零点存在定理
- 格式:ppt
- 大小:310.50 KB
- 文档页数:10
零点存在定理的条件
嘿,咱今天就来说说零点存在定理的条件哈!
你想啊,这零点存在定理就像是一个神秘的宝藏图,而它的条件呢,就是找到宝藏的关键线索。
首先呢,得有个连续的函数,就像我们走路得一步一步稳稳当当的,不能这儿断一下那儿断一下,不然怎么能找到零点这个宝贝呢。
这就好比我们要去一个地方,路得是通的呀,要是中间突然断了,那不就傻眼啦!
然后呢,函数在两端的值得一正一负,这多有意思呀!就好像是在两端摆了两个不同颜色的旗子,一个代表正数,一个代表负数,它们就像两个小卫兵,指引着我们去找中间那个零点。
要是两端都是一样的,那可就没头绪咯,就像两个卫兵都指一个方向,那我们还怎么找呢。
这条件其实就像是生活中的一些小规则,虽然看起来不起眼,但没了它们还真不行。
就像我们出门得知道路怎么走,不然就会迷路。
零点存在定理的条件就是给我们指引方向的,让我们能准确地找到那个神奇的零点。
有时候我就想啊,这数学里的定理和我们生活还真像呢。
有了这些条件,就像我们有了目标和方法,能让我们在数学的世界里畅游,找到那些隐藏的奥秘。
哎呀呀,说了这么多,总之呢,零点存在定理的条件可重要啦,没它们就没法玩啦!就像我们玩游戏得有规则一样,不然就乱套咯。
现在回想起来,这些条件还真是有趣又神奇呀,让我们能在数学的海洋里不断探索和发现。
就像我们在生活中不断追寻自己的梦想一样,有了方向和方法,才能走得更远更稳。
嘿嘿,这就是零点存在定理的条件的魅力所在啦!希望你们也能像我一样,感受到这份独特的乐趣哦!。
零点存在的判定与证明一、基础知识:1、函数的零点:一般的,对于函数()y f x =,我们把方程()0f x =的实数根0x 叫作函数()y f x =的零点。
2、零点存在性定理:如果函数()y f x =在区间[],a b 上的图像是连续不断的一条曲线,并且有()()0f a f b ×<,那么函数()y f x =在区间(),a b 内必有零点,即()0,x a b $Î,使得()00f x =注:零点存在性定理使用的前提是()f x 在区间[],a b 连续,如果()f x 是分段的,那么零点不一定存在3、函数单调性对零点个数的影响:如果一个连续函数是单调函数,那么它的零点至多有一个。
因此分析一个函数零点的个数前,可尝试判断函数是否单调4、几个“不一定”与“一定”(假设()f x 在区间(),a b 连续)(1)若()()0f a f b ×<,则()f x “一定”存在零点,但“不一定”只有一个零点。
要分析()f x 的性质与图像,如果()f x 单调,则“一定”只有一个零点(2)若()()0f a f b ×>,则()f x “不一定”存在零点,也“不一定”没有零点。
如果()f x 单调,那么“一定”没有零点(3)如果()f x 在区间(),a b 中存在零点,则()()f a f b ×的符号是“不确定”的,受函数性质与图像影响。
如果()f x 单调,则()()f a f b ×一定小于05、零点与单调性配合可确定函数的符号:()f x 是一个在(),a b 单增连续函数,0x x =是()f x 的零点,且()0,x a b Î,则()0,x a x Î时,()0f x <;()0,x x b Î时,()0f x >6、判断函数单调性的方法:(1)可直接判断的几个结论:① 若()(),f x g x 为增(减)函数,则()()f x g x +也为增(减)函数② 若()f x 为增函数,则()f x -为减函数;同样,若()f x 为减函数,则()f x -为增函数③ 若()(),f x g x 为增函数,且()(),0f x g x >,则()()f x g x ×为增函数(2)复合函数单调性:判断()()y f g x =的单调性可分别判断()t g x =与()y f t =的单调性(注意要利用x 的范围求出t 的范围),若()t g x =,()y f t =均为增函数或均为减函数,则()()y f g x =单调递增;若()t g x =,()y f t =一增一减,则()()y f g x =单调递减(此规律可简记为“同增异减”)(3)利用导数进行判断——求出单调区间从而也可作出图像7、证明零点存在的步骤:(1)将所证等式中的所有项移至等号一侧,以便于构造函数(2)判断是否要对表达式进行合理变形,然后将表达式设为函数()f x (3)分析函数()f x 的性质,并考虑在已知范围内寻找端点函数值异号的区间(4)利用零点存在性定理证明零点存在例1:函数()23x f x e x =+-的零点所在的一个区间是( )A.1,02æö-ç÷èø B.10,2æöç÷èø C.1,12æöç÷èø D.31,2æöç÷èø思路:函数()f x 为增函数,所以只需代入每个选项区间的端点,判断函数值是否异号即可解:1211234022f e -æöæö-=+×--=-<ç÷ç÷èøèø,()020f =-<11232022f æö=+×-=-<ç÷èø()12310f e e =+-=->()1102f f æö\×<ç÷èø01,12x æö\Îç÷èø,使得()00f x =答案:C例2:函数()()ln 1f x x x =-+的零点所在的大致区间是( )A.31,2æöç÷èø B.3,22æöç÷èøC.()2,eD.(),e +¥思路:先能判断出()f x 为增函数,然后利用零点存在性判定定理,只需验证选项中区间端点函数值的符号即可。
连续函数的零点定理连续函数的零点定理是微积分中的一个重要定理,它在实际问题中有着广泛的应用。
本文将从连续函数的零点定理的定义、证明和应用三个方面进行阐述。
一、连续函数的零点定理的定义连续函数的零点定理是指对于一个连续函数f(x),如果存在一个区间[a, b],使得f(a)和f(b)异号,那么在这个区间内一定存在至少一个点c,使得f(c)=0。
这个定理表明了连续函数在某个区间内必然存在一个零点。
连续函数的零点定理的证明可以利用实数完备性原理进行推导。
首先假设f(a)>0,f(b)<0,那么根据实数完备性原理,存在一个实数集合A,使得f(x)>0的点全都在A的上方,f(x)<0的点全都在A的下方。
因为A是实数集合,所以它是有界的。
根据确界性原理,A 存在上确界c。
由于f(a)>0,所以a不可能是上确界,因此a<c。
同理,由于f(b)<0,所以b不可能是上确界,因此b>c。
综上所述,存在一个c,使得a<c<b。
由于f(x)在[a, b]上是连续函数,根据介值定理,必然存在一个x=c,使得f(c)=0。
同理,当f(a)<0,f(b)>0时,也可以得到同样的结论。
因此,连续函数的零点定理得证。
三、连续函数的零点定理的应用连续函数的零点定理在实际问题中有着广泛的应用。
以一元多项式函数为例,通过连续函数的零点定理可以判断多项式函数在某个区间内是否存在零点。
这在数学建模、物理实验数据处理等领域中有着重要的应用。
此外,连续函数的零点定理也可以用来求解方程的近似解。
通过将方程转化为函数的形式,再利用连续函数的零点定理可以得到方程的一个近似解。
这在数值计算和数学分析中有着广泛的应用。
总结起来,连续函数的零点定理是微积分中的一个重要定理,它通过实数完备性原理和介值定理给出了连续函数存在零点的条件和证明。
连续函数的零点定理在实际问题中有着广泛的应用,可以用来判断函数在某个区间内是否存在零点,并且可以用来求解方程的近似解。
考点34 零点定理一.函数的零点(1)零点的定义:对于函数y =f (x ),我们把使f (x )=0的,实数x 叫做函数y =f (x )的零点. 函数的零点不是函数y=f(x)与x 轴的交点,而是y=f(x)与x 轴交点的横坐标,也就是说函数的零点不是一个点,而是一个实数(2)零点的几个等价关系:方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点. 二.函数的零点存在性定理1.如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )f (b )<0,那么,函数y =f (x )在区间(a ,b )内有零点,即存在c ⇔(a ,b ),使得f (c )=0,这个c 也就是方程f (x )=0的根.2.函数零点的存在性定理只能判断函数在某个区间上的变号零点,而不能判断函数的不变号零点,而且连续函数在一个区间的端点处函数值异号是这个函数在这个区间上存在零点的充分不必要条件考向一 求零点【例1】(2021·全国课时练习)函数()ln f x x x =的零点为( ) A .0或1 B .1C .()1,0D .()0,0或(()1,0【答案】B【解析】函数()ln f x x x =的定义域为()0,∞+,令()ln 0f x x x ==,得1x =,零点不是点,CD 错误,故选:B.知识理解考向分析【举一反三】1.(2021·上海市西南位育中学=)函数256y x x =-+的零点是___________. 【答案】2x =和3x =【解析】令y =0,即2560x x -+=,解得:2x =和3x =故答案为:2x =和3x =2.(2020·巴彦淖尔市临河区第三中学高三月考(理))函数256y x x =--的零点是__________. 【答案】6或-1【解析】解方程()()260561x x x x --=+=-得6x =或1x =-.所以函数256y x x =--的零点是6或-1.故答案为:6或-1.考向二 零点区间【例2】(2021·四川高一开学考试)函数()123xf x e x =+-的零点所在区间为( ) A .()1,0- B .()0,1 C .()1,2D .()2,3【答案】B【解析】由于函数xy e =、123y x =-均为R 上的增函数,所以,函数()f x 为R 上的增函数, 因为()010f =-<,()11203f e =+->,则()()010f f ⋅<.因此,函数()123xf x e x =+-的零点所在区间为()0,1.故选:B. 【举一反三】1.(2021·安徽省泗县第一中学)函数()123log 4xf x x =-++的零点所在的区间为( )A .()2,3B .()3,4C .()1,2D .()0,1【答案】C【解析】易知函数()123log 4xf x x =-++在()0,∞+上为减函数, ()110f =>,()260f =-<,则()()120f f ⋅<,因此,函数()f x 的零点所在的区间为()1,2.故选:C. 2.(2021·浙江开学考试)函数()26log f x x x=-的零点所在区间是( ) A .()0,1 B .()1,2C .()2,3D .()3,4【答案】D【解析】由题意,函数()26log f x x x=-,可函数()f x 为定义域上的单调递减函数, 又由()()22332log 30,4log 402f f =->=-<,即()()340f f ⋅<,根据零点的存在性定理,可得函数()f x 的零点所在的区间是()3,4.故选:D. 3.(2021·内蒙古包头市)函数()3xf x x e =+的零点所在区间为( )A .()2,1--B .()1,0-C .()0,1D .()1,2【答案】B【解析】函数()3xf x x e =+为R 上的增函数,且()2260f e--=-+<,()1130f e --=-+<,()010f =>,()()100f f ∴-⋅<,因此,函数()3x f x x e =+的零点所在区间为()1,0-.故选:B.考向三 零点的个数【例3】(2021·云南高三其他模拟)函数()13sin f x x =-在52,6ππ⎛⎫- ⎪⎝⎭上的零点个数为( ) A .2 B .3C .4D .5【答案】B【解析】由()0f x =,得1sin 3x =,作出函数sin y x =在52,6ππ⎛⎫- ⎪⎝⎭上的图象如图所示,因为511sin623π=>, 所以由图可知直线13y =与图象有3个交点,从而()f x 在52,6ππ⎛⎫- ⎪⎝⎭上有3个零点.故选:B【例3-2】(202112log x =的解的个数为( )A .0B .1C .2D .3【答案】B【解析】在同一坐标系内,作出y =12log y x =的图象,如图:由图象可知,方程只有一个解.故选:B 【举一反三】1.(2021·云南昆明市)已知()sin 23f x x π⎛⎫=+ ⎪⎝⎭,则()f x 在[0,]π上的零点个数为( ) A .0 B .1C .2D .3【答案】C 【解析】由23x k ππ+=得,26k x k Z ππ=-∈, 又[0,]x π∈,∴3x π=或56π,共2个.故选:C . 2.(2021·云南丽江市·丽江第一高级中学)函数21log 2xy x ⎛⎫=- ⎪⎝⎭的零点个数是( ) A .0 B .1C .2D .3【答案】C【解析】由21|log |02x x ⎛⎫-= ⎪⎝⎭,得21log 2xx ⎛⎫= ⎪⎝⎭, 作出函数2log y x =与12xy ⎛⎫= ⎪⎝⎭的图形如图,由图可知,函数21log 2xy x ⎛⎫=- ⎪⎝⎭的零点个数是2.故选:C .3(2021·江西吉安市)函数21()ln 20202f x x x =+-的零点个数是( ) A .3 B .2C .1D .0【答案】C【解析】函数21()ln 20202f x x x =+-的定义域为()0,∞+, 因为函数21ln 20,022y y x x ==-在()0,∞+上递增, 所以()f x 在()0,∞+上递增, 又1(1)20200,(2020)10092020ln 202002f f =-<=⨯+>, 由零点存在定理得:函数21()ln 20202f x x x =+-的零点个数是1个数,故选:C 4.(2021·北京高三期末)已知函数()2,0,0x x f x x x ≥⎧=⎨-<⎩,则函数()2xy f x =-的零点个数是( )A .0B .1C .2D .3【答案】C【解析】令()20xf x -=,得()2xf x =,则函数()2xy f x =-的零点个数等价于函数()f x 与函数2xy =的图象的交点个数,2,021,02x x x x y x ⎧≥⎪==⎨⎛⎫<⎪ ⎪⎝⎭⎩,作出函数()f x 与函数2xy =的图象如下图所示:由图象可知,两个函数图象的交点个数为2,故函数()2xy f x =-的零点个数为2.故选:C.1.(2021·陕西西安市·高三月考(文))函数21()12x f x x =--的零点的个数是( ) A .1 B .2C .3D .4【答案】B 【解析】21()012x f x x =-=-,2210x x --=,1x =1x =()0f x =的解,()f x 有两个零点.故选:B .2.(2021·湖北开学考试)函数()lg(1)3f x x x =+--零点所在的整区间是( ) A .(0,1) B .(1,2)C .(2,3)D .(3,4)【答案】C【解析】因为函数()f x 为单调递增函数,且()210f =-<,()3lg20f => 所以零点所在的区间是()2,3,故选:C .强化练习3.(2021·四川资阳市)方程24x x +=的根所在的区间为( ) A .()0,1 B .()1,2 C .()2,3 D .()3,4【答案】B【解析】构造函数()24xf x x =+-,则函数()f x 为R 上的增函数,()110f =-<,()220f =>,则()()120f f ⋅<,因此,方程24x x +=24x x +=的根所在的区间为()1,2.故选:B.4.(2020·全国课时练习)函数()()ln 11f x x x =+-+在下列区间内一定有零点的是( ) A .[]0,1 B .[]1,2 C .[]2,3 D .[]3,4【答案】C【解析】因为函数()()ln 11f x x x =+-+连续,且()()22ln31ln 10,3ln 42ln 20f e f e =->-==-<-=,所以在区间[]2,3内一定有零点,故选:C5.(2021·广西河池市=)函数()2ln 1xf x x =+-的零点所在的区间为( ).A .31,2⎛⎫ ⎪⎝⎭B .3,22⎛⎫ ⎪⎝⎭C .10,2⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭【答案】D【解析】函数()2ln 1xf x x =+-为()0,∞+上的增函数,由()110f =>,131111ln 21ln 21ln 2ln 0222222f ⎛⎫=-<--=-<-=-= ⎪⎝⎭,可得函数()f x 的零点所在的区间为1,12⎛⎫⎪⎝⎭.故选:D.6.(2021·全国高三开学考试(文))已知函数()()1,02ln ,0x x f x x x ⎧-≥⎪=⎨⎪-<⎩,则函数()()y f f x =的零点个数为( ) A .1 B .2 C .3 D .4【答案】 C【解析】令()f x t =,当()0f t =时,解得12t =或1t =-. 在同一直角坐标系中分别作出()y f x =,1y =-,12y =的图象如图所示,观察可知,()y f x =与1y =-有1个交点,()y f x =与12y =有2个交点,则()()y f f x =的零点个数为3. 故选:C.7.(2021·北京丰台区)已知函数()22,0,11,0,x x x f x x x⎧-≤⎪=⎨->⎪⎩则()f x 的零点个数为( )A .0B .1C .2D .3【答案】C【解析】()22,0,11,0,x x x f x x x⎧-≤⎪=⎨->⎪⎩,令()0f x =,当0x ≤时,220x x -=,解得:0x =或2x =(舍去); 当0x >时,110x-=,解得:1x = 所以()0f x =有2个实数解,即函数()f x 的零点个数为2个.故选:C. 8.(2021·山西吕梁市)函数()1542xf x x =+-的零点[]01,x a a ∈-,*a ∈N ,则a =( ) A .1 B .2C .3D .4【答案】C【解析】已知()115042=+-<f ,()124502=+-<f ;()338504=+->f ,所以()2(3)0⋅<f f ,可知函数零点所在区间为[]2,3,故3a =.故选:C.9.(2021·安徽高三期末(文))设函数3()sin log f x x x =-,0.5()3log xg x x =-,0.5()sin log h x x x=-的零点分别为a ,b ,c ,则( ) A .a c b >> B .c b a >> C .c a b >>D .a b c >>【答案】A【解析】设函数1()sin f x x =,23()log f x x =,30.5()log f x x =,4()3xf x =,则a 是1()f x 与2()f x 图象交点的横坐标,b 是3()f x 与4()f x 图象交点的横坐标,c 是1()f x 与3()f x 图象交点的横坐标.在同一坐标系中,作出1()f x ,2()f x ,3()f x ,4()f x 的图象,如图所示.由图可知a c b >>. 故选:A10.(2021·山东威海市·高三期末)若关于x 的方程2lnx ax x -=在0,上有两个不等的实数根,则实数a 的取值范围为( ) A .(],1-∞- B .(),1-∞- C .[)1,-+∞ D .()1,-+∞【答案】B【解析】2lnx ax x -=故ln xa x x=- 则()ln x f x xx=-()2'221ln 1ln 1x x x f x x x---=-= 设()21ln g x x x =--,0x >故()'120g x x x=--< ()21ln g x x x =--在0,上为减函数,10g .故()0,1∈x 时()'0f x >;()1,∈+∞x 时()'0f x <.故()ln x f x xx=-在0,1上为增函数,在1,上为减函数.()()max 11f x f ==-,且0,x →时()f x →-∞;,x →+∞时()f x →-∞y a =与()ln x f x x x=-的图象要有两个交点则a 的取值范围为(),1-∞-. 故选:B11.(2021·兴义市第二高级中学高三期末(文))已知函数()39xf x x =+-的零点为0x ,则0x 所在区间为( ) A .31,22⎡⎤--⎢⎥⎣⎦B .11,22⎡⎤-⎢⎥⎣⎦ C .13,22⎡⎤⎢⎥⎣⎦D .35,22⎡⎤⎢⎥⎣⎦【答案】D 【解析】()39x f x x =+-在R 上单调递增,323315390222f ⎛⎫=+-=< ⎪⎝⎭,525513390222f ⎛⎫=+-=> ⎪⎝⎭,∴由零点存在性定理可得()f x 在35,22⎡⎤⎢⎥⎣⎦有唯一零点,035,22x ⎡⎤∴∈⎢⎥⎣⎦.故选:D.12.(2021·广西南宁市·南宁三中高三开学考试(理))已知函数()241,11,12x x x x f x x ⎧---<-⎪=⎨⎛⎫≥-⎪ ⎪⎝⎭⎩若关于x 方程()f x m =恰有三个不同的实数解,则实数m 的取值范围是( ) A .()0,3 B .[)2,3C .10,2⎛⎤ ⎥⎝⎦D .1,12⎡⎫⎪⎢⎣⎭【答案】D【解析】根据函数()241,11,12x x x x f x x ⎧---<-⎪=⎨⎛⎫≥-⎪ ⎪⎝⎭⎩,作出函数图象,如图.方程()f x m =恰有三个不同的实数解,即函数()f x 的图象与y m =的图象有三个交点 如图,()112f -=, 当112m ≤<时,函数()f x 的图象与y m =的图象有三个交点 故选:D13.(2020·重庆市凤鸣山中学高三月考)函数2()ln(1)f x x x=+-的零点所在的大致区间是( ) A .()3,4 B .()2,eC .()1,2D .()0,1【答案】C【解析】因为()21ln 201f =-<,()22ln 302f =->,且函数f (x )在(0,+∞)上单调递增,所以函数的零点所在区间为(1,2).故选:C14.(2021·兴宁市第一中学高三期末)若00cos x x =,则( ) A .0,32x ππ⎛⎫∈⎪⎝⎭B .0,43x ππ⎛⎫∈⎪⎝⎭C .0,64x ππ⎛⎫∈⎪⎝⎭ D .00,6x π⎛⎫∈ ⎪⎝⎭【答案】C【解析】设函数()cos f x x x =-,则()f x 在0,2π⎛⎫⎪⎝⎭上单调递增,又()010,0,066442f f f ππππ⎛⎫⎛⎫=-<=<=->⎪⎪⎝⎭⎝⎭, 10,033222f f ππππ⎛⎫⎛⎫=->=> ⎪ ⎪⎝⎭⎝⎭, 所以有064f f ππ⎛⎫⎛⎫⋅<⎪ ⎪⎝⎭⎝⎭,()00,0,064332f f f f f f πππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⋅>⋅>⋅> ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, 所以由零点存在性定理可知函数()f x 的一个零点位于,64ππ⎛⎫⎪⎝⎭. 故选:C15.(2021·上海)已知函数1()1f x a x =-+有两个零点,则实数a 的取值范围是___________. 【答案】01a <<【解析】画出函数11y x =+的图象如下:函数1()1f x a x =-+有两个零点等价于函数11y x =+的图象与直线y a =有两个交点 所以01a <<故答案为:01a <<16.(2021·全国=课时练习)函数()223,02ln ,0x x x f x x x ⎧+-≤=⎨-+>⎩零点的个数为___________.【答案】2【解析】当0x ≤时,令()0f x =,即2230x x +-=,解得3x =-或1x =(舍去); 当0x >时,令()0f x =,即2ln 0x -+=,解得2x e =, 所以函数()f x 有两个零点. 故答案为:2.17.(2021·贵州毕节市)函数()23,0ln ,0x x f x x x ⎧-≤=⎨>⎩的零点个数是________.【答案】2【解析】当0x ≤时,由230x -=解得x = 当0x >时,由ln 0x =解得1x =,所以函数()23,0ln ,0x x f x x x ⎧-≤=⎨>⎩的零点个数是2故答案为:218.(2020·云南师大附中高三月考(文))函数()ln f x x =的零点个数为__________. 【答案】2【解析】令ln ||0x =,当且仅当1x =±,所以()ln ||f x x =有两个零点.故答案为:2.。
函数零点存在性定理:一般地,如果函数y=f(x)在区间[a, b]上的图象是连续不断的一条曲线,并且有 f(a) . f(b)<o,那么函数y=f(x)在区间(a,b)内有零点,即存在c € (a, b),使得f(c)=O,这个c也就是f(x) =0的根•特别提醒:⑴根据该定理,能确定f(x) 在(a,b)内有零点,但零点不一定唯一.(2) 并不是所有的零点都可以用该定理来确定,也可以说不满足该定理的条件,并不能说明函数在(a,b)上没有零点,例如,函数f(x) =x 2 -3x +2有f(0) f(3)>0,但函数f(x)在区间(0,3)上有两个零点.(3) 若f(x)在[a,b]上的图象是连续不断的,且是单调函数,f(a) . f(b)<0,则fx)在(a,b)上有唯一的零点.函数零点个数的判断方法(1) 几何法:对于不能用求根公式的方程,可以将它与函数y =f(x)的图象联系起来,并利用函数的性质找岀零点.特别提醒:①“方程的根”与“函数的零点”尽管有密切联系,但不能混为一谈,如方程x2-2x +1 =0 在[0,2]上有两个等根,而函数f (x) =x 2-2x +1在[0,2]上只有一个零点②函数的零点是实数而不是数轴上的点.⑵代数法:求方程f(x) =0的实数根.例题1:若函数f (x)唯一的一个零点同时在区间(0 ,16 )、( 0,8)、( 0,4 )、( 0,2)内,下列结论:(1)函数f (x)在区间(0, 1)内有零点;(2)函数f (x)在区间(0 , 1)或(1,2)内有零点;(3)函数f (x)在区间[2,16 )内无零点;(4)函数f (x)在区间(0 ,16 )上单调递增或递减.其中正确的有________ (写岀所有正确结论的序号).答案由题意可确定f (x)唯一的一个零点在区间(0, 2)内,故在区间[2 ,16 )内无零点.(3)正确,(1)不能确定,(2)中零点可能为1 ,(4 )中单调性也不能确定.故答案为:(3)例题2:已知函数沁;\" 6 7有零点,则实数的取值范围是()例题3:T^A={^|0<X<2}( B={y|l<y<2},下列图形表示集合堆傑合B的函数时图彖的是( )答案〔找作业答棄…2上魔方格)負和B中y的取億範®不是⑴2}不合题意,故脯]睹环成立;(■丰x刖更肓叵至不是匸、F刖柬值葩壶不是[「兀・不令更意、啟匚=戌立:D中,0<X£2, l£y<2>符合题意,故选D.例题4:函数f (x) =3ax-2a+1 在[-1,1]上存在一个零点,则实数 a的取值范围是( )A. a > 1/5;B. a < -1 ;C. -1 < a < 1/5 ;D. a > 1/5 或a < -1答案: 由题意可得f (-1 )X f ( 1 ) <0,解得•••(5a-1 )(a+1 )>0.'a > 1/5 或 a 二1 故选D例题5:若函数f(x)=x 2+log 2|X|-4的零点m € (a, a+1) , a€ Z,则所有满足条件的a的和为() 答案:-1例题6:已知函数f(x)的图象是连续不断的曲线,有如下的x与f(x)的对应值表:那么,函数f(x)在区间[1,6]上的零点至少有A. 5个B. 4个C. 3个D . 2个答案:C。
函数零点存在性定理集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)函数零点存在性定理:一般地,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a).f(b)<o,那么函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=O,这个c也就是f(x)=0的根.特别提醒:(1)根据该定理,能确定f(x)在(a,b)内有零点,但零点不一定唯一.(2)并不是所有的零点都可以用该定理来确定,也可以说不满足该定理的条件,并不能说明函数在(a,b)上没有零点,例如,函数f(x) =x2 -3x +2有f(0)·f(3)>0,但函数f(x)在区间(0,3)上有两个零点.(3)若f(x)在[a,b]上的图象是连续不断的,且是单调函数,f(a).f(b)<0,则fx)在(a,b)上有唯一的零点.函数零点个数的判断方法:(1)几何法:对于不能用求根公式的方程,可以将它与函数y =f(x)的图象联系起来,并利用函数的性质找出零点.特别提醒:①“方程的根”与“函数的零点”尽管有密切联系,但不能混为一谈,如方程x2-2x +1 =0在[0,2]上有两个等根,而函数f(x)=x2-2x +1在[0,2]上只有一个零点②函数的零点是实数而不是数轴上的点.(2)代数法:求方程f(x)=0的实数根.例题1:若函数f(x)唯一的一个零点同时在区间(0,16)、(0,8)、(0,4)、(0,2)内,下列结论:(1)函数f(x)在区间(0,1)内有零点;(2)函数f(x)在区间(0,1)或(1,2)内有零点;(3)函数f(x)在区间[2,16)内无零点;(4)函数f(x)在区间(0,16)上单调递增或递减.其中正确的有 ______(写出所有正确结论的序号).答案由题意可确定f(x)唯一的一个零点在区间(0,2)内,故在区间[2,16)内无零点.(3)正确,(1)不能确定,(2)中零点可能为1,(4)中单调性也不能确定.故答案为:(3)例题2:已知函数有零点,则实数的取值范围是()答案:例题3:例题4:函数f(x)=3ax-2a+1在[-1,1]上存在一个零点,则实数a的取值范围是()A. a ≥ 1/5; B. a ≤ -1 ; C. -1 ≤ a ≤ 1/5 ; D. a ≥ 1/5 或 a ≤ -1答案:由题意可得f(-1)×f(1)≤0,解得∴(5a-1)(a+1)≥0∴a≥ 1/5 或a≤-1故选D.例题5:|x|-4的零点m∈(a,a+1),a∈Z,则所有满足条件的a的和为若函数f(x)=x2+log2()。