幂函数教学设计07
- 格式:doc
- 大小:226.00 KB
- 文档页数:4
《幂函数》教学设计(1)通过观察图像,了解幂函数图像的变化情况和性质,加深学生对研究函数性质的基本方法和流程的经验,提升学生的数学抽象素养.(2)了解几个常见的幂函数的性质,通过这几个幂函数的性质,总结幂函数的性质.提升学生的数学运算素养.(3)应用幂函数的图像和性质解决有关简单问题,培养学生逻辑推理素养1、教学重点:从具体的幂函数中认识幂函数的概念和性质. 教学难点:(1)从幂函数的图像中概括其性质(2)根据幂函数的单调性比较两个同指数的指数式的大小PPT 课件.一、整体概览问题1:阅读课本第33-36页,回答下列问题: (1)本节将要研究哪类问题?(2)本节要研究的问题在数学中的地位是怎样的?师生活动:学生带着问题阅读课本,老师指导学生概括总结章引言的内容.预设的答案:本节课要学的内容是幂函数的图像及其性质,其核心幂函数的性质应用.本节是学生在之前已经学习了幂的意义以及幂的运算,学习了反比例函数、一次函数和二次函数.事实上,21,,x y x y x y ===-都是幂函数,学生对它们的基本性质和图像都已经很熟悉.学生在学习了函数的概念、基本性质,以及指数函数、对数函数的概念、性质和图像之后,紧接着学习幂函数,从知识体系上讲是自然衔接,从学生的认知结构上讲则是抓住了学习的“最近发展区”顺势而为,学生可以很容易地应用函数的研究方法来分析幂函数,从而进一步体验研究函数性质和图像的基本过程和方法.◆教学目标◆教学重难点 ◆◆课前准备◆教学过程设计意图:通过本节课内容的预习,让学生明晰下一阶段的学习目标,初步搭建学习内容的框架.二、问题导入问题2:我们已经知道,在关系式b a N =中,当底数a 为大于0且不等于1的常数时;如果把b 作为自变量、N 作为因变量,则N 就是b 的指数函数;如果把N 作为自变量、b 作为因变量,则b 就是N 的对数函数(即N b a log =).那么,当b 为常数时,是否可以将底数a 作为自变量,N 作为因变量来构造函数关系呢?师生活动:学生尝试自己得出问题的结果.并思考运算法则的得出过程.预设的答案:在关系式N =a b 中,以a 为自变量、N 为因变量构造的函数为b x y =,其中的N 即为因变量y ,a 即为自变量x .设计意图:从学生熟悉的公式导入,由指数的运算得出对数的运算,唤醒学生由已有的知识解决未知的问题,激发学生的兴趣.引语:构造出来的函数就是本节我们要讨论的幂函数(板书:幂函数)【新知探究】问题3: 我们以前学过函数y =x ,y =x 2,1y x=,这三个函数的解析式有什么共同的特点吗?你能根据指数运算的定义,把这三个函数的解析式改写成统一的形式吗?师生活动:学生自行书写,教师给出答案.预设的答案:这三个函数的解析式改写成统一的形式为αx y =. 设计意图:通过实际例子的归纳总结,自然的引出幂函数的概念.一般地,函数αx y =称为幂函数,其中a 为常数,上面提到的函数y =x ,y =x 2,y =x1都是幂函数.下面我们通过具体函数来研究幂函数的一些性质. 首先来研究函数21x y =问题4:判断−4,−3,−2,−1,4,3,2,1,41,0,41-这些数中,哪些在函数21x y =的定义域内,求出对应的函数值,并填写下表(只需要填在定义域内的数及对应的函数值),由此猜测这个函数的定义域、值域、奇偶性、单调性,尝试并说明理由.由于21x y ==x ,由此不难知道,函数21x y =的性质有: (1)定义域是 (2)值域是 (3)奇偶性是 (4)单调性是师生活动:学生充分思考后,写出并由老师给出答案.此图片是动画缩略图,本资源为《幂函数的图象与性质》知识探究,通过交互式动画的方式,运用了本资源,可以吸引学生的学习兴趣,增加教学效果,提高教学效率.本资源适用于认识幂函数的教学,供教师备课和授课使用.若需使用,请插入动画【数学探究】幂函数的图象与性质(教师可以多次使用这个动画,用于讲解不同类型的幂函数,以及图像性质的对比讲解)本资源展现几个特殊幂函数的性质,辅助教师教学,加深学生对于知识的理解和掌握.本资源适用于几个特殊幂函数的性质的教学,供教师备课和授课时参考.若需使用,请插入图片【知识点解析】几个特殊幂函数的性质预设的答案:函数21xy=的性质有:(1)定义域是:),0[+∞(2)值域是:),0[+∞(3)奇偶性是:非奇非偶函数(4)单调性是:增函数设计意图:通过学生根据具体数值得出归纳出函数的性质,培养学生的自主学习能力. 根据以上信息可知,函数21xy=图像上的点,除了原点,其余点都在第一象限,通过描点(如左下图所示),可作出其图像,如右下图所示问题5:给出研究函数y=x3的性质与图像的方法,并用你的方法得出这个函数的性质:(1)定义域是(2)值域是(3)奇偶性是(4)单调性是(5)如图所示中已经作出了函数y=x-1,y=x,y=x2的图像,在其中作出函数y=x3图像.师生活动:学生充分思考后,写出并由老师给出答案.预设的答案:(1)定义域是R(2)值域是R(3)奇偶性是奇函数(4)单调性是增函数(5)函数y=x3图像教师可借助多媒体呈现.设计意图:通过学生根据具体数值得出归纳出函数的性质,培养学生的自主学习能力. 总结:一般地,幂函数y =x α,随着α的取值不同,函数的定义域、值域、奇偶性、单调性也不尽相同,但也有一些共同的特征:(1)所有的幂函数在区间(0,+∞)上都有定义,因此在第一象限内都有图像,并且图像都通过点(1,1).(2)如果α>0,则幂函数的图像通过原点,并且在区间[0,+∞)上是增函数.(3)如果α<0,则幂函数在区间(0,+∞)上是减函数,且在第一象限内:当x 从右边趋向于原点时,图像在y 轴右方且无限地通近y 轴;当x 无限增大时,图像在x 轴上方且无限地逼近x 轴.【巩固练习】例1 比较下列各题中两个值的大小: (1)2.31.1和2.51.1;(2)312)2(-+a 和312-.师生活动:学生分析解题思路,给出答案.预设的答案: 解:(1)考察幂函数y =x 1.1,因为其在区间[0,+∞)上是增函数,而且2.3<2.5,所以2.31.1<2.51.1.考察幂函数13y x -=,因为其在区间(0,+∞)上是减函数,而且a 2+2≥2,所以()113322a 2--+≤设计意图:考查利用幂函数的单调性比较数的大小.例 2.讨论函数32x y =的定义域、奇偶性,通过描点作出它的图像,并根据图像说明函数的单调性.师生活动:学生分析解题思路,利用幂函数的性质,给出答案. 预设的答案:解:因为3232x x y ==,所以不难看出函数的定义域为R ,记,)(32x x f =则)()()()(32323232x f x x x x x f ===-=-=-,所以函数32x y =为偶函数,因此函数的图像关于y 轴对称 ,通过列表描点连线.可以作出32x y =的图像,由图像可得,函数32x y =在区间]0,(-∞上是单调递减,在区间),0[+∞上单调递增 设计意图:通过利用函数的解析式得出函数的奇偶性,作出函数的图像,得出函数的单调性,巩固学生对幂函数的性质应用.练习:教科书第36页习题4-4A 1,2,3,4,5题.师生活动:学生做练习,教师根据学生练习情况给予反馈.【教学反思】通过实例,了解幂函数的概念,结合函数的图像,了解他们的变化情况,掌握研究一般幂函数的方法和思想.使学生通过观察函数的图像来总结性质,并通过已学的知识对总结出的性质进行解释,从而达到对任一幂函数性质的分析【课堂小结】1.板书设计: 4.4幂函数1.幂函数 例1问题:(1).幂函数是如何定义的? (2).幂函数的解析式具有什么特点?(3).常见幂函数的具有哪些性质?师生活动:学生尝试总结,老师适当补充.预设的答案:一般地,函数y x α=称为幂函数,其中α为常数,上面提到的函数y =x ,y =x 2,y =x1都是幂函数.(2)幂函数的解析式都是y x α=.(3)一般地,幂函数y x α=,随着α的取值不同,函数的定义域、值域、奇偶性、单调性也不尽相同,但也有一些共同的特征:①所有的幂函数在区间(0,+∞)上都有定义,因此在第一象限内都有图像,并且图像都通过点(1,1).②如果α>0,则幂函数的图像通过原点,并且在区间[0,+∞)上是增函数.③如果α<0,则幂函数在区间(0,+∞)上是减函数,且在第一象限内:当x 从右边趋向于原点时,图像在y 轴右方且无限地通近y 轴;当x 无限增大时,图像在x 轴上方且无限地逼近x 轴.设计意图:通过梳理本节课的内容,能让学生更加明确幂函数的图像及其性质.布置作业:教科书第8页习题C 1,2题.【目标检测】1.函数y =(x 2-2x )21-的定义域是( )A .{x |x ≠0或x ≠2}B .(-∞,0)∪(2,+∞)C .(-∞,0]∪[2,+∞)D .(0,2) .设计意图:考查学生对换元法在解题中的应用. 2.下列函数中,是幂函数的是( ) A .y =2x B .y =2x 3 C .y =1x D .y =2x设计意图:考查学生对幂函数定义的理解. 3.下列结论正确的是( )A .幂函数的图像一定过原点B .当α<0时,幂函数y =x α是减函数C .当α>0时,幂函数y =x α是增函数D .函数y =x 2既是二次函数,也是幂函数设计意图:考查学生对幂函数性质的理解. 4.下列函数中,在(-∞,0)上是增函数的是( ) A .y =x 3 B .y =x 2 C .y =1x D .y =23x设计意图:考查学生对幂函数单调性的理解.参考答案:1.解析:函数y =(x 2-2x )21-化为y =1x 2-2x,要使函数有意义需x 2-2x >0,即x >2或x <0,所以函数的定义域为{x |x >2或x <0}. 答案:B 2.C 3.D 4.A。
《幂函数》教案《幂函数》教案教学目标知识与技能通过具体实例了解幂函数的图象和性质,并能进行简单的应用.过程与方法能够类比研究一般函数、指数函数、对数函数的过程与方法,来研究幂函数的图象和性质.情感、态度、价值观体会幂函数的变化规律及蕴含其中的对称性.教学重点重点从五个具体幂函数中认识幂函数的一些性质.难点画五个具体幂函数的图象并由图象概括其性质,体会图象的变化规律.教学程序与环节设计:教学过程环节教学内容设计师生双边互动创设情境组织探究尝试练习巩固反思作业回馈课外活动问题引入.幂函数的图象和性质.幂函数性质的初步应用.复述幂函数的图象规律及性质.幂函数性质的初步应用.利用图形计算器或计算机探索一般幂函数的图象规律.创设情境阅读教材P90的具体实例(1)~(5),思考下列问题:1.它们的对应法则分别是什么?2.以上问题中的函数有什么共同特征?(答案)1.(1)乘以1;(2)求平方;(3)求立方;(4)开方;(5)取倒数(或求-1次方).2.上述问题中涉及到的函数,都是形如αxy=的函数,其中x是自变量,是α常数.生:独立思考完成引例.师:引导学生分析归纳概括得出结论.师生:共同辨析这种新函数与指数函数的异同.组织探究材料一:幂函数定义及其图象.一般地,形如αxy=)(Ra∈的函数称为幂函数,其中α为常数.下面我们举例学习这类函数的一些性质.作出下列函数的图象:(1)xy=;(2)21xy=;(3)2xy=;(4)1-=xy;(5)3xy=.[解] ○1列表(略)○2图象师:说明:幂函数的定义来自于实践,它同指数函数、对数函数一样,也是基本初等函数,同样也是一种“形式定义”的函数,引导学生注意辨析.生:利用所学知识和方法尝试作出五个具体幂函数的图象,观察所图象,体会幂函数的变化规律.师:引导学生应用画函数的性质画图象,如:定义域、奇偶性.师生共同分析,强调画图象易犯的错误.环节教学内容设计师生双边互动组织探究材料二:幂函数性质归纳.(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1);(2)0>α时,幂函数的图象通过原点,并且在区间),0[+∞上是增函数.特别地,当1>α时,幂函数的图象下凸;当10<<α时,幂函数的图象上凸;(3)0<α时,幂函数的图象在区间),0(+∞上是减函数.在第一象限内,当x从右边趋向原点时,图象在y轴右方无限地逼近y轴正半轴,当x趋于∞+时,图象在x轴上方无限地逼近x轴正半轴.师:引导学生观察图象,归纳概括幂函数的的性质及图象变化规律.生:观察图象,分组讨论,探究幂函数的性质和图象的变化规律,并展示各自的结论进行交流评析,并填表.材料三:观察与思考观察图象,总结填写下表:xy=2xy=3xy=21xy=1-=xy定义域值域奇偶性单调性定点材料五:例题[例1](教材P78例题)[例2]比较下列两个代数值的大小:(1)5.1)1(+a,5.1a(2)322)2(-+a,322-[例3] 讨论函数3xy=的定义域、奇偶性,作师:引导学生回顾讨论函数性质的方法,规范解题格式与步骤.并指出函数单调性是判别大小的重要工具,幂函数的图象可以在单调性、奇偶性基础上较快描出.出它的图象,并根据图象说明函数的单调性.生:独立思考,给出解答,共同讨论、评析.环节呈现教学材料师生互动设计尝试练习1.利用幂函数的性质,比较下列各题中两个幂的值的大小:(1)433.2,434.2;(2)5631.0,5635.0;(3)23(-,23)3(-;(4)211.1-,219.0-.2.作出函数23xy=的图象,根据图象讨论这个函数有哪些性质,并给出证明.3.作出函数2-=xy和函数2)3(--=xy的图象,求这两个函数的定义域和单调区间.4.用图象法解方程:(1)1-=xx;(2)323-=xx.探究与发现1.如图所示,曲线是幂函数αxy=在第一象限内的图象,已知α分别取2,21,1,1-四个值,则相应图象依次为:.2.在同一坐标系内,作出下列函数的图象,你能发现什么规律?(1)3-=xy和31-=xy;规律1:在第一象限,作直线)1(>=aax,它同各幂函数图象相交,按交点从下到上的顺序,幂指数按从小到大的顺序排列.规律2:幂指数互为倒数的幂函数在第一象限内的图象关于直线xy=对称.(2)45x y =和54x y =.作业回馈1.在函数1,,2,1222=+===y x x y x y x y 中,幂函数的个数为:A .0B .1C .2D .3环节呈现教学材料师生互动设计2.已知幂函数)(x f y =的图象过点)2,2(,试求出这个函数的解析式.3.在固定压力差(压力差为常数)下,当气体通过圆形管道时,其流量速率R 与管道半径r 的四次方成正比.(1)写出函数解析式;(2)若气体在半径为3cm 的管道中,流量速率为400cm 3/s ,求该气体通过半径为r 的管道时,其流量速率R 的表达式;(3)已知(2)中的气体通过的管道半径为5cm ,计算该气体的流量速率.4.1992年底世界人口达到54.8亿,若人口的平均增长率为x%,2008年底世界人口数为y (亿),写出:(1)1993年底、1994年底、2000年底的世界人口数;(2)2008年底的世界人口数y 与x 的函数解析式.课外活动利用图形计算器探索一般幂函数αx y =的图象随α的变化规律.收获与体会1.谈谈五个基本幂函数的定义域与对应幂函数的奇偶性、单调性之间的关系?2.幂函数与指数函数的不同点主要表现在哪些方面?。
幂函数教学设计一、教学目标通过本节课的学习,使学生掌握幂函数的性质和图像,能够正确画出幂函数的图像并解决与之相关的问题。
二、教学重点和难点教学重点1.幂函数的定义和性质2.幂函数图像的绘制和分析教学难点1.幂函数图像与参数之间的关系理解2.幂函数特殊情况的讨论三、教学过程1. 导入与引入通过提问的方式,让学生回顾一下之前学过的函数,引导他们思考函数与方程的联系。
2. 引入幂函数的概念通过给出一个幂函数的定义,让学生了解并理解幂函数的概念。
幂函数定义为y=x n,其中 n 是常数,x 是任意实数。
3. 幂函数的性质3.1 定义域和值域引导学生通过思考自变量和函数值的关系,帮助他们找到这个幂函数的定义域和值域。
由于幂函数中的指数是常数,所以定义域为所有实数,而值域的情况与指数的正负关系有关。
3.2 奇偶性分析让学生思考幂函数的奇偶性。
当指数 n 为偶数时,幂函数是偶函数;当指数 n 为奇数时,幂函数是奇函数。
3.3 单调性分析引导学生通过观察不同指数的幂函数图像,发现指数 n 的正负关系对其单调性的影响。
当指数 n > 0 时,幂函数是递增函数;当指数 n < 0 时,幂函数是递减函数。
3.4 渐近线讨论让学生思考幂函数图像的渐近线问题。
当指数 n > 0 时,幂函数的图像与 x 轴有一个水平渐近线;当指数 n < 0 时,幂函数的图像与 y 轴有一个垂直渐近线。
4. 幂函数图像的绘制和分析4.1 确定坐标轴和尺度让学生根据定义域和值域,决定合适的坐标轴范围和尺度。
4.2 确定关键点让学生通过代入一些关键点的 x 值,计算出相应的 y 值,确定幂函数图像上的关键点。
4.3 画出图像让学生根据已经确定的关键点,使用平滑线连接的方法,画出幂函数的图像。
4.4 分析图像通过观察图像,引导学生分析幂函数图像的特点,与指数 n 的值进行对比,进一步加深对幂函数性质的理解。
5. 幂函数的应用通过解决一些幂函数相关的问题,让学生将幂函数的概念和性质应用到实际问题中,提高他们对幂函数的应用能力。
幂函数教学设计范文标题:探索幂函数的奇妙世界一、教学目标:1.了解幂函数的定义、性质和图像。
2.能够应用幂函数求解实际问题。
3.培养学生的数学建模能力和实际问题解决能力。
二、教学重难点:1.理解指数与幂函数的关系,熟练掌握幂函数的基本性质。
2.能够根据实际问题将其转化为幂函数,并求解问题。
三、教学过程:步骤一:导入(10分钟)1.通过一个问题或实例引入幂函数的概念,如:小明每天修行功夫,假设他的力量增长速度是每天的平方,问过了多少天,他的力量将达到100倍于初始力量。
2.让学生思考并讨论问题,引导他们对幂函数的理解。
步骤二:探索幂函数的定义(30分钟)1.讲解幂函数的定义,幂函数是指以一个变量为底数,一个常数为指数的函数。
2.通过给定不同的指数和底数,观察函数图像的变化,如y=x^2、y=x^3、y=2^x、y=1/2^x等。
3.让学生尝试改变指数和底数的值,观察图像变化,并总结幂函数的基本性质。
步骤三:指数与幂函数(30分钟)1.引导学生思考指数与幂函数的关系,如y=2^x和y=x^2中,2和x的关系。
2.讲解指数函数与幂函数的关系,指数函数的增长速度远快于幂函数。
3.通过实例让学生理解指数与幂函数之间的关系,如y=2^x与y=x,问它们在x=1时的大小关系。
步骤四:幂函数的应用(30分钟)1.以生活中的实际问题为背景,如物体的自由落体、细胞的增殖等,让学生将其建模为幂函数。
2.引导学生列出函数方程,并通过求解方程解决问题。
3.让学生自己选取或设计一个实际问题,将其转化为幂函数,并求解问题。
步骤五:练习和拓展(20分钟)1.进行一些练习题,巩固学生对幂函数的理解和应用,如求函数的定义域、值域,求函数的极限等。
2.拓展练习,如带有多个幂函数的复合函数,让学生应用复合函数的求导法则求函数的导数。
步骤六:小结和评价(10分钟)1.对本节课的内容进行小结,复习幂函数的定义、性质和应用。
2.布置作业,要求学生练习更多的幂函数题目,巩固所学知识。
2023高中数学幂函数教学教案(7篇)高中数学必修1《幂函数》教案篇一1、教学目标学问目标:(1)把握幂函数的形式特征,把握详细幂函数的图象和性质。
(2)能应用幂函数的图象和性质解决有关简洁问题。
力量目标:培育学生发觉问题,分析问题,解决问题的力量。
情感目标:(1)加深学生对讨论函数性质的根本方法和流程的阅历。
(2)渗透辨证唯物主义观点和方法论,培育学生运用详细问题详细分析的方法分析问题、解决问题的力量。
2、教学重点:从详细函数归纳熟悉幂函数的一些性质并简洁应用。
教学难点:引导学生概括出幂函数的性质。
3、教学方法和教学手段:探究发觉法和多媒体教学4、教学过程:问题情境问题1写出以下y关于x的函数解析式:①正方形边长x、面积y②正方体棱长x、体积y③正方形面积x、边长y④某人骑车x秒内匀速前进了1m,骑车速度为y⑤一物体位移y与位移时间x,速度1m/s问题2是否为指数函数?上述函数解析式有什么共同特征?(教师将解析式写成指数幂形式,以启发学生归纳,)板书课题并归纳幂函数的定义。
(二)新课讲解幂函数的定义:一般地,我们把形如的函数称为幂函数(powerfunction),其中是自变量,是常数。
为了加深对定义的理解,请同学们判别以下函数中有几个幂函数?①y=②y=2x2我们了解了幂函数的概念以后我们一起来讨论幂函数的性质。
问题3幂函数具有哪些性质?用什么方法讨论这些性质的呢?我们请同学们回忆一下在前面学习指数函数、对数函数我们一起讨论了哪些性质呢?(学生争论,教师引导)(引发学生作图讨论函数性质的兴趣。
函数单调性的推断,既可以使用定义,也可以通过图象解决,直观,易理解。
)在初中我们已经学习了幂函数的图象和性质,请同学们在同一坐标系中画出它们的图象。
依据你的学习经受,你能在同一坐标系内画出函数的图象吗?(学生作图,教师巡察。
将学生作图用实物投影仪演示,指出优点和错误之处。
教师利用几何画板演示,通过超级链接几何画板演示。
高中数学幂函数的优秀教案教学目标:1. 了解幂函数的定义和性质;2. 掌握幂函数的图像特点和变化规律;3. 能够应用幂函数解决实际问题。
教学重点:1. 幂函数的定义和性质;2. 幂函数图像的特点;3. 幂函数的变化规律。
教学难点:1. 幂函数图像的绘制;2. 幂函数的应用解题。
教学准备:1. 教学PPT;2. 幂函数的相关教学素材;3. 面板书和彩色粉笔;4. 计算器。
教学过程:一、导入新知识(5分钟)教师通过举例引导学生回顾幂函数的定义和性质,激发学生对幂函数的兴趣。
二、讲解幂函数的定义和性质(15分钟)1. 介绍幂函数的定义,并解释指数、底数的含义;2. 讲解幂函数的性质,包括奇偶性、增减性和对称性等;3. 通过实例让学生理解幂函数的基本特点。
三、分组讨论与展示(15分钟)1. 将学生分成小组,让他们结合所学内容,讨论幂函数的图像特点和变化规律;2. 每组选派一名代表进行展示,分享小组讨论的结论。
四、幂函数图像的绘制(15分钟)1. 通过教学PPT,展示幂函数图像的绘制方法;2. 让学生自行绘制不同幂函数的图像,并与同学分享。
五、应用解题(15分钟)1. 以实际问题为例,让学生应用幂函数解题;2. 指导学生合理建立数学模型,解决问题。
六、课堂小结(5分钟)教师总结本节课的重点知识,强调幂函数的重要性和应用场景,激励学生继续深入学习。
七、作业布置让学生完成相关习题,巩固所学知识。
教学反思:1. 教学重点突出,学生参与度高;2. 演示环节设计合理,能够引导学生深入思考;3. 学生绘制图像能力需要进一步培养,需要增加训练。
这份教案是一份比较完整的高中数学幂函数的教学设计,建议教师在教学中根据学生的实陵情况做出适当的调整,以达到更好的教学效果。
幂函数教学设计简案一、教学目标1. 知识目标:通过本次幂函数教学,学生将掌握幂函数的定义、特性以及相关的计算方法;2. 能力目标:培养学生解决实际问题时运用幂函数进行建模和计算的能力;3. 情感目标:激发学生对数学的兴趣,培养学生的数学思维和逻辑推理能力。
二、教学内容1. 幂函数的概念:介绍幂函数的定义、指数、底数等基本概念;2. 幂函数的性质:讲解幂函数的奇偶性、增减性、单调性等基本性质,并通过例题进行演示;3. 幂函数的图像:通过绘制幂函数的图像,让学生直观地了解幂函数的变化趋势;4. 幂函数的计算:引导学生掌握幂函数的加减乘除、乘方和根的计算方法,并通过练习题进行巩固。
三、教学方法1. 情境教学法:引入具体生活中的实际问题,让学生体会到幂函数在解决实际问题中的应用价值;2. 探究式教学法:通过提出问题、观察现象、讨论分析等方式,引导学生主动探索幂函数的特性和计算方法;3. 演示教学法:通过绘制图表、解题步骤演示等方式,直观地展示幂函数的性质和计算过程;4. 合作学习法:组织学生分组合作进行讨论和思考,培养学生合作意识和团队精神。
四、教学过程1. 导入:通过提问或出示幂函数相关的实际问题,激发学生的学习兴趣,引起他们对幂函数的思考和探索;2. 概念讲解:介绍幂函数的定义、指数、底数等基本概念,并通过例题进行解析和演示;3. 性质分析:讲解幂函数的奇偶性、增减性、单调性等性质,并通过例题演示和讨论,让学生加深理解;4. 图像绘制:引导学生绘制幂函数的图像,让他们从图像中观察幂函数的变化规律,并与性质进行对比;5. 计算方法:分步讲解幂函数的加减乘除、乘方和根的计算方法,并通过练习题进行巩固;6. 拓展应用:举一些实际问题,引导学生运用幂函数进行建模和计算,培养他们解决问题的能力;7. 总结归纳:通过学生的回答和讨论,总结幂函数的定义、特性和计算方法,强化学生对知识点的理解。
五、教学评估1. 课堂讨论:通过课堂提问和回答问题的方式,检测学生对幂函数概念和性质的理解程度;2. 练习题评估:布置一定数量的练习题,检验学生对幂函数计算方法的掌握情况;3. 实际问题解决评估:布置一些实际问题,要求学生用幂函数进行建模和计算,并就问题的解决思路和方法进行评价。
幂函数教案幂函数教学设计一、教学内容:本节课主要讲解幂函数的基本概念、性质以及解题方法。
二、教学目标:1. 掌握幂函数的定义及其一般形式。
2. 了解幂函数的图像特点及其变化规律。
3. 能够解决与幂函数相关的实际问题。
三、教学过程:步骤一:导入新课1. 引导学生回顾一元二次函数的知识,并帮助学生发现一元二次函数与平方函数之间的关系。
2. 引导学生思考,如果给定的方程中含有类似于x^n(n为自然数)的项,该如何解决?(请学生回顾类似的方程,并尝试解题)步骤二:讲解幂函数的定义1. 运用幂函数的定义引导学生进行思考:什么样的方程是幂函数?2. 引导学生猜想幂函数的一般形式,即f(x)=x^n,其中n为实数。
3. 张绘制幂函数的图像,并引导学生发现其特点,如:当n>1时,图像呈现递增趋势;当n=1时,图像为直线,并由坐标原点经过;当0<n<1时,图像在原点附近缓慢上升。
步骤三:讲解幂函数的性质1. 解释幂函数的定义域和值域,即当n为偶数时,定义域为R,值域为[0,+∞);当n为奇数时,值域为R。
2. 引导学生发现幂函数与幂函数之间的比较关系,即当0<n<m时,幂函数f(x)=x^n的图像位于幂函数g(x)=x^m的图像之下。
3. 引导学生探究幂函数的奇偶性,即当n为整数时,该幂函数的奇偶性与n的奇偶性一致。
比如,当n为偶数时,函数f(x)=x^n是偶函数;当n为奇数时,函数f(x)=x^n是奇函数。
步骤四:解决幂函数相关的实际问题1. 给学生提供一些实际应用题,如求一块长方形的面积与宽度的关系等,引导学生使用幂函数解决问题。
2. 引导学生分析问题,并运用幂函数的性质进行求解。
3. 鼓励学生自主解决问题,引导学生独立思考并找到解决问题的方法。
四、教学检查及评价:1. 教师可以通过课堂练习、小组讨论等方式进行教学检查,及时发现学生的问题并给予指导。
2. 教师可以根据学生的思考能力和解题情况,评价学生的学习情况,及时提供帮助和改进措施。
幂函数教案教案标题:幂函数教案目标:1. 理解幂函数的定义和特点;2. 掌握幂函数的图像和性质;3. 能够解决与幂函数相关的实际问题。
教学重点:1. 幂函数的定义和特点;2. 幂函数的图像和性质。
教学难点:1. 解决与幂函数相关的实际问题。
教学准备:1. 教师:幂函数的定义和性质的讲解材料、幂函数的图像和性质的示意图、与幂函数相关的实际问题的案例;2. 学生:纸和笔。
教学过程:Step 1:引入幂函数的概念(5分钟)教师通过提问或简短的讲解,引导学生回顾指数函数的概念,并引入幂函数的概念。
解释幂函数的定义:f(x) = ax^b,其中a和b为常数,且a≠0。
Step 2:讲解幂函数的特点(10分钟)教师讲解幂函数的特点,包括:- 当b为正数时,幂函数是递增函数;- 当b为负数时,幂函数是递减函数;- 当b为偶数时,幂函数的图像关于y轴对称;- 当b为奇数时,幂函数的图像关于原点对称。
Step 3:绘制幂函数的图像(10分钟)教师示范如何绘制幂函数的图像,并解释图像的变化规律。
学生跟随教师进行练习,并互相检查答案。
Step 4:解决与幂函数相关的实际问题(15分钟)教师提供一些与幂函数相关的实际问题,如物体的自由落体问题、人口增长问题等。
学生独立或小组合作解决这些问题,并在黑板上展示解题过程和结果。
Step 5:总结与拓展(5分钟)教师对本节课的内容进行总结,并提出一些拓展问题,鼓励学生进一步思考和探索幂函数的应用领域。
Step 6:作业布置(5分钟)教师布置相关的课后作业,包括练习题和思考题,以巩固学生对幂函数的理解和应用能力。
教学辅助工具:1. 幂函数的定义和性质的讲解材料;2. 幂函数的图像和性质的示意图;3. 与幂函数相关的实际问题的案例;4. 黑板和粉笔。
教学评估:1. 教师观察学生在课堂上的参与程度和回答问题的能力;2. 批改学生的课后作业,评估他们对幂函数的理解和应用能力。
拓展活动:1. 学生可以自行寻找更多与幂函数相关的实际问题,并尝试解决;2. 学生可以利用计算机绘制幂函数的图像,并比较不同参数对图像的影响。
一、内容和内容解析1.内容幂函数的定义,y =x ,y =x 2,y =x 3,y =x -1,y =x 12五个幂函数的图象与性质.2.内容解析幂函数是一类重要的基本初等函数,实际生产生活及科学研究中涉及的很多函数都是由幂函数及其他基本初等函数进行运算、复合得到的.学生初中学习过的一次函数、二次函数和反比例函数都是由幂函数y =x 0,y =x ,y =x 2,y =x -1经过运算得到的,幂函数y =x ,y =x 2,y =x -1也是最基本的一次函数、二次函数和反比例函数,学生对他们的图象和性质都非常熟悉.从这个角度来说,幂函数的学习是在此基础上的自然延伸.在教材中,幂函数这一部分的学习被安排在函数的概念及其表示和函数的基本性质之后,指数函数与对数函数之前.一方面,在学生系统学习了一般函数的概念、表示法和基本性质之后,幂函数作为一类最基本的函数,承载着从一般到特殊应用所学知识来研究和表达具体函数的功能;另一方面,幂函数作为高中阶段学生研究的第一类具体函数,在研究内容、方法和路径上对后续学习其他函数起着一定的示范性作用.基于以上分析,本节课的教学重点是幂函数的图象与性质.二、目标和目标解析1.目标(1)了解幂函数的定义,会作出函数y =x ,y =x 2,y =x 3,y =x -1,y =x 12的图象,理解它们的性质并能进行简单应用.(2)通过对幂函数的研究,体会研究一种具体函数的内容和方法.(3)在对具体函数的图象与性质的探究过程中,理解函数图象与性质的探究方法,感受数与形的相辅相成,体会数形结合的思想方法,发展直观想象、逻辑推理和数学运算素养.2.目标解析达成以上目标的标志如下.(1)能从几个具体的幂函数解析式的共性中抽象出幂函数的一般形式;会作出函数y =x ,y =x 2,y =x 3,y =x -1,y =x 12的草图,并根据图象得到它们的性质;能应用幂函数的性质解决一些简单问题.(2)在研究幂函数之前,先根据初中研究函数的经验制定出探究方案,确定探究内容和方法,进而依收稿日期:2020-11-02作者简介:王琦(1983—),女,中学一级教师,主要从事中学数学教学研究.“幂函数”教学设计王摘要:幂函数是一类重要的基本初等函数.本节课在回顾初中研究函数的经验的基础上,梳理研究一般函数的内容、方法和路径,进而按照这样的路径对幂函数展开研究.学生经历函数图象与性质的多种探究方式,体会数与形的紧密联系.幂函数的研究过程既是对高中所学的函数概念、表示法和基本性质的进一步理解和应用,也为后续其他函数的研究做出了示范.关键词:幂函数;图象与性质;数形结合照方案实施研究,并在过程中对实施细节进行合理调整,经历研究函数的完整过程.(3)在对y=x3和y=x 12的图象和性质进行研究的过程中,体验不同的研究方式,感受形的直观、数的精确,以及数与形的紧密联系、对立统一.在运用定义判断函数y=x 12的单调性的过程中,发展数学运算素养.三、教学问题诊断分析学生在初中阶段学习过一次函数、二次函数和反比例函数,对于函数的研究积累了一定的经验,但缺乏方法的梳理和总结.本节课先引导学生对经验进行梳理,总结出函数的研究内容、方法和路径,这既为本节课的研究提供了方案,也为后续其他函数的研究提供了模板.初中阶段,学生基本都是通过列表、描点作出函数的图象,再根据图象直观感知函数的性质.经过本章前一阶段的学习,学生掌握了用符号语言精确刻画函数单调性和奇偶性的方法,可以直接通过解析式分析函数的单调性和奇偶性,这使得函数图象与性质的探究方式有了更多的可能.本节课中,教师引导学生体验这些探究方式,使学生在探究过程中感受数与形的相互转化和紧密联系.基于以上分析,确定本节课的教学难点在于幂函数图象与性质的探究.四、教学过程设计1.从实际情境中抽象出幂函数的定义问题1:回答下列问题.(1)如果张红以1元/kg的价格购买了某种蔬菜w kg,那么她需要支付的价钱p是多少元?这里p是w的函数吗?(2)如果正方体的边长为a,那么正方形的面积S 是多少?这里S是a的函数吗?(3)如果立方体的棱长为b,那么立方体的体积V 是多少?这里V是b的函数吗?(4)如果一个正方形场地的面积为S,那么这个正方形的边长c是多少?这里c是S的函数吗?(5)如果某人t s内骑车行进了1km,那么他骑车的平均速度v是多少?这里v是t的函数吗?师生活动:教师给出实际情境,学生思考后得出五种情境所对应的函数解析式.其中,对于(4)中的c= S,教师须告知学生S也可以记作S12;对于(5)中的v=1t,教师应引导学生将其表达为v=t-1.【设计意图】函数是描述客观世界中变量关系和规律的最基本的数学语言和工具.从这一系列实际问题中,学生可以感受到客观世界中很多变量关系可以用幂函数表示,从而体会到研究幂函数的必要性和幂函数的应用价值.中学阶段学习的几种函数都有着它们的实际背景.幂函数是高中阶段学习的第一类具体函数,从实际背景中抽象出幂函数的概念,对高中阶段其他函数的研究具有示范作用.同时,对实际问题进行抽象也是很多数学概念和问题产生的方式.问题2:这些函数在解析式的结构上有什么共同特征?师生活动:教师引导学生抛开现实意义,关注几个函数解析式的结构.通过观察,学生发现这些函数的函数值都是自变量的若干次方.教师引导学生将几个函数中的自变量都用x表示,函数值都用y表示.学生发现这几个函数的解析式都具有y=xα的形式,其中x是自变量,α是常数.由xα的运算结果叫做幂,引出幂函数的名称,从而点明课题并板书幂函数的定义:一般地,函数y=xα叫做幂函数,其中x是自变量,α是常数.【设计意图】从实际背景中抽象出数学模型是一个较难的思维过程,需要教师引导进行.学生经历并体会这个从众多事物中抽取出共同的、本质性的特征,舍弃非本质性特征的抽象过程,提升数学抽象素养.追问:根据定义,你能再列举出几个幂函数吗?师生活动:学生根据定义进行举例,认识幂函数解析式的结构特征.教师引导学生将α取不同类型的常数,并指出当α取其他实数时,幂的含义会在后续课程中学习.【设计意图】根据定义进行举例,需要学生在理解定义的基础上,整合现有知识,举出例子并进行判断,是一个综合的思维过程.这个过程可以培养学生提出问题、分析问题的能力.2.探究幂函数的图象和性质环节1:梳理研究路径,明确研究内容.问题3:结合以往学习函数的经验,我们应该如何研究幂函数?师生活动:教师引导学生回忆初中研究一次函数、二次函数和反比例函数的内容、过程和方法.学生总结经验,归纳出研究具体函数的基本路径:定义—图象—性质—应用.【设计意图】学生初中阶段学习过一次函数、二次函数和反比例函数,初步积累了研究函数的基本活动经验.调动学生回忆初中研究函数的内容、过程和方法,不仅可以通过对这些基本活动经验的梳理规划幂函数的研究路径,也可以为后续课程中其他函数的研究做出示范.追问1:如何作出幂函数y=xα的图象?师生活动:学生发现幂函数y=xα是一类函数,指数α的取值不同,函数就不同,图象也是不一样的.教师引导学生回忆初中探究正比例函数、一次函数、二次函数、反比例函数的图象和性质时对参数的处理方式.学生根据初中研究函数的经验想到从特殊到一般,对α取一些特殊值进行研究,考查图象是否存在规律性.教师提议本节课抛砖引玉,只从α为正整数的情况中选取三个较简单的,即y=x,y=x2,y=x3,从α为负整数的情况中选取一个较简单的,即y=x-1,从α为分数的情况中选取一个较简单的,即y=x 12=x进行研究.掌握研究方法后,对于其他幂函数的图象,可以让学生课后自行探究.【设计意图】引导学生借助初中研究函数的经验,找到处理幂函数中参数的方法,确定从特殊到一般的研究思路.追问2:在研究它们的图象和性质之前,我们应该先明确什么?师生活动:学生回答“定义域”,并求出这五个幂函数的定义域.教师关注学生是否注意到了定义域应写成集合的形式.【设计意图】研究一个函数首先要明确其定义域,设计这个问题正是为了帮助学生强化这一认识.追问3:作出函数图象后可以研究哪些内容?师生活动:学生回忆本章所学内容,提出值域、单调性、奇偶性等,教师板书列表呈现研究内容,如表1所示.表1y=xy=x2y=x3y=x-1y=x12定义域RRR{}x|x≠0[)0,+∞图象值域奇偶性单调性【设计意图】梳理一个具体函数的研究内容并用表格呈现出来,这为本节课后面的研究搭建了框架,有助于学生建立研究具体函数的一般思路.此外,将研究结论通过表格形式呈现,便于学生将几种函数的图象和性质进行对比,发现规律.环节2:探究五个幂函数各自的图象和性质.问题4:将函数y=x,y=x2,y=x-1的图象和性质填入表格相应位置.师生活动:根据初中所学相应结论,学生代表将黑板上函数y=x,y=x2,y=x-1的对应表格补充完整,其余学生在笔记本上完成.教师针对黑板上表格的填写情况进行适当点评,如定义域、值域要写成集合形式,y=x-1单调区间的写法等,如表2所示.表2问题5:如何得到函数y=x3的图象?师生活动:学生回答“列表、描点、作图”.追问1:自变量取哪些值进行描点?师生活动:学生可能取-2,-1,0,1,2.追问2:能不能减少描点的个数?师生活动:教师引导学生思考哪种性质对函数的研究有事半功倍的作用.学生经过思考,不难发现y=x3是奇函数,图象关于原点对称,可以先作出y=x3在y轴右侧的图象,再根据对称性就可以得到y轴左侧的图象了.学生在笔记本上完成作图并填写函数性质,学生代表展示结论,师生点评并总结出研究函数时可以在明确定义域后优先考查函数的奇偶性.【设计意图】通过函数y=x3的图象与性质的探究过程,使学生体会到:在研究函数的过程中,为了提高研究效率,应该优化研究顺序,如优先考查函数的奇偶性.问题6:如何探究函数y=x 12的图象和性质?师生活动:学生根据上一问题总结的经验,考虑优先考查函数的奇偶性.追问1:函数y=x 12的奇偶性如何?师生活动:学生发现函数y=x 12的定义域不关于原点对称,从而判断出函数y=x 12为非奇非偶函数.追问2:既然奇偶性可以不借助图象判断,那么单调性是否也可以直接判断呢?师生活动:学生经过思考认为可以用单调性的定义来判断.追问3:用定义判断函数单调性的步骤是什么?师生活动:学生回忆前面所学知识,回答出“任取—作差—整理—断号—结论”的步骤.进而师生依照步骤判断函数y=x 12的单调性.其中,“整理”这一步对学生而言是个难点,学生很难独立想到“分子有理化”的方法,需要教师介绍.师生共同完成对函数的单调性的判断.追问4:根据函数y=x 12的定义域、奇偶性和单调性,你能否画出它的示意图?师生活动:学生在笔记本上作出符合定义域、奇偶性和单调性的函数示意图,但不同学生的示意图凹凸性可能有所不同.教师巡视并将典型的示意图拍照展示.教师引导学生认识到可以通过描出几个特殊点来判断函数图象的走势,并在课堂上运用信息技术快速得到函数y=x12的图象.教师要帮助学生认识到对函数性质的研究,可以让我们对函数的图象有一个大致的认识,对性质探究得越深入、细致,对图象的刻画就越精细,在后续课程中还会对函数的更多性质进行研究.【设计意图】初中阶段,学生大多数情况下只能通过图象来直观感知函数的性质.在前几节课中,我们用精确的符号语言定义了函数的单调性和奇偶性,学生可以直接通过函数的解析式分析函数的性质.这就使得我们可以根据函数的性质分析图象的特征,从而丰富了得到函数图象的方法.对函数y=x12的图象与性质的教学设计,是为了让学生经历更多的探究方式,感受多种探究方式的特点,为今后更加灵活、高效地研究具体函数做准备.此外,数与形是相互联系、相互转化的,因此从形来认识数、从数来认识形都是教学中要引导学生体会的,这里的设计也有这样的目的.环节3:探究幂函数的性质.问题7:通过对这五个函数的分析,我们发现他们的图象和性质有着各自的特点,那么它们作为一类函数,有没有什么共性呢?我们将这五个函数的图象放到同一坐标系中观察一下,有什么发现吗?师生活动:教师展示五个幂函数在同一坐标系下的图象,学生观察图象发现它们存在公共点,师生从数的角度说明这个点是所有幂函数的必过点.学生还可能发现这五个函数图象都经过第一象限,都不经过第四象限.教师可以引导学生从函数的奇偶性、单调性、渐近性等角度对这几个函数的性质进行梳理.学生通过前面总结的表格容易猜想“α为奇数的幂函数是奇函数,α为偶数的幂函数为偶函数”,证明留给学生课下完成.对于幂函数在()0,+∞上的单调性,学生可能会猜想“当α>0时,幂函数在()0,+∞上单调递增;当α<0时,幂函数在()0,+∞上单调递减”.教师肯定学生的认真观察和积极思考,建议学生课后作出更多幂函数的图象来进一步验证猜想,对于比较肯定的猜想可以尝试加以论证,并告诉学生这就是科学研究经常用到的方法.对于学生发现的性质,如果时间允许,教师可以通过信息技术软件演示验证.【设计意图】幂函数作为一类函数,是否存在共性和规律呢?这是由特殊到一般的探究思路.学生通过研究五个特殊幂函数的图象和性质,容易对一般幂函数的性质进行猜想.在这个过程中,学生从形到数,经历发现问题、提出问题、分析问题、解决部分问题的过程,体会数与形的联系,提升“四能”.此外,由特殊到一般,观察、猜想、论证的过程也正是很多科学研究的过程,学生经历这样的过程有助于体会科学研究的方法,提升科学探究的能力.3.幂函数的应用问题8:利用幂函数的性质,比较下列各题中两个值的大小.(1)()-1.53,()-1.43;(2)1.5,1.4.师生活动:学生经过思考,利用本节课所学函数的单调性比较大小,口答结论.教师根据学生的作答情况,进行追问或点评.【设计意图】该问题是幂函数性质的简单应用.学生通过解答该题,体会利用函数的单调性比较大小的方法.问题9:已知函数f()x=x3,且f()t2+t+1<-f()2-t2,求实数t的取值范围.师生活动:学生经过思考,利用本节课所学函数y=x3的性质进行解答.学生之间可以互相启发和补充.教师根据学生的作答情况,进行引导、追问和点评.【设计意图】该问题是幂函数性质(奇偶性、单调性)的综合应用.4.课堂小结问题10:通过今天的学习,你认为对一个新函数应该研究哪些内容?如何研究?师生活动:师生共同归纳出研究函数的步骤.(1)明确函数的概念及定义域.(2)探究函数的图象与性质.(3)函数的应用:数学应用、实际应用、科学应用.其中,对于函数图象与性质的探究,在初中主要是先作出图象,再探究性质.通过前面几节课的学习,我们对函数的性质有了更进一步的认识,既可以通过图形语言来直观感知,也可以运用符号语言来严谨论证.数与形的联系更加紧密,图象与性质的研究方法更加灵活,希望学生课下认真体会.【设计意图】学生回顾研究函数的过程、内容和方法,强化基本活动经验.用精确的符号语言定义函数的性质后,教师引导学生体会函数图象与性质的研究方法更加丰富,数与形的联系更加密切,数与形的转化更加灵活.五、目标检测设计1.已知幂函数y=f()x的图象经过点()2,2,试求出这个函数的解析式.【设计意图】考查幂函数的定义.2.利用幂函数的性质,比较下列各题中两个值的大小.(1)()-1.5-1,()-1.4-1;(2)()-1.52,1.42.【设计意图】考查幂函数y=x-1和y=x2的性质. 3.试独立探究函数f()x=x-2的图象和性质.【设计意图】考查探究函数图象与性质的方法.参考文献:[1]中华人民共和国教育部制定.普通高中数学课程标准(2017年版)[M].北京:人民教育出版社,2018.。
§2.3 幂函数
一.教学目标:
1.知识技能
(1)了解幂函数的概念;
(2)通过具体实例了解幂函数的图象和性质,并能进行初步的应用。
(3)学会研究函数图象和性质的一般方法。
2.过程与方法
类比研究指数函数、对数函数学习过程,掌握幂函数的图象和性质。
3.情感、态度、价值观
(1)进一步渗透数形结合与类比的思想方法;
(2)体会幂函数的变化规律及蕴含其中的对称性,感受数学美。
二、教学重难点:
1、重点:幂函数的概念和性质;
2、难点:函数指数的推广及性质的归纳。
三、教学辅助工具:
PPT课件,几何画板。
四、教学过程:
(一)创设情景
前面我们学习了函数的定义,研究了函数的一般性质,并且研究了指数函数和对数函数。
函数这个大家庭有很多成员,今天,我们利用学习指数函数、对数函数的方法,再来认识一位新成员。
1、如果正方形的边长为x,那么正方形的面积是y= ,y是x的函数。
2、如果正方体的边长为x,那么正方体的体积是y= ,y是x的函数。
3、如果正方形场地的面积为x,那么正方形的边长y= ,y是x的函数。
4、如果某人x s内骑车行进了1km,那么他骑车的平均速度y= km/s,y是x的函数。
思考:上述函数解析式有什么共同特征?
答:(1)都是函数;
(2)均是以自变量为底的幂; (3)指数均为常数;
(4)自变量前的系数为1。
(二)新课导入 1、幂函数的定义:
一般地, y x α= 叫做幂函数,其中x 是自变量,α是常数。
2、幂函数与我们之前学过的哪种函数在形式上接近?
3、幂函数与指数函数有什么区别? 答:判断一个函数是幂函数还是指数函数的切入点是看未知数x 是做底数还是做指数,若是做底数则是幂函数;若是做指数则是指数函数。
设计意图:引导学生分析掌握幂函数的结构,三要素,区分幂函数与指数函数的异同点。
(三)小试牛刀
1、下列函数中,哪几个函数是幂函数?
①2y x =- ②2x y = ③y x π= ④3(1)y x =- ⑤21y x =
⑥2
1y x x
=+
2、 已知函数()()21m f x m m x =-+是幂函数,则实数m 的值等于_____.
3、 已知幂函数()f x 的图象过点(3,2),则()______.f x = (四)自主探究
1、请在同一坐标系内画出幂函数x y =,2
x y =,3
x y =,2
1
x y =,1
-=x y 的图象。
2、观察图象,讨论归纳幂函数x y =;2x y =;3x y =;2
1x y =;1
-=x y 的
(五)合作探究
归纳幂函数的性质:
(1)
幂函数y x α=图象过定点 。
(2)函数y x =、3y x =、1y x -=是奇函数,函数2y x =是偶函数
(3)幂函数y x α=,在第 象限都有图象。
我们就先来研究幂函数在第 象限上的性质,函数的奇偶性能够帮助我们完成其他象限的图象。
在区间(0,)+∞上,函数y x =、2y x
=、3y x =和y 是增函数,函数1
y x -=是减函数。
推广:当α>0时,函数y x α=在第一象限是增函数,当α<0时,函数y x α=在第一象限是减函数.
(4)在第一象限,函数1y x
-=的图象向上与y 轴无限接近,向右与x 轴无限接近
设计意图:引导学生类比前面研究一般的函数、指数函数、对数函数等过程中的思想方法研究幂函数;让学生通过观察上述图象,自己尝试归纳五个幂函数的基本性质,然后完成表格;进而归纳幂函数的性质。
(六)反馈演练 例1、
证明幂函数()[0,]
f x =+∞上是增函数 证:任取121,[0,),x x x ∈+∞且<2x 则 122()()f x f x x
-
因12x x -<00
所以12()()f x f x <
,即()[0,]f x =+∞上是增函数.
例2、 比较下列各组中两个值的大小:
(1)1
2
25⎛⎫ ⎪⎝⎭与12
13⎛⎫
⎪⎝⎭ ;(2)123-⎛⎫- ⎪⎝⎭与135-⎛⎫- ⎪⎝⎭;(3)2
13-⎛⎫ ⎪⎝⎭
与12
34⎛⎫ ⎪⎝⎭
(4)3
4
1()2与12
34⎛⎫
⎪⎝⎭
.
例3、已知幂函数2
223(1)m m y m m x --=--在(0,)+∞上是减函数,求m 的取值. 例题的设计意图:
例题1复习函数单调性的证明步骤,例题2复习利用指数函数的图象与性质来比较大小的同时学会用幂函数的方法来比较大小,体会一题多解.例题3学会利用幂函数的性质来解题. (七)总结提炼
1、谈谈五个基本幂函数的定义域与对应幂函数的奇偶性、单调性之间的关系?
2、幂函数与指数函数的不同点主要表现在哪些方面? (八)课后作业
必做题:课本P79习题2.3 第2、3题; 选做题:P82复习题A 组第10题。
五、板书设计:。