三角形的面积课堂实录
- 格式:doc
- 大小:79.00 KB
- 文档页数:13
《三角形的面积计算》课堂实录一、课前谈话师:你从屏幕上了解到什么?生:今天我们要学习三角形面积的计算。
一、教学新知:师:今天给我们同学上的内容是三角形的面积计算。
你知道三角形的面积是怎么算的吗?生:底乘高的积再除以2师:你是怎么知道的?生:因为两个同样的三角形可以拼成一个平行四边形。
师:你拼过了吗?生:没有。
师:好,那带着这个问题,我们就来研究一下三角形的面积。
老师呢,刚才给同学们发了一些材料,而且老师准备给同学们提一些小提示,自己在研究的时候,(出示课件),我们来齐读一遍。
生:选一个或两个三角形,原来的三角形与转化后的图形之间有什么联系?小组内互相说说三角形面积计算公式的推导过程。
师:小组长把信封掏出来分发给其他同学,然后我们同学自己研究一下,好,现在开始。
如果有什么问题,可以示意我一下。
(学生研究)师:好,我看好多同学都已经停下来了,停下来了是不是有想法了,谁要上来说说看?带着你的材料上来,其他同学的手停一停。
生:把两个三角形合在一起,长方形的长就是三角形的底,长方形的宽就是三角形的高,长乘宽就是等于这两个三角形,再除以2就是一个三角形的面积。
师:好,他说得非常好,我把它贴到黑板上去。
刚才他怎么说的,我把它写下来。
长乘宽算的是什么?生:长方形的面积。
师:然后求一个怎么办呢?生:除以2师:好,这小组研究出来了,还有不同的吗?生:我把它拼成平行四边形,所以说应该是底乘高再除以2师:他拼的是平行四边形,你介绍一下怎么是底乘高再除以2生:底乘高的积再除以2,因为是两个三角形。
师:你们听明白了没有?谁来说说看生:他说底乘高再除以2,因为两个三角形拼成平行四边形,底乘高就是平行四边形,再除以2就是一个三角形了。
师:好的,我也把它贴在这里。
你们都是用拼的方法,是底乘高,是表示什么?生:是表示平行四边形的面积,再除以2是吧。
师:还有吗?这位男同学请上来。
生:两个三角形组成一个正方形,边长乘边长就是这个正方形的面积,再除以2就是一个三角形的面积。
课堂实录:《三角形的面积》上课时间:2024年4月15日上午第二节授课教师:李老师授课班级:四年级(2)班【开场导入】李老师面带微笑,手持两个形状不同但面积相近的三角形纸板走进教室,学生们好奇地注视着。
李老师:“同学们,大家看,我手里有两个特别的图形,它们是什么形状的呢?”学生(齐声):“三角形!”李老师:“非常好!那么,如果我想知道这两个三角形哪个面积更大一些,你们有什么好办法吗?”(学生开始讨论,有的提出用尺子量边长,有的则困惑不解。
)李老师:“看来大家都很有想法,不过今天我们要学习一种更直接、更科学的方法来计算三角形的面积。
那就是——使用公式!”【新知讲授】李老师利用多媒体展示了一个直角三角形,并标注出它的底和高。
李老师:“首先,我们来看这个直角三角形。
在这个三角形里,最长的这条边我们叫它斜边,但当我们谈论面积时,更重要的是这两条较短的边——它们分别被称为底和高。
大家看,如果我们把这条高垂直地移到三角形的另一边,会形成一个长方形的一部分。
通过这个长方形,我们能发现什么秘密呢?”(学生观察并思考,有的学生开始尝试画图理解。
)李老师继续引导:“想象一下,如果我们有两个这样的三角形,把它们拼在一起,会形成一个什么图形?”学生(兴奋地):“长方形!”李老师:“对极了!所以,这个长方形的面积就是两个三角形面积的总和。
而长方形的面积我们是怎么计算的?”学生:“长乘以宽。
”李老师:“非常好!那么在这个情况下,长方形的‘长’就是三角形的底,而‘宽’就是三角形的高。
因此,一个三角形的面积就是底乘以高的一半,即面积 = (底×高) ÷ 2。
这就是我们今天要学习的三角形面积的计算公式。
”【实践操作】为了让学生更好地理解和应用这个公式,李老师分组发放了不同形状(锐角、钝角、直角)的三角形纸片,并要求学生测量底和高的长度,然后计算面积。
李老师巡视各组,耐心解答学生的疑问,鼓励学生尝试用公式解决实际问题。
《三角形的面积》课堂实录课题:三角形的面积授课教师:李老师时间:2024年9月28日地点:第三中学八年级(1)班教学目标:1. 理解三角形面积的计算公式。
2. 掌握三角形面积的计算方法。
3. 通过实际问题,培养学生的观察能力和解决问题的能力。
教学过程:导入新课:李老师:同学们,我们之前学习了矩形和平行四边形的面积计算,今天我们来探索三角形的面积是如何计算的。
新课讲解:1. 公式推导:李老师:首先,我们来看一个三角形。
如果我们将两个完全一样的三角形拼在一起,会形成一个平行四边形。
那么,三角形的面积就是平行四边形面积的一半。
学生A:老师,平行四边形的面积是底乘以高,那三角形的面积是不是就是底乘以高的一半?李老师:非常好,你已经掌握了平行四边形面积的计算方法。
对于三角形,面积公式就是底乘以高,然后除以2。
2. 公式应用:李老师:现在,我们来看一个例题。
假设有一个三角形,底是6厘米,高是4厘米,它的面积是多少?学生B:老师,我们可以将公式代入计算,面积= 6厘米* 4厘米/ 2 = 12平方厘米。
李老师:完全正确,这就是三角形面积的计算方法。
3. 巩固练习:李老师:接下来,我们来做几个练习题。
请大家拿出练习本,完成以下题目。
练习题1:一个三角形的底是8厘米,高是5厘米,求它的面积。
练习题2:一个三角形的底是10厘米,高是7厘米,求它的面积。
(学生开始计算,老师巡视指导)4. 实际应用:李老师:现在,我们来看一个实际问题。
假设我们有一个三角形的花园,底是12米,高是9米,我们需要计算它的面积来估算需要多少种子。
学生C:老师,我们可以用公式计算,面积= 12米* 9米/ 2 = 54平方米。
李老师:非常好,这就是我们如何将数学知识应用到实际生活中。
课堂小结:李老师:今天我们学习了三角形面积的计算方法,希望大家能够熟练掌握。
记住,三角形的面积是底乘以高的一半。
作业布置:1. 完成课后习题第5-10题。
2. 思考:如果一个三角形的底和高都增加一倍,面积会如何变化?课堂结束:李老师:今天的课就到这里,希望大家能够好好复习,明天我们将继续学习其他几何图形的面积计算。
《三角形的面积》课堂实录一、课程导入师:同学们,大家好!今天我们将要学习一个新的几何概念——三角形的面积。
首先,请大家回忆一下,我们之前学过哪些与面积有关的图形?生:(回答)长方形、正方形、圆形等。
师:很好,那么大家猜猜看,我们如何计算三角形的面积呢?(学生积极讨论,提出各种想法)师:大家的想法都很棒,但我们今天将学习一个更精确、更通用的方法。
二、三角形面积公式师:首先,我们来认识一下三角形面积的公式。
公式:三角形面积 = (底×高) ÷ 2其中,“底”是指三角形任意一边,“高”是指与这条底边相对的顶点到底边的垂直距离。
三、公式推导过程师:那么这个公式是怎么来的呢?我们可以通过一个简单的方式来推导。
(老师使用教具,展示如何将一个三角形转化为一个矩形,从而推导出面积公式)四、实例演示师:现在,我们来看一个具体的例子。
(老师使用黑板上的图形,指导学生如何找到三角形的底和高,然后计算面积)五、学生互动与问答师:好的,现在我们来进行互动环节。
大家如果有任何问题或者不明白的地方,都可以提出来。
(学生提出问题,老师逐一解答)六、课堂练习与反馈师:接下来,请大家完成课本上的练习题,我会走下来看看大家的完成情况。
(学生练习,老师巡视指导)师:我看到大家都做得很快,很好。
哪位同学愿意分享一下自己的答案?(学生分享答案,老师点评)七、课程总结师:通过今天的学习,我们掌握了三角形面积的计算方法。
希望大家能够熟练掌握这个公式,并且能够灵活运用到实际问题中去。
八、布置课后作业师:最后,我给大家布置一些课后作业,请大家回家后认真完成。
(老师布置作业,学生记录)师:好的,今天的课程就到这里,下课!(学生起立,敬礼,老师还礼,宣布下课)。
《三角形的面积》课堂实录一、课堂导入教师:大家好,今天我们将一起探讨一个有趣的课题:三角形的面积。
我们已经知道如何计算正方形、长方形的面积,那么三角形面积的计算方法又是什么呢?二、三角形面积公式回顾教师:首先,让我们回顾一下已经学过的图形面积的计算方法。
正方形和长方形的面积公式是什么?学生:正方形面积 = 边长 x 边长,长方形面积 = 长 x 宽。
教师:非常好。
那么,圆形和扇形的面积公式又是什么呢?学生:圆形面积 = π x 半径²,扇形面积 = (θ/360) x π x 半径²,其中θ是扇形的角度。
三、公式推导与证明教师:接下来,我们将推导三角形的面积公式。
首先,请大家拿出纸和笔,跟随我的步骤一起操作。
步骤1:画一个三角形,并作其高。
步骤2:将三角形的高分成两段相等的部分。
步骤3:连接这两段相等高与底边的中点。
步骤4:将这个新形成的线段作为直径,画一个圆。
教师:根据圆的性质,我们可以得到三角形的面积是这个圆面积的一半。
由此,我们可以推导出三角形的面积公式为:S = (1/2) x 底 x 高。
四、公式应用与例题解析教师:现在,我们已经得到了三角形的面积公式,接下来我们通过几个例题来练习一下这个公式的应用。
例题1:一个三角形的底是6cm,高是4cm,求其面积?学生答案:S = (1/2) x 6cm x 4cm = 12cm²。
教师点评:正确!大家已经掌握了三角形面积公式的应用。
五、学生实践与讨论教师:现在,请大家自己画一个三角形,并计算其面积。
完成后,请与同桌交换答案,并讨论你们的计算方法和结果是否一致。
学生活动:学生自己画图并计算面积,然后与同桌交换答案进行讨论。
六、课堂小结教师:通过这节课的学习,我们不仅学会了三角形面积的计算方法,还深入理解了三角形与圆的内在关系。
希望大家在课后能够进一步巩固和拓展所学知识。
七、作业布置教师:课后,请完成以下题目:1.计算给定三角形的面积(给出底和高)。
《三角形的面积》课堂实录教学目标:1、理解三角形面积的概念。
2、掌握用底和高计算三角形面积的方法(公式:面积=1/2×底×高)。
3、能够应用公式解决实际问题。
4、培养学生的观察力、动手能力和逻辑推理能力。
课堂实录:李老师:(手持一个三角形教具)同学们,看老师手里拿的是什么图形?学生齐答:三角形!李老师:非常好!那么,你们知道如何计算这个三角形的面积吗?今天,我们就一起来探索三角形面积的计算方法。
李老师:首先,请大家看大屏幕。
(展示一系列不同大小的三角形图片)这些三角形有大有小,形状各异,但它们都有一个共同点——都是由三条边围成的封闭图形。
那么,怎么来计算它们的面积呢?李老师:接下来,我们通过一个实验来找找答案。
请每位同学从文具袋中取出两个完全一样的三角形,试着将它们拼成一个我们熟悉的图形。
(学生动手操作,大多数学生拼出了平行四边形或长方形)李老师:大家做得非常好!谁愿意上来展示一下你的作品,并说说你拼成了什么图形?学生A上台展示,并说:“我拼成了一个平行四边形。
”李老师:很好!如果我们知道这个平行四边形的面积,那么一个三角形的面积就是它的一半,因为我们是用两个三角形拼成的。
那么,平行四边形的面积怎么计算呢?学生齐答:底乘以高。
李老师:对,平行四边形的面积=底×高。
所以,三角形的面积=1/2×底×高。
这就是我们今天要学习的三角形面积的计算公式。
李老师:现在,我们一起来读一遍这个公式,并理解它的含义。
(引导学生齐声朗读公式,并解释每个部分的意义)李老师:接下来,我们来做几道练习题,检验一下大家是否掌握了三角形面积的计算方法。
(展示练习题,包括已知底和高求面积、已知面积和底求高、以及通过图形变换计算面积等题型)学生独立完成后,李老师邀请几位学生上台讲解自己的解题思路,并适时给予指导和鼓励。
课堂总结:李老师:通过今天的学习,我们掌握了三角形面积的计算公式,即面积=1/2×底×高。
《三角形的面积课堂实录》上课铃声响起,同学们迅速回到座位上,准备好数学课本和学习用具。
今天,我们将一起探索三角形的面积。
老师:“同学们,在之前的学习中,我们已经认识了三角形,那谁能来说一说,生活中都有哪些三角形的物品呢?”学生 A 举手回答:“老师,我家的三角尺是三角形的。
”学生 B 也迫不及待地说:“老师,路边的交通标志有很多是三角形的。
”老师微笑着点头:“大家观察得都很仔细。
那我们今天就来深入研究一下三角形的面积。
大家先回忆一下,我们之前是怎么求长方形和正方形的面积的?”学生们纷纷回答:“长方形的面积等于长乘宽,正方形的面积等于边长乘边长。
”老师:“很好!那大家想一想,三角形的面积该怎么求呢?我们能不能把三角形转化成我们已经学过的图形来研究呢?现在,请同学们拿出准备好的三角形纸片,试着动手操作一下。
”同学们纷纷动手,有的同学把两个完全一样的三角形拼成了一个平行四边形,有的同学把一个三角形沿着高剪开,拼成了一个长方形。
老师:“大家先停一停,我们一起来看看这位同学的方法。
他把两个完全一样的三角形拼成了一个平行四边形,那拼成的平行四边形和原来的三角形有什么关系呢?”学生 C 站起来说:“老师,我发现拼成的平行四边形的底就是原来三角形的底,平行四边形的高就是原来三角形的高。
”老师:“非常棒!那平行四边形的面积怎么求呢?”学生们齐声回答:“平行四边形的面积等于底乘高。
”老师:“那一个三角形的面积呢?”学生们思考片刻后,学生 D 回答:“因为两个完全一样的三角形可以拼成一个平行四边形,所以三角形的面积应该是平行四边形面积的一半,也就是三角形的面积等于底乘高除以 2。
”老师:“同学们真聪明!那我们再来看这位同学把三角形沿着高剪开拼成一个长方形的方法。
大家观察一下,拼成的长方形的长和宽与原来三角形的底和高又有什么关系呢?”经过一番讨论,同学们得出结论:长方形的长是三角形的底的一半,长方形的宽就是三角形的高。
《三角形的面积》教学实录教学目标:1、探究并驾驭三角形面积公式,能正确计算三角形的面积,并能应用公式解决简洁的实际问题。
2、使学生经验操作、视察、探讨、归纳等数学活动,进一步体会转化方法的价值,开展学生的空间观念和初步的推理实力。
3、让学生在探究活动中获得踊跃的情感体验,进一步造就学生学习数学的爱好。
教学重点:探究并驾驭三角形面积计算公式,能正确计算三角形的面积。
教学难点:三角形面积公式的探究过程。
教学方法:学生合作探究教具打算:课件、平行四边形纸片、两个完全一样的三角形各三组、剪刀等。
学具打算:每个小组至少打算完全一样的直角三角形、锐角三角形、钝角三角形各两个,一个平行四边形,剪刀。
教学过程:一、创设情境、导入。
师:昨天下年,教师接到一个任务,想请咱们班的同学帮我一起解决,你们情愿吗?今年“六一”儿童节,我们学校少先队要汲取101名同学入队,须要做101条红领巾〔电脑出示:红领巾〕,须要买多少布料?〔电脑出示问题:须要买多少布料〕师:要解决这个问题,必需知道什么?生:必需知道一条红领巾的大小。
师:也就是要知道一条红领巾的面积。
你们看看红领巾是什么形态的?生:三角形。
师:三角形面积的计算方法,我们还没有接触过,这节课我们就一起来探究三角形的面积。
〔板书:三角形的面积〕[设计意图:利用学生熟识的红领巾引入,调动学生探究的热忱。
]二、新授。
1、复习:师:回忆一下,平形四边形面积的计算方法是怎么推导的?生1:将平行四边形沿着它的一条高裁下一局部,平移到另一边,变成一个长方形。
师:公式是怎么推导出来的?生2:平行四边形的底就是长方形的长,平行四边形的高就是长方形的宽。
因为长方形面积=长×宽,所以,平行四边形面积=底×高。
师:大家对平形四边形的面积公式的推导驾驭得不错〔电脑出示:〔1〕转化成已学过的求面积计算的图形。
〔2〕找到它们之间的联系,推导出面积计算的公式〕师:我们先把平行四边形转化成已学会的计算面积的图形长方形,然后找到平行四边形与长方形之间的联系,推导出了平行四边形的面积公式,我们能不能依照平行四边形面积公式推导的方法,试着找到三角形面积计算的方法呢?生:能。
三角形的面积》课堂实录三角形的面积》课堂实录一、情境引入老师:同学们,我们每天都佩戴着鲜艳的红领巾,高高兴兴地来到学校研究新的知识。
那么,你们知道做一条红领巾需要多少布料吗?学生:(不知道)老师:我们佩戴的红领巾是什么形状的?学生:(三角形)。
老师:那么,怎样才能计算三角形的面积呢?这节课我们就一起来研究三角形的计算方法。
二、探究新知1、复平行四边形面积的求法老师:回忆一下,平行四边形面积的计算公式是什么?它是怎么推导出来的?学生:我们是先把平行四边形转化成长方形,然后运用学过的长方形面积的计算公式,找到平行四边形与长方形之间的联系,推导出了平行四边形面积的计算公式。
老师:今天这节课,我们将继续用转化的数学思想来探索三角形的面积如何计算。
2、第一次操作实践老师:那么,怎样才能把三角形转化成我们所学过的图形呢?请同学们拿出学具袋里的各种三角形,两人一组想一想,拼一拼。
(教师巡回指导)学生:老师,我们组准备的两个三角形拼不出来。
(学生演示拼的过程)老师:那是为什么呢?学生:因为它们的两个三角形不完全相同。
我们组用形状大小完全相同的两个三角形已经拼出来了。
(学生演示出形状大小完全相同的两个三角形)老师:看来,我们在拼的时候一定要选取大小形状完全相同的两个三角形来拼。
强调“完全相同”几个字。
小组讨论,老师巡回指导,对弱组进行适时点拨。
老师:同学们都拼好了,那么谁来介绍一下你们组的拼法呢?学生1:我们用两个完全相同的锐角三角形拼成了一个平行四边形。
(学生先展示拼的过程,再把拼的图形贴在黑板上)学生2:我们也拼出了一个平行四边形,但是我们组是用两个完全相同的钝角三角形拼成的。
(学生先展示拼的过程,再把拼的图形贴在黑板上)学生3:我们用两个完全相同的直角三角形拼成了一个长方形。
(学生先展示拼的过程,再把拼的图形贴在黑板上)学生4:我们用两个完全相同的等腰角三角形拼成了一个正方形。
(学生先展示拼的过程,再把拼的图形贴在黑板上)老师:小结,课件展示几种拼法。
五上三角形面积计算课堂实录好的,下面是一份可能超过 400 字的五年级上册《三角形面积计算》课堂实录:一、情境导入教师:同学们,我们之前学习了平行四边形的面积计算公式,谁还记得它是怎么推导出来的?学生:通过将平行四边形沿着高剪成两个三角形,然后拼成一个长方形,长方形的面积就是平行四边形的面积。
教师:非常好!那么今天我们将学习如何计算三角形的面积。
二、探索三角形面积计算公式教师:请同学们拿出准备好的三角形纸片,我们来尝试通过拼接的方法,将两个三角形拼成一个我们已经学过的图形。
学生动手操作,并展示成果。
学生 1:我将两个相同的直角三角形拼成了一个长方形。
学生 2:我将两个相同的锐角三角形拼成了一个平行四边形。
教师:非常好!通过拼接,我们可以发现,两个完全相同的三角形可以拼成一个平行四边形。
那么,这个平行四边形的面积与原来两个三角形的面积有什么关系呢?学生:平行四边形的面积是原来两个三角形面积的和。
教师:那么,我们可以得出结论,三角形的面积等于平行四边形面积的一半。
如果我们已经知道平行四边形的面积计算公式,那么三角形的面积计算公式是什么呢?学生:三角形的面积=底×高÷2三、练习巩固教师:现在,请同学们运用三角形面积计算公式,计算出课本上给出的几个三角形的面积。
学生进行计算,并展示计算过程和结果。
四、课堂总结教师:今天我们学习了如何计算三角形的面积,通过将两个完全相同的三角形拼成一个平行四边形,我们得出了三角形面积的计算公式:面积=底×高÷2。
希望同学们在以后的学习中能够灵活运用这个公式。
以上是一份关于五年级上册《三角形面积计算》的课堂实录,你可以根据实际情况进行修改和调整。
以下是一个三角形面积课堂实录的示例:一、导入师:同学们,我们之前学习了长方形和正方形的面积计算,谁能回忆一下它们的面积公式是什么?生:长方形的面积= 长×宽,正方形的面积= 边长×边长。
师:非常好。
今天我们来学习一种新的图形的面积——三角形的面积。
二、探究新知1. 提出问题师:同学们,你们能想办法求出这个三角形的面积吗?(出示一个三角形纸片)生:可以用数方格的方法。
生:也可以把三角形转化成我们学过的图形来计算。
2. 动手操作师:下面请同学们分组动手操作,尝试用不同的方法求出三角形的面积。
(学生分组操作,教师巡视指导)3. 展示交流师:哪个小组愿意来展示你们的方法?小组1:我们用数方格的方法,数出这个三角形的面积是 6 平方厘米。
小组2:我们把三角形沿着高剪开,拼成了一个平行四边形。
这个平行四边形的底等于三角形的底,高等于三角形的高。
因为平行四边形的面积= 底×高,所以三角形的面积= 底×高÷2。
小组3:我们把两个完全一样的三角形拼成了一个平行四边形,这个平行四边形的面积是三角形面积的 2 倍。
所以三角形的面积= 底×高÷2。
4. 总结公式师:同学们通过动手操作,找到了多种求三角形面积的方法。
我们发现,无论是把三角形转化成平行四边形,还是用两个完全一样的三角形拼成平行四边形,它们都有一个共同的特点,就是三角形的面积等于底乘高除以2。
师:如果用字母S 表示三角形的面积,a 表示三角形的底,h 表示三角形的高,那么三角形的面积公式可以表示为:S = ah ÷2。
三、巩固练习1. 计算下面三角形的面积。
(出示练习题)2. 解决实际问题。
(出示应用题)四、课堂总结师:今天我们学习了三角形的面积,通过动手操作和推导,我们得出了三角形的面积公式是S = ah ÷2。
在今后的学习中,我们可以运用这个公式来解决更多的问题。
五、布置作业完成课本上的相关习题。
《三角形的面积》课堂实录《三角形的面积》课堂实录一、导入新课大家好,今天我们将学习一种新的几何图形——三角形。
在我们的日常生活中,三角形结构到处可见,比如电线杆与地面构成的三角形,还有自行车架也是由三角形构成的。
那么,你们知道三角形的面积是怎么计算的吗?今天我们就来探讨这个问题。
二、教学目标本节课的教学目标是让学生掌握三角形面积的计算方法,并能解决实际生活中关于三角形面积的问题。
三、教学内容及过程首先,我们先来回顾一下之前学过的平行四边形的面积计算方法,为学习三角形的面积打下基础。
然后,我们通过将三角形转化为已知的平行四边形来推导三角形的面积计算公式。
这个过程需要学生们积极思考和动手操作,将三角形分成若干个小三角形,再拼凑成平行四边形。
接下来,我们将通过一些例题来加深学生对三角形面积计算公式的理解。
比如,计算一个等边三角形的面积,或者一个直角三角形的面积。
最后,我们会让学生们用所学知识解决生活中的实际问题,比如计算一个实际项目的三角形区域面积。
四、教学重点与难点教学重点:让学生掌握三角形面积的计算公式,并能够应用在实际问题中。
教学难点:如何将三角形转化为平行四边形,以及如何正确使用三角形面积的计算公式。
五、教学方法与手段本节课将采用讲解、示范、小组讨论和实践操作等多种教学方法,以帮助学生更好地理解和掌握三角形面积的计算。
同时,我们还将使用多媒体教学设备进行演示和讲解,以增强教学的直观性和趣味性。
六、课堂小结本节课我们学习了如何计算三角形的面积,并通过实践操作和例题讲解等方式加深了大家对这一概念的理解和应用。
希望大家能够在课后继续复习和巩固,掌握这一重要的几何概念。
三角形的面积课堂实录记录一、课程导入(3分钟)师:同学们,我们之前学习了平行四边形的面积计算方法,谁能回忆一下平行四边形的面积公式是怎样推导出来的?生1:把平行四边形通过剪拼转化成长方形,根据长方形的面积推导出平行四边形的面积。
师:很好!那今天我们来探究三角形的面积计算方法。
二、新课讲授(20分钟)1.提出问题(2分钟)师:同学们,每个小组的桌上都有一些三角形学具,大家观察一下,想一想怎样才能求出三角形的面积呢?(学生小组讨论,教师巡视指导)2.动手操作(8分钟)师:现在请同学们利用手中的学具,尝试通过剪拼、拼接等方法,把三角形转化成我们学过的图形。
(学生动手操作,教师参与小组活动)3.展示交流(6分钟)师:哪个小组愿意来展示一下你们的转化方法和结果?小组1:我们把两个完全一样的锐角三角形拼成了一个平行四边形。
小组2:我们用两个完全一样的直角三角形拼成了一个长方形。
小组3:我们把两个完全一样的钝角三角形拼成了一个平行四边形。
师:大家的方法都很棒!通过这些转化,你们有什么发现?4.推导公式(4分钟)生2:我们发现拼成的平行四边形的面积是原来三角形面积的2倍。
师:那三角形的面积应该怎么计算呢?生3:三角形的面积=拼成的平行四边形的面积÷2师:平行四边形的面积=底×高,所以三角形的面积=底×高÷2。
三、巩固练习(12分钟)1.基础练习(5分钟)师:请看这道题,已知一个三角形的底是8厘米,高是6厘米,它的面积是多少?(学生独立计算,然后交流答案)2.拓展练习(5分钟)师:同学们,再来看这道题,有一块三角形的菜地,底是12米,高是8米,如果每平方米收青菜5千克,这块地一共可以收青菜多少千克?(学生分析题目,列式计算)3.课堂小结(2分钟)师:通过今天的学习,大家有什么收获?生4:我们学会了三角形面积的计算方法。
生5:我们知道了可以通过转化的方法来推导三角形的面积公式。
三角形面积教学实录与评析一、教学目标与内容本节课的教学目标是通过引导学生观察、实践、探究,理解三角形面积的计算公式,并能正确应用该公式计算三角形的面积。
教学内容主要包括三角形面积公式的推导及其实际应用。
二、引导观察与提问师:同学们,我们之前学过矩形的面积是怎么计算的?生:长乘以宽。
师:非常好,那么三角形的面积应该怎么计算呢?你们有没有什么想法或者猜想?生1:是不是底边乘以高?生2:但是那样算出来会是矩形的两倍,因为两个三角形可以拼成一个矩形。
师:你们的思考都很有价值。
接下来我们就通过实践活动来探索三角形的面积计算方法。
三、操作实践与探究教师引导学生将平行四边形(即矩形的一种)剪成两个完全相同的三角形,并让学生观察这两个三角形的底和高与原来平行四边形的关系。
师:同学们,你们看看这两个三角形,它们的底和高与原来的平行四边形有什么关系?生:它们的底和高都是一样的。
师:那么,如果我们知道平行四边形的面积,能不能推导出三角形的面积公式呢?生:我觉得应该可以,因为两个三角形可以拼成一个平行四边形,所以三角形的面积应该是平行四边形面积的一半。
四、公式推导与理解师:同学们说得很好,三角形的面积确实是平行四边形面积的一半。
那么,如果我们用公式来表示,应该怎么写呢?生:应该是底乘以高再除以2。
师:非常正确!三角形的面积公式就是:面积 = (底×高) ÷ 2。
五、实例应用与巩固教师给出几个不同形状的三角形,让学生应用公式计算面积,并强调在计算过程中要注意单位的统一。
六、学生反馈与反思师:通过今天的学习,你们有什么感受或者收获吗?生1:我觉得通过动手实践来学习三角形面积的计算方法很有趣,也更容易理解。
生2:我以前总是记不住公式,但是通过今天的活动,我觉得公式很好记,就是底乘以高再除以2。
师:很好,同学们通过实践活动不仅掌握了三角形面积的计算方法,还培养了自己的动手能力和探究精神。
希望大家能够继续保持这种学习态度,不断探索数学的奥秘。
《三角形的面积》课堂实录【教学内容】人教版五年级上册第五单元第84~85页内容【教学目标】1、探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。
2、使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。
3、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
【教学重点】探索并掌握三角形的面积公式,能正确计算三角形的面积。
【教学难点】理解三角形面积公式的推导过程。
【教学准备】每小组各两个完全一样的直角三角形、锐角三角形、钝角三角形,每小组各一个长方形、正方形和平行四边形的纸模型;一条红领巾;多媒体课件。
【教学过程】一、复习,发现规律1、师:同学们,会完成以上图形面积吗?2、小组学生代表上台汇报操作结果。
生1:长方形的面积是30×20=600(平方厘米)每个三角形的面积是600÷2=300(平方厘米)师:如果我们知道正方形边长为30厘米,它的面积是多少?每个三角形的面积又是多少呢?为什么?生2:正方形的面积是30×30=900(平方厘米)每个三角形的面积是900÷2=450(平方厘米)师:如果我们知道平行四边形的底为40厘米,高为20厘米,它的面积是多少?每个三角形的面积呢?为什么?生3:平行四边形的面积是40×20=800(平方厘米)每个三角形的面积是800÷2=400(平方厘米)【设计意图】:通过动手操作,即做到复习旧知,又让学生初步理解三角形的面积与平行四边形之间的联系,为新知的探索做好铺垫。
5、引出课题。
师:看来今天我们班的同学很乐意表现自己,老师真为你们而高兴。
如果我们从桌子上任意取一个三角形,(师拿起任意一个三角形模型)这个三角形的面积怎样求呢?这就是我们今天要学习研究的内容。
【设计意图】:从不会计算的面积图形中揭示课题,激发学生的探究兴趣。
《三角形的面积》课堂记录一、情境引入师:同学们,每天佩戴着鲜艳的红领巾来到学校学习新知识,你们知道制作一条红领巾需要多少布料吗?生:(不清楚)师:我们佩戴的红领巾是什么形状的?生:(三角形)师:怎样才能计算出三角形的面积呢?这节课我们将一起探究三角形面积的计算方法。
二、探究新知复习平行四边形面积的求法师:记忆一下,平行四边形面积的计算公式是什么?又是如何推导出来的?生:我们通过将平行四边形转化为长方形,然后利用已知的长方形面积计算公式,找到两者之间的联系,从而推导出了平行四边形面积的计算公式。
师:今天,我们将继续运用这种转化的思想来探索三角形面积的计算方法。
第一次操作实践师:如何将三角形转化为我们已学过的图形呢?请同学们拿出学具袋中的各种三角形,两人一组尝试拼接。
(教师巡回指导)生:老师,我们组的两个三角形无法拼接在一起。
(演示拼接过程)师:这是什么原因呢?生:因为我们使用的两个三角形不完全相同。
我们组使用了两个完全相同的三角形,已经成功拼接了。
(演示使用完全相同的两个三角形拼接的过程)师:显然,在拼接时必须选择完全相同的两个三角形。
接下来,小组讨论,教师巡回指导,对较弱的小组给予必要的提示。
师:同学们都完成了拼接,谁能介绍下你们组的拼接方法?生1:我们用两个完全相同的锐角三角形拼成了一个平行四边形。
(先展示拼接过程,然后将拼接的图形贴在黑板上)生2:我们组也拼出了一个平行四边形,不过我们使用的是两个完全相同的钝角三角形。
(同样展示拼接过程,将图形贴在黑板上)生3:我们用两个完全相同的直角三角形拼成了一个长方形。
(展示拼接过程,将图形贴在黑板上)生4:我们用两个完全相同的等腰三角形拼成了一个正方形。
(展示拼接过程,将图形贴在黑板上)师:小结,通过课件展示各种拼接方法。
明确使用两个完全相同的三角形可以拼成一个平行四边形。
第二次操作实践师:接下来,请大家仔细观察拼成的平行四边形的底与三角形的底,以及平行四边形的高与三角形的高,看看有什么发现?.生1:平行四边形的底与三角形的底相等。
《三角形的面积》教学实录一、引言大家好,今天我们将一起学习如何计算三角形的面积。
在学习过程中,我们将通过实践活动和讲解相结合的方式,深入理解三角形的面积计算方法及其在日常生活中的应用。
希望大家能够积极参与,共同探讨三角形的奥秘。
二、回顾基础知识在开始新的内容之前,我们先来回顾一下三角形的基本知识。
请同学们回忆一下,三角形是什么样子的?有哪些特点?同学们纷纷回答:三角形有三条边、三个角,内角和为180度。
老师:非常好,那么关于三角形的边和角,还有哪些我们需要了解的概念呢?同学们思考片刻,有同学回答道:三角形可以根据角度大小进行分类,有直角三角形、锐角三角形和钝角三角形。
老师:回答得很好。
接下来,我们将在这些基础知识上进一步探讨三角形的面积计算方法。
三、教授新知识老师:首先,我们来认识一下三角形的底边长和高。
请同学们拿出手中的三角形,找到底边长和高,并说明它们对于计算三角形面积的作用。
同学们经过观察和讨论,有同学发现:底边长和高决定了三角形的面积大小。
老师:非常正确。
现在,我们来学习如何计算三角形的面积。
请同学们观看黑板上的公式,理解公式的意义,并在心中记住。
同学们看着黑板上的公式,有些同学开始默默地背诵。
四、学生操作老师:现在,请同学们拿出纸笔,尝试计算你手中三角形的面积。
在计算过程中,请大家注意正确使用公式,并思考公式的来源。
同学们开始动手计算,老师在教室里巡回指导,发现同学们出现的问题并及时纠正。
五、反馈与讲解老师:同学们,在刚才的操作中,我发现有些同学在计算过程中出现了错误。
现在,我们来一起探讨一下正确的计算方法。
请一位同学来分享他的计算过程和结果。
有同学走上讲台,在黑板上演示了自己计算三角形面积的过程,并详细讲解了每一步的思路。
老师:非常好,你的计算过程非常清晰。
现在,我们来一起检查一下可能出现错误的地方。
请大家注意以下几个问题:底边长和高是否找准了?公式使用是否正确?进位和借位是否正确处理了?同学们认真检查自己的计算过程,并互相交流讨论。
三角形的面积课堂实录三角形的面积一、复习引入:(4分钟)师:首先大家看一下大屏幕,这是一个什么样的图形?展示课件:平行四边形师:谁来说一下?好,你来说一下。
生齐答:平行四边形。
师:这是个平行四边形,那大家会不会计算这个平行四边形的面积呢?教师板书:平行四边形的面积= 师:好,哪位同学来说一下?生:平行四边形的面积等于底乘高。
师:好请坐,回答的非常好,看来大家记得还是比较牢固的。
教师板书:底×高师:哪位同学能用字母表示一下这个平行四边形的面积?生:S等于ah师:好,请坐。
也就是说S就等于ah 教师板书:S=ah 课件展示:S=ah师:我们知道这个平行四边形的面积就等于底乘高,用字母表示是S等于ah。
接下来,大家看一下你胸前的红领巾,大家知不知道有关红领巾的知识?生:红领巾就是一个三角形。
师:红领巾是一个三角形,还有么?生:是一个钝角三角形。
师:大家知道红领巾的含义么?红领巾是红旗的一角,也是少先队员的象征。
刚才有两位同学说了这个红领巾是一个三角形,那么大家会不会计算这个三角形的面积呢?哪位同学有办法?生:面积等于底乘高除以二。
师:看来这个同学预习的非常好,她已经知道了计算三角形面积的公式。
哪位同学还能再说一说是怎么样,用什么样的方法来求这个三角形的面积?生:底乘高除以二。
师:对,你说得对。
你说的是用底乘高除以二。
你是用什么样的方法得到的?生未回答。
师:也就说我们以前没有学过求三角形的面积?生齐答:是。
师:那我们能不能想办法求它的面积?那有什么办法?生:把一个平行四边形剪成两个三角形,这是两个完全一样的三角形。
师:好请坐。
这位同学说的是可以把一个已经学过的平行四边形剪成两个完全一样的三角形,根据平行四边形的面积求出三角形的面积。
这叫什么方法大家知道么?生齐答:割补法。
二、学习新课(35分钟)师:割补法。
在数学上这种思想就是转化的思想。
教师板书:转化师:什么叫转化的思想,也就说,我们把这个三角形转化成什么,转化成学过的图形来求出它的面积。
接下来大家拿出你手中的这一个平行四边形的学具。
现在给大家一个问题:你能不能把这个平行四边形分成两个三角形呢?下面呢就前后四个同学为一组来讨论一下。
生分组讨论。
教师巡视辅导,个别询问。
(活动约2分半)师:前后四个同学为一组,怎么样把这个平行四边形分成两个三角形?想到方法的同学可以用剪刀剪一剪。
师:好,剪好的同学可以做好了。
那个小组的同学来说一下这个问题,发表一下自己的意见?谁来说一下,大胆举手。
上来展示一下,说一下怎样把平行四边形分成两个三角形?生:这个本来是一个完整的平行四边形,然后把它对折,对折变成两个完全一样的三角形,然后再把这个三角形剪开,再把这个平行四边形对折,沿着虚线剪开就变成两个完全一样的三角形了。
师:好,非常好。
那个同学还能再展示一下,说一下你的剪法。
你来说一下,上来说。
生:用一个一样的,用一个平行四边形对折,沿虚线对折,然后用剪刀剪下来,展开就会发现是两个一样的三角形。
师:非常好,大家是不是这样剪得?生齐答:是。
师:刚才大家都说了,沿着一条虚线。
大家说这条线叫什么线?对于平行四边形来说叫什么线?你来说。
生:虚线。
生:对角线。
师:好,很好。
这个同学说的非常好。
这条线叫什么线?平行四边形的对角线。
大家是不是沿着平行四边形的对角线对折之后,然后再剪开,它就变成了两个三角形。
大家有没有发现这两个三角形它们有什么特点么?生齐答:一模一样的。
师:看来大家观察的非常仔细的。
剪得这两个三角形是一模一样的三角形,对吧?好。
接下来大家把你准备好的三角形的学具拿出来。
大家根据大屏幕的要求还是在小组内讨论一下,有三个要求,大家一个一个的做。
首先呢大家拿出你的两个完全一样的直角三角形,我们现在只要直角三角形拼一拼、摆一摆、看一看这两个完全一样的直角三角形能拼成什么样的图形呢?小组内可以讨论讨论。
前后可以讨论讨论,都说一下自己的想法。
(活动约一分半钟) 师:都拼完了么?那个同学说一说你的想法?生:正方形。
师:可以拼成正方形,那你的三角形是什么样的?学生展示手中图形。
师:好,是一个正方形。
好请坐。
你再说一下。
生:长方形和三角形。
师:长方形和三角形。
好请坐。
还有么?你来说。
生:平行四边形。
师:平行四边形,你是怎么拼的?生展示拼的过程。
师:好。
通过刚才同学们回答可以知道两个完全一样的直角三角形可以拼成长方形、平行四边形,还有三角形。
如果三角形特殊还可以拼成正方形。
那位同学来上台演示演示你是怎么样拼成的,这个过程说一说。
生:平行四边形是用两个一样的三角形,一个是用直角三角形它的直角一个边还有另一个直角三角形边对齐就是。
师:对齐就变成一个平行四边形是吧?哪位同学展示一下你拼成的三角形是什么样的?生:找到一个跟它相同的边,然后呢对齐,然后就变成一个大的三角形了。
师:哪位同学再来展示一下你拼成的长方形?生:找到直角三角形两个同样的边,然后把它两,这两个同样的边对齐就成了一个长方形。
(教师引导)师:通过刚才同学们的拼摆,我们已经知道了可以拼成这三种图形。
那么你会不会求出我们拼成的这样图形的面积呢?会不会求呢?生:长方形的就是长加宽乘二,长方形的面积是长乘宽。
师:长乘与宽。
好你来说一下。
生:长方形的面积是边乘边。
师:边长乘与边长。
还有没有,你来说。
生:平行四边形的面积就是底乘高。
师:刚才这个同学说了平行四边形的面积就等于底乘与高。
还有拼成的三角形的面积会不会求呢?我们再来看一下第三个问题。
根据刚才我们的拼摆发现拼出的图形与原来的三角形有什么关系呢?生:拼成的图形可以分成两个三角形。
师:对,可以分成两个完全一样的三角形。
好,还有别的关系么?生:如果用两个……(表述不清)必须用相同的三角形。
师:我明白你的意识了。
这个同学是说要想拼成平行四边形、长方形就必须用两个完全一样的三角形,是不是这个意识?生:拼出来的图形除以二,把它分开也就是原来那个三角形了。
师:把这拼出来的图形分开,除以二,就是原来的……生:就是三角形的面积。
师:面积是吧。
好请坐。
哪位同学能表达清楚一点,对于这个面积关系。
生:三角形的面积乘以二就等于拼出来的图形的面积。
师:你是说三角形的面积乘与二就等于拼出来的图形的面积。
还可以怎么来表达?生:拼出来的图形面积除以二,也可以等于三角形的面积。
师:通过同学们的拼摆,我们可以得到他们的面积关系怎么样。
拼成的图形的面积除以二就等于原来的那个三角形的面积。
大家来看一下大屏幕。
教师展示课件。
(三角形变平行四边形)师:这是一个直角三角形,大家主要看这个过程,这是一个旋转和平移的过程。
大家看这一个图形。
生齐答:长方形。
师:继续看。
生齐答:平行四边形。
生齐答:另一个平行四边形。
师:由此可以得到这样一个结论“两个完全一样的直角三角形可以拼成一个平行四边形。
”还有么?还可以拼成什么图形?生齐答:大三角形。
师:对还可以拼成大三角形,我们看一下过程。
(课件展示过程)小结:师:通过同学们的拼摆我们知道“两个完全一样的直角三角形可以拼成长方形、平行四边形还有三角形”。
师:接下来大家拿出你手中两个完全一样的锐角三角形。
看一下两个完全一样的锐角三角形可以拼成什么样的图形呢?学生活动(约2分钟)师:那个同学来上台展示一下你拼成的图形?生:拿出两个完全一样的锐角三角形,找出一个它们两个完全一样的一条边,然后就可以拼成一个平行四边形。
师:这位同学说的怎么样?非常好。
哪位同学再来说一下?生:拿出两个完全一样的锐角三角形,然后再把他们的两个,找出两个相同的边,对齐,就可以拼成一个菱形。
师:同学们拼成什么样的图形?平行四边形。
还有其他的么?生齐答:菱形。
师:菱形是不是四边形?菱形是一种特殊的四边形。
师:大家看一下大屏幕。
看一下锐角三角形是怎么样拼成平行四边形的。
(展示课件—锐角三角形)师:先把两个三角形重合,然后绕最右边的顶点旋转180度,然后再平移,就变成一个平行四边形。
由此我们可以得出这样一个结论“两个完全一样的锐角三角形,也可以拼成一个平行四边形”。
师:大家想想在三角形当中除了锐角三角形和直角三角形,还有什么样的三角形?生齐答:钝角三角形。
师:对,大家想一想两个完全一样的钝角三角形,能不能拼成一个平行四边形呢?生齐答:能。
师:能,那么大家动手操作一下,看看能够拼成什么样的平行四边形?学生活动(大约1分40秒)师:大家拼完了么?谁来给大家展示一下?生:拿出两个一样的钝角三角形,然后找出两个一样的边,然后对齐,然后就拼成一个平行四边形。
师:大家是不是这样来拼摆的?生:是。
师:也就是说两个完全一样的钝角三角形,也可以拼成一个平行四边形。
大家再来感受一下旋转和平移的过程。
(展示课件—钝角三角形)师:通过刚才我们做的这三组实验,大家能够发现什么规律了么?谁来总结一下?生:不管是直角还是锐角、钝角,只要是两个一样的三角形都能平成一个平行四边形。
师:好,请坐。
哪位同学来补充一下?你还有什么样的发现?生:两个一样的三角形可以拼成一个平行四边形和一个三角形。
师:好,请坐。
还有么?生:两个三角形拼成的图形的面积是两个三角形面积的二倍。
师:请再说一边。
生:两个同样的三角形拼成的这个图形的面积是这两个三角形其中一个的二倍。
师:好,大家听明白她的意识了么?生齐答:听明白了。
师:两个完全一样的三角形拼成的图形的面积是原来的一个三角形二倍。
哪位同学再来说一说还能有什么样的发现?生:直角三角形可以拼成多种图形,但不论什么图形都是四边形。
师:好。
这个同学说的比较细致。
接下来我们再来看拼成的这个平行四边形和原来的三角形它们的底和高有什么关系?大家看我手中的这个平行四边形它是有两个完全一样的三角形组成的,那么这个三角形的底和高平行四边形的底和高有什么关系么?大家发现没有,平行四边形的底和三角形的底……平行四边形的高和这个三角形的高……是一样吧?生齐答:一样。
是一样的。
师:大家看一看、做一做。
拼成的平行四边形底和高是不是和这个三角形的底和高是一样的?生齐答:是。
师:大家看,这个平行四边形的底其实就是这个三角形的底,还有这个三角形的高就是这个平行四边形的高。
我们知道了平行四边形的底和高就和这个三角形的底和高是一样的。
是这样吧?生齐答:是。
师:好。
大家看这几个问题(展示课件)通过以上实验发现什么?我找同学来说一下。
这几个问题。
生:可以拼成长方形、正方形,还有三角形、平行四边形。
生:两个完全一样的三角形都可以拼成一个平行四边形。
师:平行四边形。
刚才同学说的比较多。
因为在这里是两个完全一样的三角形,没有说那个比较特殊的,不光是直角三角形,还可以指的是锐角和钝角对吧?看第二问题,每个三角形的面积等于什么?生:每个三角形的面积等于所拼成的图形的两倍。
师:拼成的图形叫什么?生:平行四边形。
生:所拼成的图形的两倍。