-off methods 数量估算法Rramp slopes 坡道坡度ramps 坡道rates, standard billing 标准记帐率Rational Method 推理计算方法raw material 原材料re-use 再利用recharge trenches (地下水)补给沟渠recreation standards 文娱体育标准recreational pools 娱乐用游泳池recyclable materials 可循环使用的材料recycled water 循环水recycling 再循环使用(的)regional commercial 地区性商业regional considerations 地区性居住regional scale 区域尺度regulations, federal联邦的规范(规定)regulations, local地方的规范(规定)regulations, state州的规范(规定)reimbursable expenses 可补偿费用reinforced embankments 加固的土堤,加固筑堤rejections 排斥,阻止,抑制replacements 替代reservoir structures 水库构筑物,蓄水池,贮器residential development 居住开发residential standards 居住标准retail commercial development 零售商业开发appropriateness of a given site for 某个特定场地的适宜性retainer 律师费retaining structures 护土结构,阻挡构筑物types of 类型retaining walls 挡土墙retention ponds See wet detention ponds 滞留池,见调节池,贮水池rigid pavement 刚性路面rigid retaining walls 刚性挡土墙risk 风险roads 道路roadway design elements 道路设计要素roadway dimensions 道路尺寸rock removal 去除岩石roof garden 屋顶花园rough grading 粗略的场地平整Route Survey A survey of existing or alignment of route survey 现状测量的线路测量或道路定线测量runoff coefficients, stormwater雨水径流系数Ssafety and security 安全和保安salt tolerant plants 耐盐植物saltwater intrusion 咸水(海水)侵入sand filters 砂滤池,砂滤层scheduling 制定日程表schematic studies 方案研究Schueler’s Shortcut Method 许勒尔捷径法,斯库勒快捷方式scope of services 服务范围scope of work 工作范围screening and circulation 屏障和组织交通SCS Runoff Curve Number Method土地保护局水土保持局的径流曲线数值法seatwalls 坐椅式矮墙Section 10 Permit 第10条许可Section 404 Permit 第404条许可seeding 种草segmental and stack wall retaining systems 护土段墙和垒墙系统seismic conditions 地震状况selective demolition 选择性破坏sensory stimuli 感官刺激septic systems 净化系统settlement at the toe 在坡底建房sewer systems municipal 市政排水系统shadow calculations 投影计算sheet flow地表水膜,水膜浅流,层流,片流shop drawing 产品安装图shrubs 灌木shut-downs 暂时停工signage 标志silhouette lighting 轮廓照明single-family attached homes 独户式联排住宅single-family detached home 独户式独立住宅site clearing 场地清理site furnishings 场地美化site selection 场地选择sites, large-scale大型的场地sliding 滑动,移动small scale sites 小型场地Small Storm Hydrology Method 小型暴雨水文法social impact 社会影响sodding 铺草皮soil characteristics 土壤特征soil pressure forces 土壤压力soil, colloidal 胶质土壤soil, granular 粒状土壤soil, weight of 土壤质量,土壤重量span tables 跨度表spatial scale 空间尺度Spatial Standards 空间标准specifications 说明书,具体要求spotlighting 射灯照明spouting fountains 喷射喷泉spray displays 喷射装置spread lighting泛光灯照明sprinkler systems, conventional 传统的喷水系统drip system, low-volume 耗水量低的滴灌系统container plants 盆栽植物head selection and layout喷头选择和布置precipitation rate 沉淀率,喷水速率square meter cost estimate 平方米造价估算square unit 平方单位stability testes 稳定性检测stage-storage curve stairway楼梯staking 定桩standard billing rates 标准记帐率state regulations 州规范state environmental policy acts (SEPAs) 州环境政策法案,简称(SEPAs)station offsets 源点偏移stockpiling 储备storage, stormwater 雨水蓄积,暴雨蓄积storm sewers 雨水排水管stormwater management 雨水管理,暴雨管理stormwater peak discharge 雨水高峰排放量stormwater runoff estimating 雨水径流估算stormwater storage 雨水蓄积structural considerations 结构方面的考虑brick and concrete block walls 砖和混凝土砌块墙stone walls 石头墙wood and metal fences 木头和金属栅栏subbase 基础,路基subdivision regulations (土地)再细分规范subdrain 地下排水subgrade 地基subgrade conditions 地基现状substitutions 代用superelevation 超高su***ce 地面su***ce water 地表水su***ce water supplies 地表水供应su***ce 地面court 运动场地field 运动场play 游戏场track 跑道su***cing 地面处理su***cing requirements 地面处理要求swales 洼地swimming 游泳swimming pools 游泳池systems estimates 系统估算Ttelecommunication lines 电信线路temperate 温和的,适度的tests 检测time delays 时间延误time of concentration 浓缩时间time over-runs 加班时间topographic survey地形测量topsoil stripping 表土剥离tot lots儿童游戏场,幼儿游戏场townscape 城市景观toxicity 毒性track and field 跑道和运动场track su***ce 跑道地面traverse 导线tread-riser ratios 踏步宽和踏步高的比值tree protection 树木保护tree-planting, techniques 植树技术trenching 挖沟UU.S. Customary Scale 美国惯用比例unauthorized changes 未经同意的变更uniformity 均匀,一律,一致性unit costs 单位造价unit pavement 单体铺装,单位路面unit price cost calculation 单位标价造价计算updating 最新式的uplighting 向上照明urban streams 城市河流urban street 城市街道Vvegetation, existing 现状植被vehicular circulation systems 机动车交通系统vehicular standards 机动车标准verification 证实vertical alignment 纵断面Visual Criteria 视觉标准Wwalks 步行道路walls, brick and concrete block砖和混凝土砌块墙aesthetic considerations 审美方面的考虑components 组成,内容construction 施工structural considerations 结构方面的考虑walls, stone 石头墙aesthetic considerations 审美的考虑components 组成,内容construction施工structural considerations 审美方面的考虑waste resources 垃圾资源wastes 垃圾wastewater treatment 污水处理water demand 用水需求water feature 水景,水体特征considerations in use of 用途方面的考虑display pumps 喷灌泵evaporation 蒸发lighting 照明piping 管道pressure 水压recycled water 循环使用的水system requirements 系统要求water effects 水景效果Water Quality 水质water quality volume 水质容积water resource protection 水源保护water resource, demand on 水源需要water resource 水源water supply 给水watershed 流域wearing course 面层,磨损过程wearing su***ce 正在磨损的表面weep hole 泄水孔wet detention ponds 湿滞留池wheel load 车轮轮压wildlife migration 野生生物迁徙wood deck 木质甲板(平台)working documents. See construction documents 工作文件,见施工文件WQV. See water quality volume WQV.见水质体积Zzoning regulations 分区规划规定rezoning 再分区规划variances 变动艺术英语词汇abstract art:抽象派艺术●A nonrepresentational style that emphasizes formal values over the representation of subject matter.强调形式至上,忽视内容的一种非写实主义绘画风格。
DOCUMENT NR. 6.183002.QCHINESE MATERIALS CONVERSION TABLEDANIELI中国材料标准对照表Rev. 01 Page 1 of 8REPLACES替代01 10/06 UPDATED Vigano’00 10/05 First issue Cernotta Petrossi Viganò第一次出版D&C DME DMEREV. DATE DESCRIPTION OF MODIFICATION COMPILED CHECKED APPROVED日期修改记录编辑审核同意DOCUMENT NR. 6.183002.Q CHINESE MATERIALS CONVERSION TABLEDANIELI中国材料标准对照表Rev. 01 Page 2 of 8REPLACES替代1) DOCUMENT PURPOSE:this document aims to assist in reading andu nderstanding of Danieli Std drawings, whicha re usually written in English language format. 1) 宗旨:此文件旨在帮助理解按Danieli 标准绘制的图纸,图纸通常以英文出版.2) APPLICABILITY:this document has to be applied for all Danieli drawings. 2) 应用范围:文件适用于所有的Danieli 图纸.3) DOCUMENT WAY OF USE:this document is organized in material types. 3) 使用方法:文件用于材料的对照.4) OTHER RELATED DOCUMENTS:-6.183000.T Chinese Drawing labelsspecification-6.183001.P Chinese Technical dictionary 4) 相关文件:-6.183000.T 中文图纸说明表格-6.183001.P 中文技术词典DANIELIC HINESE MATERIALS CONVERSION TABLE中国材料标准对照表DOCUMENTNR.6.183002.QRev. 01Page 3 of8REPLACES替代BASIC AND QUALITY NON ALLOY STEELEuropean Material Chinese MaterialOld MaterialOldStandardNewMaterialNewStandardMaterial StandardFe490 UNI 7070 E295 EN 10025 Q345A GB/T1591-94St50-2 DIN17100 E295 EN 10025 Q345A GB/T1591-94Fe590 UNI 7070 E335 EN 10025 Q345A GB/T1591-95St60-2 DIN17100 E335 EN 10025 Q345A GB/T1591-96Fe410-1KW UNI 5869 P265GH EN 10028-2 22g GB 713-86P355GH EN 10028-2 16Mng GB 713-86 Fe360D UNI7070 S235J2G3 EN 10025 Q235D GB 700-88Fe360B UNI7070 S235JR EN 10025 Q235B GB 700-88St37-2 DIN17100 S235JR EN 10025 Q235B GB 700-88Fe430C UNI 7070 S275J0 EN 10025 Q345C GB/T 1591-94St44-3U DIN17100 S275J0 EN 10025 Q345C GB/T 1591-94Fe430D UNI 7070 S275J2G3 EN 10025 Q345E GB/T 1591-94St44-3N DIN17100 S275J2G3 EN 10025 Q345E GB/T 1591-94Fe430B UNI 7070 S275JR EN 10025 Q345A GB/T 1591-94St44-2 DIN17100 S275JR EN 10025 Q345A GB/T 1591-94Fe510C UNI 7070 S355J0 EN 10025 Q345C GB/T 1591-94St52-3U DIN17100 S355J0 EN 10025 Q345C GB/T 1591-94S355J2G1W EN 10155-95 Q295GNHL GB/T 4171-2000 Fe510D UNI 7070 S355J2G3 EN 10025 Q345E GB/T 1591-94St52-3N DIN17100 S355J2G3 EN 10025 Q345E GB/T 1591-94 COR-TEN A-B S355J2WP EN 10155-95 Q345GNHL GB/T 4171-2000Fe510B UNI 7070 S355JR Q345A GB/T 1591-94S355K2G1W EN 10155-95 15MnCuCr GB/T 4172S690Q EN 10137-2 Q690 E GB/T 16270 C 10 UNI 7846 C10E EN 10084 10 GB 699-88 Ck 10 DIN17210 C10E EN 10084 10 GB 699-88C 15 UNI 7846 C15E EN 10084 15 GB 699-88 Ck 15 DIN17210 C15E EN 10084 15 GB 699-8816CrNi4 UNI 7846 16NiCr4 EN 10084 12Cr2Ni4 GB 3077-88 15CrNi6 DIN17210 16NiCr4 EN 10084 12Cr2Ni4 GB 3077-88 17CrNiMo6 DIN17210 18CrNiMo7-6 EN 10084 20CrNi2Mo GB 3077-8818NiCrMo5 UNI 7846 17NiCrMo6-4 EN 10084 17Cr2Ni2Mo2 GB/T 6396-92CHINESE MATERIALS CONVERSION TABLEDANIELI中国材料标准对照表Rev. 01 Page 4 of 8REPLACES替代QUENCHED & T EMPERED, NITRIDING AND SURFACE HARDENING SPECIAL STEEEuropean Material Chinese MaterialOld Old New NewMaterial Standard Material Standard Material StandardC 40 UNI 7845 C40 EN 10083-2 45 GB 699-88C 40k DIN 17200 C40E EN 10083-1 45 GB 699-88C 45K DIN 17200 C45K EN 10083-1 45 GB 699-88C 50 UNI 7845 C50E EN 10083-1 42CrMoV JB/T 6396-92Ck 50 DIN 17200 C50E EN 10083-1 42CrMoV JB/T 6396-9225CrMo4 UNI 7845 25CrMo4 EN 10083-1 37CrNi3 JB/T 6396-9225CrMo4 DIN 17200 25CrMo4 EN 10083-1 37CrNi3 JB/T 6396-9235Mn5V 42CrMoV JB/T6396-9235SiMn 42CrMoV JB/T6396-9241CrMo4V 42CrMoV JB/T6396-9242CrMo4 UNI 7845 42CrMo4 EN 10083-1 42CrMo JB/T6396-9242CrMo4V UNI 7845 42CrMoV JB/T6396-9234CrMo4 EN 10083-1 35CrMo JB/T 6396-9241Cr4 EN 10083-1 40Cr, 50Cr JB/T 6396-9239NiCrMo3 UNI 7845 36CrNiMo4 EN 10083-1 40CrNiMoA JB/ZQ 4288-8636CrNiMo4 DIN 17200 36CrNiMo4 EN 10083-1 40CrNiMoA JB/ZQ 4288-8630NiCrMo8 DIN 17200 30CrNiMo8 EN 10083-1 34CrNi3Mo GB/T 6396-9251CrV4 EN 10083-1 50CrVA GB 1222-8431CrMo12 UNI 8552 31CrMo12 EN 10085 30Cr2Ni2Mo GB/T6396-9235CrAlMo7 UNI 8077 34CrAlMo5-10 EN 10085 38CrMoAl GB/T 6396-92替代STAINLESS STEELEuropean Material Chinese MaterialOld New NewOld Material Material Standard Standard Material StandardX5CrNi1810 UNI 6901 X5CrNi18 10 EN 10088-2 0Cr19Ni9 GB/T 6398-92X5CrNi1810 DIN 17440 X5CrNi18 10 EN 10088-2 0Cr19Ni9 GB/T 6398-92A ISI304 X5CrNi18 10 EN 10088-2 0Cr19Ni9 GB/T 6398-92X2CrNi1811 UNI 6901 X2CrNi19 11 EN 10088 00Cr19Ni10 GB/T1220X2CrNi1911 DIN 17440 X2CrNi19 11 EN 10088 00Cr19Ni10 GB/T1220A ISI 304L X2CrNi19 11 EN 10088 00Cr19Ni10 GB/T1220X5CrNiMo1712 UNI 6901 X5CrNiMo17 12 2 EN 10088 0Cr17Ni12Mo2 GB1220-84X5CrNiMo17122 DIN 17440 X5CrNiMo17 12 2 EN 10088 0Cr17Ni12Mo2 GB1220-84A ISI 316 X5CrNiMo17 12 2 EN 10088 0Cr17Ni12Mo2 GB1220-84X2CrNiMo1712 UNI 6901 X2CrNiMo17 12 2 EN 10088 00Cr17Ni14Mo2 GB/T 1220X2CrNiMo17132 DIN 17440 X2CrNiMo17 12 2 EN 10088 00Cr17Ni14Mo2 GB/T 1220A ISI 316L X2CrNiMo17 12 2 EN 10088 00Cr17Ni14Mo2 GB/T 1220X6CrNiMoTi1712 UNI 6901 X6CrNiMoTi17 12 EN 10088 0Cr18Ni12Mo2Ti GB/T 1220X6CrNiMoTi17122 DIN 17440 X6CrNiMoTi17 12 EN 10088 0Cr18Ni12Mo2Ti GB/T 1220A ISI 316Ti X6CrNiMoTi17 12 EN 10088 0Cr18Ni12Mo2Ti GB/T 1220X6CrNiTi1811 UNI 6901 X6CrNiTi 18 10 EN 10088-2 0Cr18Ni10Ti GB/T 1220X6CrNiTi1810 DIN 17440 X6CrNiTi 18 10 EN 10088-2 0Cr18Ni10Ti GB/T 1220A ISI 321 X6CrNiTi 18 10 EN 10088-2 0Cr18Ni10Ti GB/T 1220X12CrNi177 DIN 17224 1Cr18Ni9 GB/T 1220X10CrNi18 9 DIN 17440 1Cr18Ni9Ti GB/T 1220X2CrNiN18 10 DIN 17440 00Cr18Ni10N GB/T 1220X12CrNi188 1Cr18Ni9 X5CrNi1890Cr18Ni9 X2CrNi189 00Cr18Ni10 X2CrNIMo1812 OCr17Ni12Mo2 X10CrNiTi189 OOCr19Ni13Mo31Cr18Ni9Ti,OCr1X10CrTi1899Ni10TiX10CrNiNb189 OCr18Ni11NbX71CrAI13 OCr13AIX8Cr17 1Cr17X10Cr13 1Cr13X7Cr13 1Cr13X20Cr13 2Cr13X22CrNi17 1Cr17Ni2X105CrMo17 9Cr18替代SPRING STEELSEuropean Material Chinese MaterialOld New NewOld Material Material Standard Standard Material StandardC 70 UNI 3545 C67S EN 10132-4 60Si2CrVA GB/T 6399-92Ck 67 DIN 17222 C67S EN 10132-4 60Si2CrVA GB/T 6399-9255 Si 7 UNI 3545 56Si7 EN 10132-4 60Si2A GB/T 6399-9250CrV4 DIN 17221 60Si2A GB/T 6399-92 51CrMoV4 DIN 17221 60CrMnMoA GB/T 122255Cr3 DIN 17221 60CrMnA GB/T 1222 60SiCr7 DIN 17221 60Si2CrA GB/T 6399-92GRAY CAST IRONEuropean Material Chinese MaterialOld MaterialOldStandardNewMaterialNewStandardMaterial StandardG 15 UNI 5007 EN-GJL-150 EN 1561 HT 150 GB 9439-88 GG 15 DIN 1691 EN-GJL-150 EN 1561 HT 150 GB 9439-88 G 20 UNI 5007 EN-GJL-200 EN 1561 HT 200 GB 9439-88 GG 20 DIN 1691 EN-GJL-200 EN 1561 HT 200 GB 9439-88 G 25 UNI 5007 EN-GJL-250 EN 1561 HT 250 GB 9439-88 GG 25 DIN 1691 EN-GJL-250 EN 1561 HT 250 GB 9439-88 G 30 UNI 5007 EN-GJL-300 EN 1561 HT 300 GB 9439-88 GG 30 DIN 1691 EN-GJL-300 EN 1561 HT 300 GB 9439-88 G 35 UNI 5007 EN-GJL-350 EN 1561 HT 350 GB 9439-88 GG 35 DIN 1691 EN-GJL-350 EN 1561 HT 350 GB 9439-88SPHEROIDAL GRAPHITE CAST IRONEuropean Material Chinese MaterialOld MaterialOldStandardNewMaterialNewStandardMaterial StandardGS 370-17 UNI 4544 EN-GJS-350-22 EN 1563 QT400-18 GB 1348-88GS 400-12 UNI 4545 EN-GJS-400-15 EN 1563 QT400-15 GB 1348-88GS 500-7 UNI 4546 EN-GJS-500-7 EN 1563 QT500-7 GB 1348-88GS 600-3 UNI 4547 EN-GJS-600-3 EN 1563 QT600-3 GB 1348-88GS 700-2 UNI 4548 EN-GJS-700-2 EN 1563 QT700-2 GB 1348-88GS 800-2 UNI 4549 EN-GJS-800-2 EN 1563 QT800-2 GB 1348-88BALL AND ROLLER BEARING STEELEuropean Material Chinese MaterialOld MaterialOldStandardNewMaterialNewStandardMaterial Standard100Cr6 UNI 3097 100Cr6 EN ISO 683-17 GCr15 YB(T) 1-80替代BRONZEEuropean Material Chinese MaterialOld New NewOld Material Material Standard Standard Material StandardG-CuSn12 UNI 7013 CuSn12-C-GS EN 1982 ZCuSn10Pb1/J GB 1176-87GC-CuSn12 UNI 7014 EN 1982 ZCuSn10Pb1/J GB 1176-87GZ-CuSn12 UNI 7015 EN 1982 ZCuSn10Pb1/J GB 1176-87G-CuAl11Fe4 UNI 5274 CuAl10Fe2-C-GM EN 1982 ZCuZn26Al4Fe3Mn3 GB 1176-87B14 CuAl10Fe2-C-GM EN 1982 ZCuZn26Al4Fe3Mn3 GB 1176-87G-CuAl11Fe4Ni4 UNI 5275 CuAl10Fe5Ni5-C-GZ EN 1982 ZCuAl9Fe4Ni4Mn2 GB 1176-87G-CuAl10Ni DIN 1714 CuAl10Fe5Ni5-C-GZ EN 1982 ZCuAl9Fe4Ni4Mn2 GB 1176-87CuSn8F45 ZCuAl10Fe3 GB 1176-87BRASSEuropean Material Chinese MaterialOld MaterialOldStandardNewMaterialNewStandardMaterial StandardG-CuZn40 EN 1982 ZCuZn40Mn2/J GB 1176-87 C uZn40Pb2F43 ZCuZn38Mn2Pb2 GB 1176-87 G-CuZn35Al1 ZCuZn25Al6Fe3Mn3 GB 1176-87 G-CuSn7ZnPb ZCuZn40Pb2 GB 1176-87COPPEREuropean Material Chinese MaterialOld MaterialOldStandardNew NewMaterial Standard Material StandardSE Cu F20 Din 40500-1 H62 GB 2041-89Cu-DLP-R240S EN 12167 H62 GB 2041-89E-Cu57 F20 DIN 40500-3 H62 GB 2041-89替代TOOL STEELSEuropean Material Chinese MaterialOld New NewOld Material Material Standard Standard Material StandardX210Cr12 DIN 17350 Cr12 GB/T 1299X153CrVMo12 DIN 17350 Cr12Mo1V1 GB/T 1299X20Cr13V 2Cr13, 3Cr13 GB 1220-84 105WCr6 DIN 17350 CrWMn GB/T 1299X37CrMoV5-1 EN ISO 4957 4Cr5MoSiV GB/T 1299X40CrMoV51 DIN 17350 4Cr5MoSiV1 GB/T 1299CASTING STEELEuropean Material Chinese MaterialOld New NewOld Material Material Standard Standard Material StandardGS-38.3 ZG 230-450 GB 11352-89 GS-45.3 ZG 230-450 GB 11352-89 GS-52.3 ZG 270-500 GB 11352-89 GS-60.3 ZG340-640 GB 11352-89 GS-C25N ZG20SiMn JB/ZQ4297-86 GS-C25V ZG20SiMn JB/ZQ4297-86 GS-20Mn5V ZG36FeMnMo JB/ZQ4297-86 GS-30Mn5V ZG35SiMn JB/ZQ4297-86 GS-25CrMo4V DIN 17205 ZG35CrMo JB/ZQ4297-86GS-42CrMo4V DIN 17205 ZG35CrMo JB/ZQ4297-86GS-50CrMo4V DIN 17205 ZG35CrMo JB/ZQ4297-86。
GIWAXS: A powerful tool for perovskite photovoltaicsChenyue Wang 1, Chuantian Zuo 2, Qi Chen 1, †, and Liming Ding 2, †1MIIT Key Laboratory for Low-dimensional Quantum Structure and Devices, Experimental Center of Advanced Materials, School of MaterialsScience and Engineering, Beijing Institute of Technology, Beijing 100081, China2Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center forNanoscience and Technology, Beijing 100190, ChinaCitation: C Y Wang, C T Zuo, Q Chen, and L M Ding, GIWAXS: A powerful tool for perovskite photovoltaics[J]. J. Semicond., 2021,42(6), 060201. /10.1088/1674-4926/42/6/060201The power conversion efficiency (PCE) for perovskite sol-ar cells (PSCs) now reaches 25.2%[1]. However, the perovskite materials have complex compositions and variable phases,calling for suitable characterization techniques to investigate the underlying operation and degradation mechanism. Graz-ing-incidence wide-angle X-ray scattering (GIWAXS) plays an important role in studying perovskite materials. GIWAXS data are generally two-dimensional diffractograms containing dif-fraction rings of different crystal planes. Grazing-incidence small-angle X-ray scattering (GISAXS) is similar to GIWAXS,while it has a longer detection distance than that of GIWAXS (Fig. 1(a))[2]. GISAXS enlarges the observable spatial range up to 10–100 nm and reduces the measurement sensitivity of crys-tallization, and it is mainly used to determine the morpho-logy of bulk-heterojunction films in nanoscale [3, 4]. Compared to GISAXS, GIWAXS is more popular in perovskite study. This technique has several advantages as follows: (1) high signal-to-noise ratio (SNR) and sensitive structural resolution; (2) no-contact and nondestructive probing; (3) abundant structural in-formation; (4) depth resolution; (5) in-situ observation. Here,we discuss two applications of GIWAXS, i.e., the crystallograph-ic information at steady state, and the in-situ measurement to probe the temporal information. As an important structur-al parameter of perovskite films, crystallographic orientation affects the optoelectronic properties and materials stability.The 2D GIWAXS diffractogram presents the Debye-Scherrer ring for certain crystallographic plane, enabling characteriza-tion of structural orientation of perovskite films. The orienta-tion degree for crystal planes can be obtained quantitatively according to the diffraction rings along the azimuth by using Herman’s orientation function.Quasi-2D perovskites receive attention due to their vari-able structures, tunable composition, and relatively high stabil-ity. The insulating organic long-chain cations in quasi-2D per-ovskites can block carrier transport. Suitable crystal orienta-tion can enhance the carrier transport in 2D perovskites, thus improving device performance. GIWAXS measurements give in-formation about crystal orientation, it can also tell the stack-ing manner of grains at different depths, which is essential for understanding the crystallization mechanism. For ex-ample, by using GIWAXS, Choi et al. found that the nucle-ation and crystallization of BA 2MA 3Pb 4I 13 perovskite occurs at the gas-liquid interface during annealing, which results in the vertical alignment of 2D perovskite crystals (Fig. 1(b))[5]. They further regulated the solvent and cation to prepare highly ver-tically orientated 2D perovskite films [6]. Rafael et al. found that the intermediate solvent complexes provide building blocks in the formation of 2D perovskites according to GI-WAXS measurements [7].High-quality 3D perovskites tend to make strong orienta-tion at certain azimuth angle. GIWAXS results can be used to evaluate the crystallization quality of 3D perovskite thin films.The results can also be used to guide the process optimiza-tion, as well as to clarify the relationship between crystallo-graphic orientation and device performance. Zheng et al. regu-lated the preferential orientation of perovskite crystals and im-proved the interfacial carriers transport in the corresponding devices by substituting A-site alkali metal cations [8].Recently, residual strain was observed in perovskite films due to the mismatch of the expansion coefficients for the sub-strate and perovskites, which influences the operational stabil-ity and efficiency of perovskite solar cells. Microscopically, the residual stress within the film results from a biaxial stretch-ing of the perovskite lattice in in-plane direction. The shift of corresponding diffraction peaks at different azimuthal angles reveals the lattice tilting and stretching. By depth-resolved GI-WAXS, Zhu et al. observed a gradient strain in FA-MA per-ovskite films (Fig. 1(c)). The performance of PSCs was im-proved by reducing lattice mismatch of the crystals [9]. Wang et al. replaced A-site cations on the perovskite surface by us-ing OAI post-treatment, forming a “bone-joint” configuration,reducing surface residual stresses and thus improving humid-ity and thermal stability of PSCs [10].In-situ measurement is attractive in perovskite research.It provides a rapid approach to track microstructural changes in perovskite materials, including the crystallization and aging processes. It is the key to unravel the kinetics process of perovskite materials. The formation process of perovskite crystals is not fully understood yet. The film formation pro-cess includes liquid-film gelation stage and crystallization stage. Many studies have shown that the orientation and phase structure of perovskite are already established during gelation stage. The quality of the perovskite precursor film (gel) significantly affects the final perovskite film. In-situ GI-WAXS provides information for the composition evolution during spin-coating process. It also provides guidelines for pre-paration conditions, such as spin speed and time, dripping time of anti-solvent, etc. Amassian et al. have conducted a series of in-situ GIWAXS studies on perovskite. They ob-Correspondence to: Q Chen, ***********.cn ; L M Ding, ***************Received 22 MARCH 2021.RESEARCH HIGHLIGHTS Journal of Semiconductors(2021) 42, 060201doi: 10.1088/1674-4926/42/6/060201phase to sol–gel state, and investigated the effect of precurs-or spin-coating time on PSCs performance [11]. They revealed that Cs + and Rb + cations were able to stabilize the sol–gel state and suppress the phase separation during spin-coating (Fig. 1(d))[12, 13].GIWAXS can also be used to study the crystallization pro-cess during thermal annealing. Using the peak area integ-rated by the Debye-Scherrer ring of GIWAXS, all the phase con-tents of perovskites and their evolution during annealing can be deduced, which illustrates the phase transition from inter-mediate phase to perovskite phase. The activation energies for perovskite formation can be determined by using Arrheni-us equation.Perovskite degradation caused by humidity and heat lim-its the commercialization of PSCs. In conjunction with the mois-ture and temperature controller, the aging process of devices under different conditions can be monitored by GIWAXS.Through depth-resolved characterization, the physical and chemical reactions at different positions can be deduced by combining with other characterizations, which will reveal the degradation mechanisms. Kelly et al. performed systematic in-situ GIWAXS studies on perovskite degradation. They ob-served that MAPbI 3 films decomposed to a hydrated intermedi-ate phase with PbI 64– octahedra in a humid environment [14].To further investigate the performance and structure changes of PSCs under humidity, they developed a humidity control-ler in conjunction with I–V measurement system (Fig. 1(e)).The results revealed that the decrease of performance res-ults from the electrode corrosion, rather than perovskite de-composition (Fig. 1(f))[15].In summary, GIWAXS has been widely used to reveal the relationship between perovskite crystal structure and device performance. In-situ GIWAXS can be used to track the crystalliz-ation process and decomposition process of perovskites. This method can help us to develop stable and efficient per-ovskite solar cells.AcknowledgementsThis work was supported by National Natural Science Foundation of China (21975028, 22011540377), Beijing Muni-cipal Science and Technology Project (Z181100005118002),and Beijing Municipal Natural Science Foundation (JQ19008).L. Ding thanks the National Key Research and Development Program of China (2017YFA0206600) and the National Natur-(d)(f)1.61.20.80.400.5Max.Min.12111098T i m e (s )T i m e (s )q (nm −1)765412111098q (nm −1)7656H3C2H4300200100Solvate Disordered colloidsSolvate Disordered colloids30020010012111098q (nm −1)7654121110+ 5% Cs98q (nm −1)76541.0Q xy (Å−1)1.52.0GIWAXS GISAXSz xy k iq xzq xy≈0.1 m ≈ 2.0−5.0 mq zqαion mp-TiO 2 substrate interface—preferential orientationTensile-strain lm50 nm 200 nm 500 nm31.69531.68031.66531.6501.00.80.6N o r m a l i z e d p a r a m e t e r s0.40.2000.5 1.0 1.5 2.0 2.5 3.0Time (h)3.54.0 4.55.0 5.56.0(110)I sc V oc FF PCECarrier gasWater bubblersMass ow controllersSynchrotron X-ray beamSamplechamberKaptonwindowSource-measure unitCCD area detector0.250.50sin 2φ0.752θ (°)k fk fαfαfI−V dataψχψFig. 1. (Color online) (a) Schematic diagram of GIWAXS and GISAXS. Reproduced with permission [2], Copyright 2017, John Wiley & Sons Inc.(b) Schematic diagram of the formation of vertically orientated 2D perovskite. Reproduced with permission [5], Copyright 2018, Nature Publish-ing Group. (c) Gradient strain at different depths in perovskite layer. Reproduced with permission [9], Copyright 2019, Nature Publishing Group.(d) Time-resolved GIWAXS for precursor films with and without K + during spin-coating. Reproduced with permission [13], Copyright 2019, Elsevier Inc. (e) Humidity control set-up. (f) Time-dependence for MAPbI 3 (110) peak area and device performance parameters. (e) and (f), reproduced with permission [15], Copyright 2018, American Chemical Society.2Journal of Semiconductors doi: 10.1088/1674-4926/42/6/060201al Science Foundation of China (51773045, 21772030, 51922032, 21961160720) for financial support. ReferencesYoo J J, Seo G, Chua M R, et al. Efficient perovskite solar cells via im-proved carrier management. Nature, 2021, 590, 587[1]Schlipf J, Müller-Buschbaum P. Structure of organometal halide perovskite films as determined with grazing-incidence X-ray scat-tering methods. Adv Energy Mater, 2017, 7, 1700131[2]Rivnay J, Mannsfeld S C B, Miller C E, et al. Quantitative determina-tion of organic semiconductor microstructure from the molecu-lar to device scale. Chem Rev, 2012, 112, 5488[3]Richter L J, DeLongchamp D M, Amassian A. Morphology develop-ment in solution-processed functional organic blend films: An in situ viewpoint. Chem Rev, 2017, 117, 6332[4]Chen A Z, Shiu M, Ma J H, et al. Origin of vertical orientation in two-dimensional metal halide perovskites and its effect on photo-voltaic performance. Nat Commun, 2018, 9, 1336[5]Chen A Z, Shiu M, Deng X, et al. Understanding the formation of vertical orientation in two-dimensional metal halide perovskite thin films. Chem Mater, 2019, 31, 1336[6]Quintero-Bermudez R, Gold-Parker A, Proppe A H, et al. Composi-tional and orientational control in metal halide perovskites of re-duced dimensionality. Nat Mater, 2018, 17, 900[7]Zheng G, Zhu C, Ma J, et al. Manipulation of facet orientation in hy-brid perovskite polycrystalline films by cation cascade. Nat Com-mun, 2018, 9, 2793[8]Zhu C, Niu X, Fu Y, et al. Strain engineering in perovskite solar cells and its impacts on carrier dynamics. Nat Commun, 2019, 10, 815[9]Wang H, Zhu C, Liu L, et al. Interfacial residual stress relaxation in perovskite solar cells with improved stability. Adv Mater, 2019, 31, 1904408[10]Munir R, Sheikh A D, Abdelsamie M, et al. Hybrid perovskite thin-film photovoltaics: In situ diagnostics and importance of the pre-cursor solvate phases. Adv Mater, 2017, 29, 1604113[11]Wang K, Tang M C, Dang H X, et al. Kinetic stabilization of the sol–gel state in perovskites enables facile processing of high-effi-ciency solar cells. Adv Mater, 2019, 31, 1808357[12]Dang H X, Wang K, Ghasemi M, et al. Multi-cation synergy sup-presses phase segregation in mixed-halide perovskites. Joule, 2019, 3, 1746[13]Yang J, Siempelkamp B D, Liu D, et al. Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled hu-midity environments using in situ techniques. ACS Nano, 2015, 9, 1955[14]Fransishyn K M, Kundu S, Kelly T L. Elucidating the failure mechan-isms of perovskite solar cells in humid environments using in situ grazing-incidence wide-angle X-ray scattering. ACS Energy Lett, 2018, 3, 2127[15]Chenyue Wang got his BS from University ofScience and Technology Beijing in 2018. Nowhe is a MS student at Beijing Institute of Tech-nology under the supervision of Professor QiChen. His research focuses on perovskite sol-ar cells.Chuantian Zuo received his PhD in 2018 fromNational Center for Nanoscience and Techno-logy (CAS) under the supervision of ProfessorLiming Ding. Then he did postdoctoral re-search at CSIRO, Australia. Currently, he is an as-sistant professor in Liming Ding Group. His re-search focuses on innovative materials anddevices.Qi Chen holds BS and MS degrees of TsinghuaUniversity, and received his PhD degree fromUniversity of California, Los Angeles (UCLA). In2013–2016, he worked as a postdoc at Califor-nia Nanosystem Institute (CNSI), UCLA. Nowhe is a full professor at Beijing Institute of Tech-nology. His research focuses on hybrid materi-als design, processing and applications in opto-electronics.Liming Ding got his PhD from University of Sci-ence and Technology of China (was a joint stu-dent at Changchun Institute of Applied Chem-istry, CAS). He started his research on OSCsand PLEDs in Olle Inganäs Lab in 1998. Lateron, he worked at National Center for PolymerResearch, Wright-Patterson Air Force Base andArgonne National Lab (USA). He joined Kon-arka as a Senior Scientist in 2008. In 2010, hejoined National Center for Nanoscience andTechnology as a full professor. His research fo-cuses on functional materials and devices. Heis RSC Fellow, the nominator for Xplorer Prize,and the Associate Editors for Science Bulletinand Journal of Semiconductors.Journal of Semiconductors doi: 10.1088/1674-4926/42/6/0602013。
RT/duroid® 5880LZ High Frequency Laminates Fabrication GuidelinesMaterial Description: RT/duroid® 5880LZ filled PTFE composites are ideal for use in weight-sensitive high performance applications. The laminate material is compatible with manufacturing processes for double-sided and multi-layer circuits and has a low Z-axis CTE that contributes to long-term reliability of plated-through holes.These guidelines were developed to provide fabricators with basic information on processing stripline assemblies and multilayer boards using copper clad RT/duroid 5880LZ laminates. A Rogers’ technical service or sales representative should be contacted for more detailed information pertaining especially to dimensional movement and plated through hole processing.Storage: RT/duroid 5880LZ cores can be stored indefinitely at ambient conditions. A FIFO inventory system is recommended as is a method of record keeping that would allow tracking of material lot numbers through PWB processing and delivery of finished circuits.INNER LAYER PREPARATION:Tooling: RT/duroid 5880LZ is compatible with many tooling systems. Choosing whether to use round or slotted pins, external or internal pinning, standard or multiline tooling, and pre- vs. post-etch punching would depend upon the capabilities and preferences of the circuit facility and the final registration requirements. In general, slotted pins, a multiline tooling format, and post-etch punching will meet most needs. Whichever approach is used, it is good practice to retain copper around tooling holes.A flow pattern compatible with the chosen adhesive system can be used between circuits and around the perimeter of the panel. But, in general, registration of layers (especially thin cores) is improved by retaining as much copper as possible.Surface Preparation for Photoresist Application: A chemical process consisting of organic cleaners and a microetch is the preferred method of preparing copper surfaces for coating with liquid or film photoresist. A conveyorized spray system using an abrasive substance suspended in solution can be used to prepare copper surfaces at the slight risk of some registration control. Mechanical scrubbing should be considered for thick cores (0.060”+) only and, even then, should be performed at reduced pressures to minimize distorting the thin laminate or imparting deep scratches that change the functional spacing between copper planes.Photoresist Application: Liquid or dry film photoresist can be applied using traditional dip or spray coating, screening, or roll lamination processes.DES Processing: Developers, strippers, and copper etchants used to process epoxy glass materials will also work withRT/duroid 5880LZ. The ceramic filled material may require more stringent rinse & bake processing depending upon the next step in the process sequence.Oxide Treatment: RT/duroid 5880LZ is compatible with most oxide and oxide alternative processes. It is best to use the process recommended by the supplier of the adhesive system chosen to bond together the multilayer board.BONDING:Final Preparation: Special pretreatments of etched surfaces using sodium or plasma processes shouldn’t be necessary providing care was taken to protect the substrate surface after copper etch. Inner-layers should be baked at 120-150°C (248-302°F) for 30-120 minutes to ensure removal of volatile substances prior to MLB bonding.Guidelines for the oxide treatment should be referenced to make certain the dry bake doesn’t degrade the bond-enhancing surface. Multilayer Adhesive System: RT/duroid 5880LZ materials are compatible with a broad range of thermosetting (FR-4, Rogers 2929, RO4400™, etc.) and thermoplastic (3001 Bonding Film, FEP, PFA, PTFE, etc.) adhesive systems. Many factors, such as electrical performance, flow characteristics, ease of processing, and bond temperature requirements are considered when making the best overall choice. Rogers’ Technical Service Engineers (TSE’s) understand the trade-offs and, if asked, will help in the selection process.Multilayer Bond Cycle: The press cycle is determined by the requirements of the chosen adhesive system. Cooling under pressure is required when using thermoplastic (meltable) films.PTH AND OUTER LAYER/DOUBLE-SIDED CIRCUIT PROCESSING:Drilling: Multi-layers are most commonly drilled in stacks of one. Phenolic composite boards are recommended for entry (0.010” to 0.030” thick) and exit (>0.060”) layers. Sheeted aluminum and metal coated phenolic boards can also be used as entry layers.New carbide drills are highly recommended. Standard or undercut styles can be used. Recommended chip loads (0.001” to 0.003” per revolution) and surface speeds (150 to 300 SFM) vary with tool diameter with slower infeeds and speeds being associated with finer diameter drills. Retract rate when drilling multilayer boards should be between 300 and 500 IPM and be 700 to 1000 IPM when drilling double-sided constructions. Below is a quick reference table that provides recommended parameters for commonly used drill diameters.Tool life should be based upon inspection of cross-sectioned holes. The “twelve inch rule,” which suggests changing a tool after drilling 12” of substrate, is a good place to start when setting tool life. For example, initial hit count when drilling a 0.060” thick board would be 12”/0.060” = 200 holes.Tool Size Spindle SpeedInfeed Retract(in)(mm)(RPM)(IPM)(m/min)(IPM)(m/min)0.00790.207250072.5 1.83007.60.00980.256820088.7 2.33007.60.01380.505540083.1 2.13007.60.01970.503720096.4 2.440010.20.02560.653720074.2 1.940010.20.02950.753220064.4 1.640010.20.0394 1.002410048.2 1.240010.20.0492 1.252000040.0 1.040010.20.0625 1.592000040.0 1.040010.20.1250 3.182000040.0 1.040010.2Deburring: The use of flat, rigid entry materials, conservative drilling parameters, and limited hit counts with new drills should minimize the risk of copper burring. When drilled properly, cores should be ready for subsequent processing. If debur is necessary, a chemical microetch process is preferred. If mechanical processing is required, a hand pumice scrub is preferred over a suspended abrasive spray system which, in turn, is preferred over a conveyorized mechanical debur or planarization process.Hole Preparation: Loosely deposited debris in the holes can be removed using a vapor or hydro-honing process. These processes involve directing water suspended abrasive particles through drilled holes. The softlaminates must be properly supported through these processes.Depending upon the adhesive system used to bond multi-layer boards, a chemical or plasma desmear process may be required. These desmear processes will have little effect on the RT/duroid 5880LZ materials and should be done prior to activation of the PTFE surface. The chemical process appropriate for desmear of the adhesive system can be used.CF4/O2 plasma can also be used. A dual plasma cycle to accomplish desmear of an adhesive system and activation of the PTFE surface is made possible by adding the desmear cycle outlined below to the front end of the treatment cycle described in the treatment portion of this section.Frequency:40 KHzVoltage:500-600VPower:4000-5000 WattsPre-heat to 60°C (140°F) using:Gases:90% O2, 10% N2Pressure250 mTORRDesmear using:Gases:75% O2, 15% CF4, 10% N2Pressure:250 mTORRTime:10-30 minutesDrilled holes in PTFE-based laminates must be treated prior to the deposition of a conductive seed layer (e.g. electroless copper or direct metallization). Not performing a surface activation treatment will most likely result in poor metal adhesion or plated voids. Two common pre-treatments for PTFE materials are sodium treatment and plasma treatment. Either can be used for treating RT/duroid 5880LZ materials.Sources for sodium treatment chemicals:FluoroEtch® EtchantActon Technologies, Inc, 100 Thompson St. Pittston, PA 18640. #570-654-0612W.L. Gore Tetra-Etch® etchant 500 ML available from R.S. Hughes Company, Inc1162 Sonora Court, Sunnyvale, CA 94086. #408 739 3211Sources for sodium treatment services:FluoroEtch EtchantActon Technologies, Inc, 100 Thompson St., Pittston, PA 18640 , #570-654-0612G & S Associates1865 Sampson Ave., Corona, CA 92879, #951 739 7513A recommended plasma cycle for treating PTFE materials is:Gases:70/30 or 80/20 H2/N2, NH3, N2, or HePressure: 100 mTORR pumpdown250 mTORR operatingPower: 4000 WattsFrequency:40 KHzVoltage500-600VCycle time:10-30 minutesMetallization: RT/duroid 5880LZ materials are compatible with traditional electroless copper and direct deposit metallization processes. Cores should be baked (30-90 minutes @ 120-150°C [248-302°F]) prior to metal deposition unless plasma, which also serves as a vacuum bake, was used to prepare the hole walls for plating. A flash plate build-up of 0.0001” to 0.0003” (0.0025mm-0.0076mm) of copper is recommended to better support hole wall through preparation for outer-layer processing.The closed microspheres, which are required to define the electrical and thermal-mechanical characteristics of RT/duroid 5880LZ laminate, result in unique wall structures of PTHs. Images of “typical” hole walls are provided below:PTH Plating and Outer-Layer Imaging: Standard equipment and chemical processes are used to plate, image, and etch circuit patterns onto RT/duroid 5880LZ materials. Care should be taken to preserve the post-etch laminate surface. The topography that remains after copper removal promotes improved adhesion to solder masks. Materials should be rinsed and baked prior to solder mask application. Rinsing in warm or hot water for 20-30 minutes followed by 60 minutes at 125°C (257°F) should be sufficient, especially if the bake is done under vacuum. Microspheres located at hole walls my be pierced during drill. In such cases, the inner-diameter of the hollow filler particle will define the holewall roughness. Punctured particles are expected to plate with copper and, in extreme examples, may plate closed. These phenomena are expected as they result from the use of the filler type that defines the unique electrical and density characteristics of the RT/duroid 5880LZ composite material. Similarly, microspheres located at the surface of cores may be fractured during after-etch PWB processing. Spheres that are open to the surface may require more stringent rinsing to avoid staining.Final Surfaces: RT/duroid 5880LZ materials are compatible with most LPI solder masks. Epoxy solder masks are preferred if the application requires selective silk screening. Most final metal surfaces (ENIG, Sn, Ag, Ni/Au, OSP, etc.) can be applied without special issue or consideration. A bake, as was described prior to solder mask application, should be performed prior to HASL or reflow exposures.Final Circuitization: Individual circuits can be routed, punched, or lased depending upon preference, tolerances, and edge quality requirements. Parameters for routing are provided below:Chip Load:0.00125” to 0.00250”/rev32mm – 64 mm/revSpeed:200-300 sfm61-92 m/minPeripheries:Conventional cutInternal cutouts:Climb cutTool type:Carbide double fluted spiral-up endmillExit/Entry:Phenolic or composite boardTool life:20-30 linear feet6-9 metersPre-rout vacuum channels in backer boardDouble pass (opposite directions) when cleanest edge quality is requiredThe information in this fabrication guideline is intended to assist you in designing with Rogers’ circuit materials. It is not intended to and does not create any warranties express or implied, including any warranty of merchantability or fitness for a particular purpose or that the results shown on this fabrication guideline will be achieved by a user for a particular purpose. The user should determine the suitability of Rogers’ circuit materials for each application.These commodities, technology and software are exported from the United States in accordance with the Export Administration regulations. Diversion contrary to U.S. law prohibited.The Rogers’ logo RT/duroid, and RO4400 are trademarks of Rogers Corporation or one of its subsidiaries.© 2023 Rogers Corporation, Printed in U.S.A. All rights reserved.Revised 1653 081123 Publication #92-439。
14121411Technical DataComparison of Materials between JIS and Foreign Standards 2NFZ2CND17.12Heat resisting steel plate Heat resisting steel bar JIS G 4311 4312 4317 4313 4315,JIS G 4317 4313 4315,JIS G Notes 1 Specified by ISO 4954Notes 2 Because the type number is not specified, the UNS number is designated.As for ISO codes, the source of SUS 630 and SUS 631 is ISO 683/XVI, and the source for the others is ISO 683/XIII. The SUH group is mostly based on ISO 683/XV except for SUH 409 which is based on 683/XIII.BHMOCT20X12OCT40X10C2M OCT40X9C2 OCT20X25H20C2 OCT5X20 9AH4OCT09X17H71 O OCT14X17H2 OCT30X13OCT20X13 OCT08X13 OCT12X13NFZ20CDNbV11NFZ45CS9NFZ80CSN20.02NFZ40CSD10NFZ45CS9NFZ10C24NFZ6CT1225.15B NFZ6NCTDVNFZ12.NCS35.16NFZ12CN25.20NFZ15CN24.13NFZ52CMN21.09NFZ35CNWS14.14NFZ8CNA17.7NFZ6CNU17.04NFZ100CD17NFZ15CN16 02NFZ30CF13NFZ30C13NFZ20C13NFZ12CF13NFZ6C13NFZ13C13BS443S65BS401S45BS409S19BS310S24BS309S24BS381S34BS349S54BS349S52BS331S42BS431S29BS420S45BS420S29BS416S21BS403S17BS403S21ASTM616AISI446AISI409ASTM661ASTM660AISI330AISI310AISI309ASTM631ASTM630ASTM440F AISI440C AISI440B AISI440A AISI431AISI420FAISI420AISI416ASTM410S AISI 410AISI 4034211Ti 1279852( )1( )A 1b 9b 54713A 2SUH616SUH600SUH11SUH4SUH3SUH1SUH446SUH409SUH21SUH661SUH660SUH330SUH310SUH309SUH38SUH37SUH36SUH35SUH31SUS 631SUS 630SUS 440F SUS 440C SUS 440B SUS 440A SUS 431SUS 429J1SUS 420FSUS 420J2SUS420J1SUS416SUS 410J1SUS410S SUS 410SUS 403OCT12X17OCT08X18H12B OCT08X18H10T OCT03X17H14M2OCT03X18H11OCT08X18H10 OCT12X18H10EOCT12X17 9AH4NFZO1CD26.1NFZ8CD17.01NFZ8CNb17NFZ8CT17NFZ10CF17NFZ8C17NFZ3C14NFZ6CA13NFZ15CNS20.12NFZ6CNU18.10NFZ6NC18.16NFZ6CNNb18.10NFZ6CNT18.10NFZ2CND19.15 AzNFZ2CND17.12NFZ6CND17.11NFZ12CN25.20NFZ10CN24.13NFZ8CN18.12NFZ2CN18.10Az NFZ5CN18.09Az NFZ2CN18.10NFZ6CN18.09NFZ10CNF18.09NFZ10CN18.09NFZ12CN17.07BS434S17BS430S17BS405S17BS347S31BS321S31BS317S12BS317S16BS316S11BS316S31BS305S19BS304S11BS304S31BS303S41BS303S21BS302S25BS301S21BS284S16F19c 8a 82D32(1)D25(1)16152419N ,19aN 19,19a20,20a 1310N 101117a 171214A 3A 2SUSXM27SUS 447J1SUS 444SUS 436L SUS 434SUS 430LX SUS 430F SUS 430SUS 429SUS 410L SUS 405SUS 329J2L SUS 329J1SUSXM15J1SUSXM7SUS 384SUS 347SUS 321SUS 317J1SUS 317L SUS 317SUS 316J1L SUS 316J1SUS 316LN SUS 316N SUS 316L SUS 316SUS 310S SUS 309S SUS 305J1SUS305SUS 304LN SUS 304N2SUS304N1SUS304L SUS304SUS303Se SUS303SUS 302BSUS 302SUS 301J1SUS 301SUS 202SUS 201ASTMXM27S44400ASTM (2)AISI 434ASTMXM8AISI 430F AISI 430AISI 429AISI 405S32550S31803ASTM (2)AISI 329ASTMXM15ASTMXM7AISI 384AISI 347AISI 321AISI 317L AISI 317 LNASTM316AISI 316NAISI 316L AISI 316AISI 310SAISI 309SAISI 305LN ASTM304ASTMXM21AISI 304N AISI 304L AISI 304AISI 303Se AISI 303AISI 302B AISI 302AISI 301AISI 202AISI 201Japan Industrial Standards CodeSteel Type Related to Foreign Standards OCT 5632Standard NumberNameI 683/683/I A I S I ASTMB S 1449Part4970Part4B S DIN 17440DIN17224NFA35 573 584NFA35 586NFA35 586NFA35 573 584DIN 17224DIN 17440B S 970Part41449Part4B SASTMA I S I NameStandard NumberOCT 5632DIN 17441Steel Type Related to Foreign StandardsCodeJapan Industrial Standards Stainless Steels/Heat Resisting Steels and Related MaterialsSteel Brands Comparison Table105V 1140C 2 701 701 801 801 901 9011051120214028575 Z35CWDV5Y 9Y8 Special purpose steels High carbon-chrome bearing steel JIS G 4805JIS G 4804Sulfur andsulfur combined free cuttingsteel JIS G 4404Alloy tool steel High-speed tool steelJIS G 4403NameStandard Number Name Standard NumberStandard Number60C2 60C2X15 80 X A50X A 50X S250Pb 55CrV455C3100C6(45MF6.3)(45MF6.1)(35MF 6)(13MF 4) S300Pb S250(RH 388)527A60535A99 226M44 230M07220M07 735A50527A60250A61250A58250A53Grade 1ASTMA4855210051100114411411137 111712L14 121512L13121312221108111041619254 6150926010781075SUJ5SUJ 4SUJ 3SUM23SUJ2SUJ 1SUM43SUM42SUM41SUM32SUM31LSUM31SUM25SUM24L SUM23SUM22L SUM22SUM21SUM12SUM11SUP13SUP12SUP11A SUP10SUP 9A SUP 9SUP 7SUP6SUP 309 08 04 02 0109 04 02 0210 10 04 04 0306 05 05 04 0206 05 04 0406 05 04 0306 05 04 0212 05 05 0418 05 04 0118 10 04 0218 04 01Z90WDKCVZ160CDV12Z200C12 105WC13 Y Y 105WC13 Z110DKCWVZ100DCWV Z130WKCDVZ130DCV Z120WDCVZ85WDCVZ160WKCVZ80WKCVZ80WKCVZ80WCV Y Y Y Y Y SKD12SKD 4SKD 5SKD 6SKD61SKD62SKD 7SKD 8SKT 3SKT 4H19H10H12H13H11H21 A2 BH19BH10BH12BH13BH11BH21 BA 2Z100CDV5Z32WCV5Z30WCV9Z38CDV5Z40CDV532DCV2855CNDV455NCDV75XHM 3X3M3 4X5M 1C 4X5M C Y13Y12Y11Y10Y 8Y 7P18 P6M5K5 XB4 13X 9XB XB X12Y Y Y Y BW1C BW1B BW1A BW1A BT 1BT 4BT 5BT15BM 2 BM 4 BM42BW 2 BD 3BD2W1 13W1 111/2W1 10W1 9W1 8W1 7 T 1T 4T 5T15M 2M3 1M3 2M 4 M36 M 7M42F 2 L 6 W2 91/2W2 81/2D 3D 2SKD11SKD 1SKS95SKS94SKS93SKS31SKS3SKS44SKS43SKS41SKS4SKS8SKS 7SKS51SKS 5SKS21SKS2SKS11SKH59SKH58SKH57SKH56SKH55SKH54SKH53SKH52SKH51SKH10SKH4SKH3SKH2SK7SK6SK5SK4SK3SK2SK1Spring steelJIS G 4801Japan Industrial Standards CodeAISISAE BSSteel Type Related to Foreign StandardsDIN NF OCT(Continued )JIS G 4404ASTM OCTNF BS AISICodeSteel Type Related to Foreign StandardsJapan Industrial StandardsNameDINVDEhVDEh DIN Tool Steels and Related MaterialsJapan Industrial Standards Steel Type Related to Foreign Standards Code AISIBS NF OCTASTM JIS G 4401Carbon tool steelS S O O4303 4309,S O I 683/683/S O I 4303 4309, P ClassificationAlloy tool steelHigh speed tool steelP/M high speed steelPre hardened steelFlame-hardened steel Cold, highly hardened steelSteel Types Related to the Foreign Standards JIS AISI DIN Steel Maker and Brand NameHitachi Metals, Ltd.Daido Steel Co.,Ltd.Uddeholm Kobe Steel Co.,Ltd.Aichi Steel Works,Ltd.NACHI SKS93SKS3SKS31SKD1SKD11SKD12A2D2D3X210Cr12SKH51SKH55SKH57SKH57 Modification )SKD11 Modification S6 5 2S6 2 5S10 4 3 10S9 2 2 8 1.20801.23791.33431.23631.32431.32071.324755 6255 62SKD11 8Cr group58 63SKD11 8Cr group modification55 6255 6557 6555 6857 6857 6661 6558 6664 6866 6969 721330 33P21 groupPrecipitation hard-ening steel group P20 group M2M35M42T15PMS50C group SCM group36 42SKD61 Modification SKS group48 5155 6255 62YCS3SGTCRD SLDSLD8SCD YK30GOA DC1DC11DC53DC12GO31MH85MH24MH8MH64MH57MH55MH51DEX20PDS1PXZDEX70/80DEX61DEX40PX5NAK55NAK80HPM1HPM50GO40F HPM2T DH2F FDAC CX1HPM2HPM7HAP40HAP50HAP72HAP1058 62DEX-M1HAP5R FAX18YXR3YXR7YXM60YXM1YXM4XVC5YXR1RIGOR ARNE SVERKER21SVERKER3SKS31SKS31SKD12SKD11AUD15SKD1CDS1CDS11SKS3SK301KS31KD12KD21KD11S KD11KD1KS3SKS3K3M H51QH51SKH9HM35HM35MV10HS93R KDMV QHZ MCR1MDS3HS97RHM9TLHS98M ASP23ASP30ASP60KHA32/77SPM23FAX31KHA30SPM30FAX38KHA50SPM60FAX40/G2KHA60SPM75FAXG1KTSM2A KTSM3M KTSM21/22ASSAB618IMPAXUHB11KTSM40EAUD61KTSM40EF KPM1KPMAX KPM30KAP1KAP2KDASS PCM40QD6F GO5HMD5FERMOSX105V FH5GO4ACD37AKS3KSM QF3Hardness in Use HRC SKH5957 62Matrix groupNippon Koukan Steel Co.,Ltd.Sanyo Special Steel Co., Ltd.SK3MQK3M QKS3QC1QC11QCM8CDS12MCR12ARK1DCXMDS910203040506070MaterialsMachined MaterialsNonferrousMetalUntreated Thermal RefinedQuenched/TemperedEquipmentNC milling cutter General purpose mill-ing cutter Machining center Drilling machine Jig borerDrill pressBoring machineNC latheGeneral purpose lathe Turning center Jig grinder Surface grinder Forming grinderCylindrical grinderProfile grinder E D MW E D MTaps Magnets grindstoneElectrode master WireDrills Cutting tools Reamers End mills Drills Cutting toolsTaps Reamers DrillsCutting toolsReamers TapsMagnets grindstone Drills ReamersEnd milsCuttingtoolsElectrode master WireCarbon tool steel Cemented carbide Special tool steel High-speed steel High-speed steel Special tool steel Cemented carbide Carbon tool steel Carbon tool steel Special tool steel High-speed steel Cemented carbide Boron DiamondElectrodeposited boron Black silicon carbide Green silicon carbide Pink fused alminaBrown fused alumina White fused alumina Electrodeposited diamondElectrolytic copper BrassCopper tungsten Silver tungstenBrass TungstenWnCU Zn Wn CU D WA A PAGC CCBN DCBN Wn CoSKH SKS SKSK Wn Co SKS SKH SKH SKS Wn Co SK S45C (AI alloi )(SKD12group )SS400(SS41) SKD11S50C DC53SKD61(AI )CU BsBM2HRC(Be Cu )SCM435HPM2THPM7 NAK55PX5 HPM1NAK80HPM38 HPM50DH2F S45C SKS3 SUJ2(SKD12group )SKH51DC53 (Carbide )SKD11HPM38()MAS1C hardened Age-(Nonferrous metal )(Nonferrous metal )(Nonferrous metal )(Carbide )(Carbide )are registered trademarks of UDDEHOLM TOOL CO.and S-STAR FDAC SKD61S-STARHardness of Material and Corresponding ToolsSteel Brands Comparison Table Hardness of Material and Corresponding ToolsProcessing MethodRequired ToolsToolsParts MaterialsFor Press DieFor PlasticMold Tools MaterialsCutting GrindingElectroerosionBoring on Flanks and BottomBoring Machining CylindersElectroforming /outside Electroforming /insideStainless steel strips in coil Stainless steels Equal leg angle steelsStainless steel wires Stainless steel wires for spring for springfor cold forgingStainless steel wires Stainless steel wires Stainless steel plates Stainless steel plates Hot rolledStainless steel plates Cold rolledCold rolledStainless steel plates Hot rolledHot rolled Stainless steel bars 181018164171221713217122DINX6CrNb17DINX6CrTi17DINX12CrMoS17DINX6Cr17DINX6CrAI13DINX6CrNiNb DINX6CrNiTi1810DINX2CrNiMo DINX2CrNiMoNDINX2CrNiMo DINX5CrNiMo DINX5CrNi1812DINX2CrNiN1810DINX2CrNi1911DINX5CrNi1810DINX10CrNiS189DINX12CrNi1771.43711.43101.69001.69001.43051.43011.43061.43111.43031.43031.48331.48451.44491.44381.45501.45671.44601.40021.40161.41041.41131.41311.40011.4401/1.44361.4404/1.44351.4406/1.44291.4878/1.45411.4501/1.4511 X210Cr12 105WCr6105WCr6 S2 10 1 8 S10 4 3 10 S6 5 2 5 S6 5 3 S6 5 2S18 1 2 5 C 70W2C 80W1C 80W1 C105W11.16731.16631.16451.16251.16251.17401.33551.32551.32651.33441.33431.33441.32431.3207 1.32471.25621.24191.25151.24421.20081.28331.24191.24191.20801.2379 DINX6CrTi12DINCrI1205DINCrNi2520DINX7CrNiAI177DINX20CrNi72DINX30Cr13DINX20Cr13DINX6Cr13DINX10Cr131.40001.40061.40001.40211.40051.40211.40281.40571.41121.45421.45681.41251.48711.48711.48281.48411.48641.49441.49711.47421.47201.47621.47181.47311.47471.49351.4873 X38CrMoV51X40CrMoV51 X32CrMoV33 55NiCrMoV61.23631.25671.25811.23431.23441.26061.27139SMn28100Cr655Cr350CrV4 9S209SMnPb281.50281.50281.07151.07361.07231.20571.2067/1.35051.21271.35051.12621.71761.81591.7138 1.07021.07021.07111.07181.07181.7176。
现代切削加工技术常用的英文表达《现代切削加工技术与刀具》常用的英文表达cutting speed 切削速度feed rate 进给量back engagment of cutting edge 背吃刀量cutting motion 切削运动cutting regime 切削用量cutting parameters 切削参数work piece surface to be cut 待加工表面machined surface 已加工表面cutting surface 过渡表面cutting tool angles 刀具角度rake face 前刀面major flank 主后刀面minor flank 副后刀面major cutting edge 主切削刃minor cutting edge 副切削刃tool nose (tool tip)刀尖tool arbor 刀柄tool reference plane 基面tool cutting edge plane 切削平面main section reference 正交平面normal section reference 法平面transverse section 背平面longitudinal section假定工作平面assumed working plane. 假定工作平面tool cutting edge angle 主偏角tool cutting edge inclination angle 刃倾角rake angle 前角clearance(relief)angle 后角tool minor cutting edge angle 副偏角minor clearance angle 副后角wedge angle 楔角tool included angle 刀尖角tool approach angle 余偏角cutting layer 切削层cutting mode 切削方式undeformed chip thickness 切削层公称厚度width of uncut chip 切削层公称宽度cross-sectional area of the cutting layer切削层公称宽面积free cutting 自由切削constrained cutting 非自由切削orthogonal cutting 直角切削oblique cutting 斜角切削cutting tool materials 刀具材料performances for cutting tool materials 刀具材料性能hardness and wear-resistance 硬度和耐磨性strength and toughness 强度和韧性forming properties and economy conditions 工艺性能和经济性heat resistance and thermal conductivity 耐热性和导热性tool steel 工具钢high speed steel(HSS)高速钢plain high-speed steels 普通高速钢Super high-speed steel 高速性能高速钢carbide alloy 硬质合金super-hard material 超硬材料ceramics 陶瓷diamond 金刚石cubic boron nitride(CBN)立方氮化硼coated tool materials 涂层刀具材料laws of variation for cutting deformation 切削变形规律metal cutting process 金属切削过程Cutting deformation 切削变形Chip-formation 切屑变形elastic deformation 弹性变形plastic deformation 塑形变形crystal lattice slide 晶格滑移deformed regions 变形区fiberize 纤维化deformation coefficient 变形系数Shearing slide 剪切滑移slippage 滑移量shear angle 剪切角cutting forces 切削力axial thrust force 轴向力radial thrust force 径向力main cutting force主切削力empirical formula 经验公式the principle of dynamometers 测力仪原理strain transducer- dynamometers 应力传感器piezo-electric transducer 压电式传感器unit cutting force 单位切削力cutting power 切削功率unit cutting power 单位切削功率correctional coefficients 修正系数cutting heat 切削热cutting temperature 切削温度natural thermoelectric couple 自然热电偶synthetic thermoelectric couple半人工热电偶laws of cutting temperature distribution 切削温度分布规律tool wear 刀具磨损tool life 刀具寿命normal wear 正常磨损non-normal wear 非正常磨损wear on the rake face 前刀面磨损flank wear 后刀面磨损cutting fluid 切削液crater 月牙洼simultaneous wear 便捷磨损abrasive wear 磨粒磨损adhensive 粘接磨损diffusion wear 扩散磨损oxidizing wear 氧化磨损phase change wear 相变磨损tool wear process 刀具磨损过程initial wear stage 初期磨损阶段normal wear stage 正常磨损阶段severe wear stage 急剧磨损阶段tool wear criteria 刀具磨钝标准tool life test 刀具耐用度实验tool wear curve 刀具磨损曲线tool life curve 刀具耐用度曲线tool life Tp of the maximum productive rate 最大生产率耐用度tool life Tc of the minimum productive cost最低成本耐用度Continuous(ribbon)chips 带状切屑Cracked (serrated)chips 挤裂切屑unit (splintering)chips 单元切屑discontinuous chips 崩碎切屑make the chip bending 卷屑make the chip discontinuous 断屑machinability 切削加工性Main indexes for judging machinability of workpiece materials 衡量切削加工性的指标tool life index v T刀具耐用度指标relative machinability Kv 相对加工性mechanical properties 机械力学性能hardness of material 工件材料硬度yield strengthσb(Gpa) 屈服强度ductility 延展性impact toughnessαk(kJ/m2) 冲击韧性heat conductivity 导热系数white iron 白口铁grey cast iron 灰铸铁nodular cast iron 球墨铸铁improvement of workpiece materials machinability 改善工件材料切削加工性45 steel 45钢medium carbon steel 中碳钢stainless steel 不锈钢hadifield steel 高锰钢high-temperature alloys 高温合金titanium alloy 钛合金surface roughness 表面粗糙度machined surface quality 已加工表面质量surface roughness 表面粗糙度surface waviness 表面波纹度physical-mechanical properties物理力学性能work-hardening 加工硬化metallurgical structure 金相组织residual stress 残余应力scale 鳞刺built-up edge 积屑瘤turning Tool 车刀welding turning tools 焊接式车刀clamping turning tool 机夹式车刀indexable turning tool 可转位车刀formed Turning Tool 成形车刀cylindrical Turning Tool 外圆车刀facing turning tool 端面车刀boring bars 镗刀杆(车孔刀)cutting-off tool 切断刀design of profile 廓形设计cutting tools for making holes 孔加工刀具twist drill 麻花钻orthodox section 端剖面columnar section 柱剖面axial section 中剖面axial rake angle (helix angle)轴向前角(螺旋角)point angle 顶角reanmer 扩孔钻、铰刀borer 镗刀deep holeprocessing system 深孔加工系统gun drill 枪钻boring and trepanning association deep hole drilling system (BTA) BTA系统ejector drilling head system 喷吸钻系统double feed system DF系统inner-chip removal drill 内排屑钻outer-chip removal drill 外排屑钻milling cutter 铣刀slab milling cutters 圆柱铣刀face milling cutters 端铣刀side and face milling cutters 三面刃铣刀Slitting saws 锯片铣刀Angle milling cutter 角度铣刀Form relieved cutters 成形铣刀End-milling cutters 立铣刀Keyway milling cutters 键槽铣刀broacher 拉刀crowded highlight 挤亮点scratch 划伤annular corrugated 环状波纹scale 鱼鳞状groove mark 沟痕taping 攻丝screw tap 丝锥threading die 板牙thread rolling machine 搓丝机thread rolling wheel 搓丝滚轮high speed cutting 高速切削precision cutting 精密切削deep hole cutting 深孔钻削vibration cutting 振动切削green cutting 绿色切削grinding 磨削grinding wheel 砂轮equivalent diameter 等效直径length of cantact 接触弧长grinding burn 磨削烧伤high speed grinding 高速磨削creep feed grinding 缓进给磨削belt grinding 砂带磨削abrade 研磨honing 珩磨oilstone 油石。