函数极限的定义与基本性质
- 格式:doc
- 大小:232.31 KB
- 文档页数:4
函数的极限知识点总结一、函数极限的定义1. 函数的极限定义:设函数f(x)在点x0的某一去心邻域内有定义。
如果对于任意给定的正数ε,总存在正数δ,使得当0<|x-x0|<δ时,总有|f(x)-A|<ε成立,则称当x自变量趋于x0时,函数f(x)以A为极限(或者以A收敛),记作lim(x→x0)f(x)=A。
2. 函数极限概念解释:函数的极限就是描述了当自变量趋于某一特定的常数时,函数的值随之趋于的一个确定的常数。
3. 极限的图像解释:函数f(x)的极限lim(x→x0)f(x)=A,表示当x自变量在点x0的邻域内取值时,函数图像与直线y=A的距离可以任意小。
即对于任意小的正数ε,总存在正数δ,使得当0<|x-x0|<δ时,总有|f(x)-A|<ε成立。
二、函数极限的性质1. 唯一性:若函数f(x)的极限存在,那么它的极限值是唯一的。
即如果lim(x→x0)f(x)=A1,又有lim(x→x0)f(x)=A2,那么A1=A2。
2. 有界性:若函数f(x)在x0附近有极限,那么它在x0附近是有界的。
即存在一个正数M>0,使得当x自变量在点x0的邻域内取值时,总有|f(x)|<M。
3. 保序性:若函数f(x)的极限存在,那么它的极限值保持不变。
即如果lim(x→x0)f(x)=A,且f(x)≤g(x),那么lim(x→x0)g(x)也存在,并且lim(x→x0)g(x)≤A。
4. 逼近性:如果函数f(x)的极限存在,那么函数f(x)在x0附近与它的极限可以任意接近。
即对于任意小的正数ε,总存在正数δ,使得当0<|x-x0|<δ时,总有|f(x)-A|<ε成立。
三、函数极限的运算规律1. 四则运算法则:设lim(x→x0)f(x)=A,lim(x→x0)g(x)=B,且A,B存在,那么有lim(x→x0)[f(x)± g(x)]=A±B,lim(x→x0)[f(x)·g(x)]=A·B,lim(x→x0)[f(x)/g(x)]=A/B(B≠0)。
函数极限相关知识点总结一、函数极限的定义1. 函数极限的定义在数学中,函数极限是描述函数在某一点附近的行为的概念。
具体来说,对于给定的函数f(x),当自变量x趋于某一点a时,如果函数值f(x)无限接近某个确定的数L,那么我们就称函数f(x)在点a处的极限为L,记作lim_{x→a}f(x) = L。
换句话说,当x在逼近a时,f(x)的取值会趋于L。
这一定义可以用数学符号严格表述为:对于任意正数ε,存在一个正数δ,使得当0< |x-a| <δ时,都有 |f(x)-L| <ε成立。
2. 函数极限的右极限和左极限如果函数f(x)在点a的左侧和右侧分别有极限,则称这两个极限为函数f(x)在点a处的左极限和右极限。
左极限记作lim_{x→a^-}f(x),右极限记作lim_{x→a^+}f(x)。
当左极限、右极限和函数值在点a处都存在且相等时,我们称函数f(x)在点a处存在极限,且极限为此值。
3. 函数极限的无穷极限当自变量x趋于无穷大时,函数f(x)的极限称为无穷极限。
具体来说,若对于任意正数M,存在一个正数N,使得当|x|>N时,都有|f(x)|>M成立,则我们称lim_{x→∞}f(x) = ∞。
类似地,若对于任意正数M,存在一个正数N,使得当|x|>N时,都有|f(x)|<M成立,则我们称lim_{x→∞}f(x) = -∞。
4. 函数极限的存在性函数极限在很多情况下是存在的,但也有一些特殊的函数,它们在某些点处的极限并不一定存在。
比如,当函数在某一点的左右极限不相等时,该点处的极限可能不存在;当函数在某一点的极限为无穷大时,该点处的极限也可能不存在。
因此,在研究函数极限时,我们需要考虑函数在极限点处的性质,以确定函数极限是否存在。
二、函数极限的求解方法1. 用极限的定义求解函数极限函数极限的定义是要求对任意给定的ε>0,存在一个δ>0,使得当0<|x-a|<δ时,都有|f(x)-L|<ε成立。
第三节函数极限的定义本节要点一、函数在有限点处的极限二、函数在无穷大处的极限三、有极限函数的基本性质一、函数在有限点处的极限函数在有限点处的极限的描述性定义211()x f x x 例如函数-=-x12yo21()1x f x x -=- 从图形中可以看出:尽管函数在 点 处没有定义,但当 不等于1而无限趋近于1时,相应的函数值无限接近于2.1x =x设函数 在点 的某个去心邻域 内有定义,如果在变量 ( ) 的过程中,对应的函数值无限接近于确定的常数 ,就说当时函数的极限为 ,并记作 .这种类型的极限称为函数在有限点处的极限.() y f x =0x A A 0lim ()→=x x f x A 0x x ≠0x x →()f x 0x x →“不论你要求f x ()与A 多么接近,只要x 与x 0充分靠近以后(但x x ≠0),就能使f x ()与A 变得那么接近”,换句话说,就是“不论你要求f x A ()-多么小,只要x x -0足够小以后(但x x ≠0),f x A ()-就能变得那么小”. 这最后一句话是可以用数学式子来精确刻划的.这个描述性定义是说:于是就得到函数在有限点处极限的精确定义 ( 语言).δε-(),f x A ε-<()f x 0x ε00x x δ<-<定义 设函数 在点 的某个去心邻域中有定义, 如果存在常数 ,使得对于任意给定的正数 ,总存在 正数 , 只要当 满足 时 ,都有 A δx 0lim ().x xf x A →=或 ()0 ().f x A x x →→那么常数 就称作函数 当 时的极限,记 为 A ()f x 0x x →().,||,,εδδε<-<-<>∃>∀A x f x x 有时当0000即()defx x A x f ⇔=→0lim 函数的极限定义也称函数极限的ε —δ 定义xyf (x )x A的几何解释 )(lim A x f x x =0→δ-0x δ+0x ,0>∀ε,0>∃δ时,||00δx x <-<当.)(ε<-A x f 恒有该邻域内所有点 x 的纵坐标 f (x )落在 A 的 ε 邻域 内, 即相应的点(x,f (x )) 落在绿色区域内.函数的极限∀A 的ε邻域, ∃ x 0的去心δ 邻域, A +εA –εAxyx ε+A ε-A δ-0x δ+0x 函数的极限的几何解释 )(lim A x f x x =0→.f (x )该邻域内所有点 x 的纵坐标 f (x )落在 A 的 ε 邻域 内, 即相应的点(x,f (x )) 落在绿色区域内.∀A 的ε邻域, ∃ x 0的去心δ 邻域,.)(ε<-A x f 恒有,0>∀ε,0>∃δ当时,||00δx x <-<Axyx δ-0x δ+0x ε+A ε-A ε+A ε-A ε+A ε-A ε+A ε-A ε函数的极限的几何解释 )(lim A x f x x =0→.f (x )该邻域内所有点 x 的纵坐标 f (x )落在 A 的 ε 邻域 内, 即相应的点(x,f (x )) 落在绿色区域内.∀A 的ε邻域, ∃ x 0的去心δ 邻域,.)(ε<-A x f 恒有,0>∀ε,0>∃δ当时, ||00δx x <-<A xyx ε+A ε-A δ-0x δ+0x 函数的极限的几何解释 )(lim A x f x x =0→.εf (x )该邻域内所有点 x 的纵坐标 f (x )落在 A 的 ε 邻域 内, 即相应的点(x,f (x )) 落在绿色区域内.∀A 的ε邻域, ∃ x 0的空心δ 邻域,.)(ε<-A x f 恒有,0>∀ε,0>∃δ当时,||00δx x <-<A xyx ε+A ε-A δ-0x δ+0x δ-0x δ+0x δ-0x δ+0x δδ-0xδ+0x 函数的极限的几何解释 )(lim A x f x x =0→.εf (x )该邻域内所有点 x 的纵坐标 f (x )落在 A 的 ε 邻域 内, 即相应的点(x,f (x )) 落在绿色区域内.∀A 的ε邻域, ∃ x 0的空心δ 邻域,.)(ε<-A x f 恒有,0>∀ε,0>∃δ当时,||00δx x <-<Axyx ε+A ε-A δεδ-0x δ+0x 函数的极限的几何解释 )(lim A x f x x =0→.f (x )该邻域内所有点 x 的纵坐标 f (x )落在 A 的 ε 邻域 内, 即相应的点(x,f (x )) 落在绿色区域内.∀A 的ε邻域,.)(ε<-A x f 恒有,0>∀ε,0>∃δ当∃ x 0的去心δ 邻域, 时,||00δx x <-<Axyx δε+A ε-A εε-A εεεδ-0x δ+0x 函数的极限的几何解释 )(lim A x f x x =0→.f (x )该邻域内所有点 x 的纵坐标 f (x )落在 A 的 ε 邻域 内, 即相应的点(x,f (x )) 落在绿色区域内.∀A 的ε邻域,.)(ε<-A x f 恒有,0>∀ε,0>∃δ当∃ x 0的去心δ 邻域, 时,||00δx x <-<Axyx εεδδ-0x δ+0x 函数的极限的几何解释 )(lim A x f x x =0→.εf (x )该邻域内所有点 x 的纵坐标 f (x )落在 A 的 ε 邻域 内, 即相应的点(x,f (x )) 落在绿色区域内.∀A 的ε邻域, ∃ x 0的去心δ 邻域,.)(ε<-A x f 恒有,0>∀ε,0>∃δ当时,||00δx x <-<Axyx εεδ-0x δ+0x δ-x δ+x δ函数的极限的几何解释 )(lim A x f x x =0→.εf (x )该邻域内所有点 x 对应的 f (x )落在 A 的 ε 邻域 内, 即相应的点(x,f (x )) 落在绿色区域内.∀A 的ε邻域, ∃ x 0的去心δ 邻域,.)(ε<-A x f 恒有,0>∀ε,0>∃δ当时,||00δx x <-<例如 设函数211().1 0 1x x f x x x ⎧-≠⎪=-⎨⎪=⎩x1 2yo 21()1x f x x -=-1δ-1δ+注:函数 在点 处的极限与函数在这一点是否有定义没有关系,它所反映的是在该点附近的变化趋势. ()f x 0x 则,()1lim 2,x f x →=()f x 可见,极限与的取值没有关系. ()10f =(1) lim x x C→0(2) lim x x x→0(4) lim cos x x x→2(3) lim(21)x x →+0(6) lim x x x →0(7) lim xx x e→12214(5) lim 21x x x →--+练习:写出下列函数在指定点处的极限。
函数极限的知识点总结一、函数极限的定义在介绍函数极限的定义之前,我们先来了解一下“极限”的概念。
在数学中,极限是指当自变量趋于某一特定的值时,函数的取值趋于的值。
如果函数f(x)在x趋于a的过程中,它的取值趋于一个确定的常数L,那么我们就称L是函数f(x)在点x=a处的极限,记作lim (x→a)f(x)=L。
这个定义可以用符号来表示为:对于任意的ε>0,存在一个δ>0,当0<|x-a|<δ时,有|f(x)-L|<ε,那么我们就称lim(x→a)f(x)=L。
根据极限的定义,我们可以得到一些结论:1. 如果一个函数在点x=a处的极限存在,那么它只有一个极限值。
2. 如果一个函数在点x=a处的极限不存在,那么它没有极限值。
3. 如果一个函数在点x=a处的极限存在且等于L,那么在点x=a的邻域内,函数的取值都趋于L。
函数极限的定义为我们提供了计算函数在某一点处的极限的依据,下面我们将介绍一些常见的计算方法。
二、函数极限的计算方法1. 代入法代入法是最直接的计算函数极限的方法,当函数的极限存在时,我们可以直接将自变量的值代入函数中计算即可。
例如,计算lim(x→2)(3x+1),我们只需要将x=2代入函数中得到lim(x→2)(3x+1)=3*2+1=7。
2. 分式的极限对于分式函数的极限计算,我们通常采用有理化或者分子分母同除等方法,将分式转化为更简单的形式进行计算。
例如,计算lim(x→1)(x^2-1)/(x+1),我们可以将分式有理化为(x-1)(x+1)/(x+1),然后可以进行约分化简得到lim(x→1)(x-1)=0。
3. 夹逼定理夹逼定理也是一种常见的计算函数极限的方法,它适用于一些复杂函数的极限计算。
夹逼定理的原理是,如果函数f(x)在x=a的邻域内被另外两个函数g(x)和h(x)夹在中间,并且lim(x→a)g(x)=lim(x→a)h(x)=L,那么函数f(x)在x=a处的极限也存在且等于L。
函数极限的定义与基本性质
本章主要阐述函数的定义与基本性质,其中,最为重要的函数的极限的模型来自于对自由落体运动,由平均速度,
h
gt h t g 2
221)(21-+(1) 求解瞬时速度,也就是说要考察上述函数(1)中h (注意,t 是固定的),当h 无限变小时,它的变化趋势,也就是看它是否无限接近于一个数。
首先看到,这个函数在0=h 是没有定义的,但至少在包含0的一个开区间(0点除外)有定义,h 不等于0的时候,有
gh gt h gt h t g 2
121)(2122+=-+ 当{}h 很小的时候,左边的函数值与右边的函数值的差也很小,而且当h 无限接近于0的时候,左边的函数值也无限接近于gt 。
接下来,把“接近”、“无限”等语言精确化,便得到我们所要的函数极限概念的定义:
1.1定义: 设)(x f 在0x 点附近(除0x 点以外)有定义,A 是一定数,若对任意给定的0>ε,存在0>δ,当δ<-<00x x 的时候,有
ε<-A x f )(,
则称A 是函数)(x f 当x 趋于0x 的时候的极限,记为
A x f x x =→)(lim 0
或者记为: A x f →)( (0x x →)
1.2 定理: 若
B x g x x A x f x x =→=→)(lim ,)(lim 00,则 (1)
B A x g x f x x ±=±→))()((lim 0 (2)
B A x g x f x x •=•→))()((lim 0 (3)B
A x g x f x x =→)()(lim 0 1.3 推论: 若
A x f x x =→)(lim 0,c 为常数,则 []cA x cf x x =→)(lim 0
1.4 局部有界性定理:
若 A x f x x =→)(lim 0
,则存在0>δ,使得)(x f 在 ),(),(0000δδ+⋃-x x x x 上有界。
1.5 局部保号性定理:
A x f x x =→)(lim 0
>0, 则存在0>δ,当δ<-<00x x 的时候, 有: 02)(>>
A x f 1.6定理:
若
0)(lim 0=→x f x x ,且存在0>δ,)(x g 在),(),(0000δδ+⋃-x x x x 上有界,则
0)()(lim 0
=→x g x f x x
1.7 局部保序性:
若 B x g x x A x f x x =→=→)(lim ,)(lim 0
0,且B A >,则存在0>δ,当δ<-<00x x 的时候,)()(x g x f >。
1.8 极限不等式:
若存在0>δ,当δ<-<00x x 的时候,有)()(x g x f ≤,且B x g x x A x f x x =→=→)(lim ,)(lim 0
0,则B A ≤。
1.9极限唯一式:
若极限 )(lim 0
x f x x →存在,则极限是唯一的。
2.0夹迫性:
若存在0>δ,当δ<-<00x x 的时候,有)()()(x h x g x f ≤≤,并且 A x h x x x f x x =→=→)(lim )(lim 0
0,则
A x g x x =→)(lim 0 2.1 海涅定理:
A x f x x =→)(lim 0
的充分必要条件是对任意的以0x 为极限的数列{}n x ,且0x x n ≠(n=1,2,3........),都有A x f x n =∞
→)(lim 。
海涅定理深刻的揭示了函数极限与数列极限的关系,正确的理解这个定理,有助于理解变量的连续变化和离散变化之间的关系,从而进一步理解函数极限的概念。
2.2定理: 设)(u f 在0u 点附近)(0u u ≠有定义,且 A u f u u =→)(lim 0,而)(x g u =在0x 点附近(0x x ≠)有定义,0)(u x g ≠且00
)(lim u x g x x =→,则A x g f x x =→))((lim 0。