冻土作为一种特殊类型的地基土
- 格式:doc
- 大小:31.00 KB
- 文档页数:3
冻土分类与勘察要求冻土地区建筑地基基础设计冻土是指在气温低于0℃,土壤水分凝结形成的土壤,主要分布在高纬度地区和海拔较高的地区。
冻土的特点是稳定性好、孔隙度低、质地坚硬,但受渗透力和凝冻胀缩的影响较大。
因此,在冻土地区建筑地基基础设计需要对冻土进行分类,并根据不同的冻土类型制定相应的勘察要求。
冻土一般可分为季节冻土和多年冻土两类。
季节冻土指气温低于0℃时发生的冻土现象,主要出现在寒冷季节,随着气温的回升会迅速消融。
而多年冻土是指年平均气温低于0℃,地下土壤温度在冻土表层以下超过两年以上的冻土。
根据土壤水分含量的不同,冻土又可分为干燥冻土、湿润冻土和水饱和冻土。
在进行冻土地区建筑地基基础设计前,首先需要进行冻土区划和勘察。
冻土区划是根据不同地区的气候、地形和土壤条件等因素,将冻土地区划分为不同的冻土区域。
勘察工作主要包括地质勘察、水文勘察和冻土勘察等。
地质勘察是对待建地块周边的地质情况进行调查,主要了解土壤种类、地下结构、地层分布和地震活动等情况。
水文勘察是对地下水位、水力梯度和水文地质条件等进行调查,了解冻融过程中水分的变化情况。
冻土勘察则是对冻土的性质和分布进行详细调查,包括冻土的厚度、含水量、密度、渗透性、冰含量以及冻融过程对土体力学性质的变化等进行测试和分析。
在冻土地区建筑地基基础设计中,需要充分考虑冻土的特点和变化规律。
首先,根据冻土的类型和厚度确定地基基础的类型和设计方法。
季节冻土地区可以采用常规的地基基础设计方法,多年冻土地区则需要采用特殊的液压基础或浅层基础设计方法。
其次,需要考虑冻融循环对地基基础的影响,尽量选择冻融稳定性较好的地区进行建设。
同时,还需要考虑地表和地下水位变化对地基基础的影响,合理设计雨水管道和排水系统,防止地基基础破坏。
在冻土地区建筑地基基础设计中,还需要充分考虑环境保护和可持续发展的要求。
例如,可以采用地热利用的方式,利用冻土地区地下温度较低的特点,进行地源热泵供暖和制冷系统的设计,减少能源消耗。
第四节冻土一、冻土的分类冻土是指温度等于或低于摄氏零度、且含有冰的各类土。
根据其冻结时间和冻结状态可将冻土分成多种类型。
(一) 按冻结时间分1.季节性冻土季节性冻土是受季节性的影响,冬季冻结,夏季全部融化,呈周期性冻结、融化的土。
季节性冻土在我国的华北、西北和东北广大地区均有分布。
因其周期性的冻结、融化,对地基的稳定性影响较大。
季节性冻土根据其结构形式,又可分为:(1)整体结构:土在冻结时,土中水分有向温度低的地方移动的性能。
整体结构冻土是由于温度骤然降低,冻结较快,土中水分来不及移动即冻结,冰粒散布于±颗粒间,肉眼甚至看不见,与土粒成整体状态。
融化后土仍保持原骨架,建筑性能变化不大。
(2)层状结构:地表温度不很低,且有变化,土中水分冻结一次,融化一次,又冻结一次,则形成层状结构冻土。
这种土融化后骨架整个遭受破坏,对建筑性能影响较大。
(3)网状结构:由于地表不平,冻结时土中水分除向低温处移动外,还受地形影响,使水分向不同方向转移,而形成冰呈网状分布的冻土,这种土一般含水、含冰量较大,融化后呈软塑或流塑状态。
(4)扁豆体和楔形冰结构:由于季节性冻结和融化,土中水分向表层低温处移动,往往在冻层上限冻结成扁豆体状冰层,当冻土层向深度发展,扁豆体状冰层即夹于冻土层之中。
当岩层或土层具裂隙时,水即在裂隙中成冰楔体。
此类结构的冻土,承受荷载时易沿冰体滑动。
2.多年冻土多年冻土是指冻结状态持续多年(一般是二年或二年以上以上)不融的冻土。
多年冻土常存在地面以下一定深度,其上部接近地表部分,往往亦受季节性影响,冬冻夏融,此冬冻夏融的部分常称为季节融冻层。
因此,多年冻土地区常伴有季节性的冻结现象。
多年冻土根据其垂直构造、水平分布和冻结发展趋势,又可分为下列几种类型:(1)按垂直构造分:(a)衔接的多年冻土:冻土层中没有不冻结的活动层,冻层上限与受季节性气候影响的季节性冻结层下限相衔接。
(b)不衔接的多年冻土:冻层上限与季节性冻结层下限不衔接,中间有一层不冻结层。
《土的分类及特殊土的工程地质性质》习题答案一、填空题1.根据《建筑地基基础设计规范》(GBJ 50007-2002)和《岩土工程勘察规范》(GB50021-2001),作为建筑地基的土,可分为:岩石、碎石土、砂土、粉土、黏性土和人工填土。
2.根据地质成因,可把土划分为残积土、坡积土、洪积土、冲积土、淤积土、冰积土和风积土、海积土等。
按堆积年代的不同,土可分为老堆积土、一般堆积土和新近堆积土。
3.分布在中国范围内的黄土,从早更新世开始堆积经历了整个第四纪,目前还未结束。
形成于早更新世(Q1)的午城黄土和中更新世(Q2)的离石黄土,称为老黄土;晚更新世(Q3)形成的马兰黄土及全新世下部( )的次生黄土,称为新黄土;全新世上部( )及近几十年至近百年形成的最新黄土,称为新近堆积黄土。
4.湿陷性黄土又可分为自重湿陷性黄土和非自重湿陷性黄土。
5.软土并非指某一特定的土,而是一类土的总称,一般包括软黏土、淤泥质土、淤泥、泥炭质土和泥炭等。
6.冻土根据其冻结时间分为季节性冻土和多年冻土两种。
7.中国的多年冻土按地区分布不同分为两类:一类是高原型多年冻土,另一类是高纬度型多年冻土。
二、名词解释1.碎石土:是指粒径大于2mm的颗粒质量超过总质量50%的土。
2.砂土:是指粒径大于2mm的颗粒质量不超过总质量50%的土,且粒径大于0.075mm的颗粒质量超过总质量50%的土。
3.粉土:是指塑性指数小于等于10且粒径大于0.075mm颗粒质量不超过总质量50%的土。
4.黏性土:是指塑性指数大于10的土。
5.人工填土:是指由于人类活动堆填而形成的各类土。
6.黄土:黄土是第四纪以来,在干旱、半干旱气候条件下形成的一种特殊的陆相松散堆积物。
7.黄土的湿陷性:黄土在一定压力下受水浸湿,土结构迅速破坏,并产生显著附加下沉的性质称为黄土的湿陷性。
8.软土:软土是指天然含水量大,压缩性高,承载力低,抗剪强度低的呈软塑~流塑状态的黏性土,如淤泥等。
多年冻土路基病害与整治1、研究背景及内容全球多年冻土的分布面积约占陆地面积的23%,主要分布在俄罗斯、加拿大、中国和美国的阿拉斯加等地,其中我国的多年冻土分布面积高达215万km2,约占世界多年冻土分布面积的10%,占我国国土面积的22.4%,是世界上第三大冻土大国,而我国的多年冻土主要分布在青藏高原、大小兴安岭、祁连山、天山和阿尔泰山等高山、高纬度地区。
多年冻土是一种特殊土类。
其特殊性主要表现在它的性质与温度密切相关。
常规土类性质主要受颗粒的矿物和机械成分、密度和含水量控制,多半表现为静态特性。
多年冻土的性质除受上述因素控制以外,同时它的性质随温度和时间都在变化,表现为动态特性。
所以,冻土是一处对温度十分敏感且性质不稳定的土体。
随着全球气候的逐渐变暖和人类活动加强,多年冻土上限呈现出下降的趋势,多年冻土也在不断退化,对路基路面的稳定也造成了极大威胁。
关键的是冻土在冻结、融化时具有特殊的物理、力学性质变化。
土壤冻结时最重要的物理过程是水分的迁移和重分布,而冻土融化时最重要的是物理力学变化是结构、强度的急剧衰减。
从而在冻融循环中不断地改变着土层的形态结构和物理力学性质,导致工程建筑物基础的反复变化与破坏。
在大多数情况下,病害的发生发展过程与变化结果具有单向、不可逆的规律。
冻土地区筑路工作中的问题除了一般寒区道路中常见的路基冻胀、翻浆路面冻融松散低温开裂外,还有冻土地区特有的道路病害——路基热融沉降、边坡热融滑塌。
2、多年冻土路基病害2.1 热融沉降(陷)因气候转暖,或森林砍伐与火灾,或修建工程构、建筑物,特别是采暖型的建筑,破坏了原来地面的植被和热力动态,使其冻结与融化深度加大。
导致地下冰或富冰土层融化,于是在上覆土层自重及建筑物荷载作用下,地基土便出现沉降或深陷现象,从而使建筑物无法正常运行,甚至破坏。
这是多年冻土区各种建筑物遭受冻害的主要原因。
2.2 融冻滑塌在地下冰发育的斜坡上,由于路堑工程或挖方取土,或河流侵蚀坡脚,使地下冰层或富冰土层外露,而不断融化,造成上覆植被或土层失去支撑而不断下滑。
第四节冻土一、冻土的分类冻土是指温度等于或低于摄氏零度、且含有冰的各类土。
根据其冻结时间和冻结状态可将冻土分成多种类型。
(一) 按冻结时间分1.季节性冻土季节性冻土是受季节性的影响,冬季冻结,夏季全部融化,呈周期性冻结、融化的土。
季节性冻土在我国的华北、西北和东北广大地区均有分布。
因其周期性的冻结、融化,对地基的稳定性影响较大。
季节性冻土根据其结构形式,又可分为:(1)整体结构:土在冻结时,土中水分有向温度低的地方移动的性能。
整体结构冻土是由于温度骤然降低,冻结较快,土中水分来不及移动即冻结,冰粒散布于±颗粒间,肉眼甚至看不见,与土粒成整体状态。
融化后土仍保持原骨架,建筑性能变化不大。
(2)层状结构:地表温度不很低,且有变化,土中水分冻结一次,融化一次,又冻结一次,则形成层状结构冻土。
这种土融化后骨架整个遭受破坏,对建筑性能影响较大。
(3)网状结构:由于地表不平,冻结时土中水分除向低温处移动外,还受地形影响,使水分向不同方向转移,而形成冰呈网状分布的冻土,这种土一般含水、含冰量较大,融化后呈软塑或流塑状态。
(4)扁豆体和楔形冰结构:由于季节性冻结和融化,土中水分向表层低温处移动,往往在冻层上限冻结成扁豆体状冰层,当冻土层向深度发展,扁豆体状冰层即夹于冻土层之中。
当岩层或土层具裂隙时,水即在裂隙中成冰楔体。
此类结构的冻土,承受荷载时易沿冰体滑动。
2.多年冻土多年冻土是指冻结状态持续多年(一般是二年或二年以上以上)不融的冻土。
多年冻土常存在地面以下一定深度,其上部接近地表部分,往往亦受季节性影响,冬冻夏融,此冬冻夏融的部分常称为季节融冻层。
因此,多年冻土地区常伴有季节性的冻结现象。
多年冻土根据其垂直构造、水平分布和冻结发展趋势,又可分为下列几种类型:(1)按垂直构造分:(a)衔接的多年冻土:冻土层中没有不冻结的活动层,冻层上限与受季节性气候影响的季节性冻结层下限相衔接。
(b)不衔接的多年冻土:冻层上限与季节性冻结层下限不衔接,中间有一层不冻结层。
软土、膨胀土、冻土地基土整治案例与分析(总19页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--12 特殊地基土整治软土处理案例案例一:1.工程概况及地质条件xx高速公路X合同段全长公里,路面宽米,其中软土地基29645平方米,插设塑料排水板75332延米,铺设砂砾垫层17787立方米,超载预压35574立方米。
该段软基属“山地型”软土,表层为1-2米深的淤泥,下部为低液限粘土,软基最深处达到23m,含水量大,承载力小。
其成因主要是由于泥质页岩风化产物和地表的有机物质经水流搬运,沉积于原始地形的低洼处,长期饱水软化,间有微生物作用形成。
2.加固原理简介塑料排水板的内部为聚乙烯或聚丙烯加工而成的多孔道板带,外包土工织物滤套,具有隔离土颗粒和渗透功能。
根据地基固结理论,粘性土固结所需的时间和排水距离的平方成正比,施工时,通过插板机在软土地层中打入塑料排水板,可以改变原有地基的边界条件,增加孔隙水的有效排出途径,缩短排水距离。
在上部荷载的作用下,地基中的水分能够通过塑料排水板的竖向孔道和砂垫层快速排出,从而加快地基固结和沉降的速率。
3.工法特点及适用范围相比袋装砂井等其它软基处理方法,该工法具有成本低、工效高、排水效果好的特点,因此广泛用于公路、铁路、机场、码头、堆放场、堤坝及房屋等软土地基的加固。
4.塑料排水板超载预压设计(1)排水板型号采用SPB-A型,宽度100,厚度4,纵向通水量≥25cm3/s,复合体抗拉强度10cm。
(2)井径由于塑料排水板与砂井的加固原理相同,设计使用日本构尾新一郎的算式,将塑料排水板的断面换算成相当直径的袋装砂井。
设塑料排水板宽度为b,厚度为δ,则换算相当圆的直径为:d p=α•πδ)(2+b=×14.3)4.010(2+=6(cm)α——换算系数,由试验求得,取(3)排水板的布置方式采用等边三角形布置。
(4)排水板间距采用细而密的原则选择塑料排水板的直径和间距,井径比n取20。
岩土工程专业知识:冻土的工程性质及地基评价(一)
24.4 冻土的工程性质及地基评价
1 季节性冻土的工程性质及地基评价
(1)工程性质:冻土融化后承载力大为降低,压缩性急剧增高,使地基产生融陷;相反,在冻结过程中又产生冻胀,对地基均为不利。
冻土的冻胀和融陷与土的颗粒大小及含水量有关,一般土颗粒愈粗,含水量愈小,土的冻胀和融陷性愈小。
(2)冻土按冻胀性分类:表24.4-1。
注:
于0.5的粉土,如充填物为其他状态的黏性土或粉土时,其冻结性应按黏性土或粉土确定。
2、表中细砂仅指粒径大于0.075mm的颗粒超过总质量90%的细砂,其他细砂的冻胀性应按粉砂确定。
3、wp为土的塑限。
2 多年冻土的工程性质和地基评价
(1)按融沉性分级和评价:多年冻土根据土的类别、总含水量和平均融沉系数δ0分类(表24.4-2):
注:
2、本表不包括盐渍化冻土、冻结泥炭化土、腐殖土、高塑性粘土。
根据融化下沉系数δ0的大小,多年冻土可分为不融沉、弱融沉、融沉、强融沉和融陷五级,并应符合表24.4-2的规定。
冻土地基可采用什么方法施工冻土地基是指在地下冻土层中进行基础施工的一种特殊工程方法。
由于地下冻土的存在,传统的基础施工方法在这种地质条件下往往难以施工,因此需要采用特殊的方法来应对冻土地基的施工问题。
下面将介绍几种可采用的方法。
首先,冻土地基可采用预制桩基础施工方法。
这种方法是在地下冻土层中使用预制桩进行基础施工,通过预制桩的固定和支撑作用来实现基础的稳定。
预制桩基础施工方法适用于地下冻土层较浅的情况,可以有效地解决冻土地基施工中的基础稳定性问题。
其次,冻土地基可采用冻结法施工方法。
冻结法施工是指通过在地下冻土层周围注入冷却剂,使地下冻土层迅速冻结,形成一个稳定的冻结带,然后在冻结带内进行基础施工。
这种方法适用于地下冻土层较深的情况,可以有效地解决冻土地基施工中的基础稳定性和施工难度问题。
另外,冻土地基可采用加热法施工方法。
加热法施工是指通过在地下冻土层周围加热,使地下冻土层迅速融化,形成一个稳定的融化带,然后在融化带内进行基础施工。
这种方法适用于地下冻土层较浅的情况,可以有效地解决冻土地基施工中的基础稳定性和施工难度问题。
最后,冻土地基可采用地热井法施工方法。
地热井法施工是指通过在地下冻土层中打入地热井,利用地下热能来融化地下冻土层,形成一个稳定的融化带,然后在融化带内进行基础施工。
这种方法适用于地下冻土层较深的情况,可以有效地解决冻土地基施工中的基础稳定性和施工难度问题。
综上所述,冻土地基可采用预制桩基础施工方法、冻结法施工方法、加热法施工方法和地热井法施工方法来解决基础施工中的稳定性和施工难度问题。
选择合适的施工方法需要根据具体的地质条件和工程要求来进行综合考虑,以确保施工的顺利进行和工程的安全稳定。
特殊土地基有哪些特殊性前面我们说过要选择在地质条件良好可以选择的场地从事工程建设,但是,我国土地辽阔,幅员广大,地质各异。
随着经济建设的蓬勃发展,较好不仅事先要选择在地质条件良好的场地从事建设,而且有时也不得不在地质条件不良的场地上进行建设。
例如软土就广泛分布在我国灰化土东南沿海、内陆平原和山区,如上海、天津、广州、昆明和武汉等,而这些城市的工程建设尤其是摩天大楼发展是相当快的。
特殊土是指在生存环境特定的环境和历史条件下沉积形成的土类。
特殊土地基和一般而言大部分带有地区特点,它包括软土、湿陷性土、膨胀土、填土、红粘土和冻土等地基,特殊土地基的性状一般均不稳定,用作建筑场地,在设计与施工中应做特殊的地基处理。
(1)软土软土指的是天然晶粒比大于或等于1.0,且天然含水量大于液限的细粒土,它包括淤泥、淤泥质土、泥炭、泥炭质土等,基压缩系数一般大于0.5MPa-1;不排水抗剪强度一般小于30kPa。
软土是在静水或非常沉积缓慢的流水环境中沉积,经生物化学作用形成。
其成因类型有海岸沉积、湖泊沉积、河滩沉积和沼泽沉积,因此,分布很广,广泛分布在当前东南沿海、内陆平原和山区,但以沿海地区为主,特别是江河出海口的三角洲平原地带的盐碱土层面广而深厚。
软土的特性可归纳为"三高三低,即高含水量、高压缩性、高灵敏度;低密实度、低强度、低渗透性。
在岩土工程领域中,软土是备受关注的对象,其"三高三低"的特性在工程实践中最令工程感到不安。
尤其是一方面软土在外荷载作用下(或因基坑填埋而卸载时),地层结构受到扰动,软土强度会有很大降低,地层变形大且变形稳定时间阔,这给深基坑施工窘迫增加了很多困难。
工程实践业已说明,软土工程的水平加速度较之竖直压缩(沉降)更具威胁,所以软土中的深基坑工程的支护、降水和筑成的设计和施工也因其力学性状的特质而增大了难度,此类问题我们在后面的阐述再进一步讨论。
(2)填土填土是指由人类移去活动而堆填的土,按其物质组成和炭填方式,分为素填土、杂填土和冲填土第一类。
季节冻土地基基础的设计规范对比分析作者:王志慧来源:《决策探索·收藏天下(中旬刊)》 2020年第1期王志慧摘要:《冻土地区建筑地基基础设计规范》和《建筑地基基础设计规范》对季节冻土地区的地基基础设计均作出了规定,文章在满足冻土地区地基基础设计安全、适用的前提下,对两种设计规范进行对比分析,总结季节冻土地区地基基础设计的关键条款,提出应用建议。
关键词:冻土;地基基础;规范;对比冻土是温度等于或低于零摄氏度,含有固态冰的土(岩石)。
冻土与其他类型土的最大区别在于其中有冰的存在。
冻土地区地基基础设计时应考虑冻土的冻胀性和融沉性。
冻土的冻胀特性,当冻土区的温度低于土体的冻结温度时,湿土中的水分会向冻结区移动,并用冰填充土粒间隙,当土体中的水冻结成冰时,体积一般会增加9%,当土体中水的体积膨胀足以引起土粒间的相对位移时,土体的冻胀会诱发(图1)。
粗粒土由于容易排水,不易产生冻胀,随着土粒尺寸的减小,冻胀逐渐增大。
冻胀严重的原因是冻土中的未冻水不断迁移和积累,当负温度持续存在且有充足的水源和迁移通道时,冻胀更加严重。
以西藏某35kV变电站工程为例,地下水位仅为1.5m,变化幅度较大,容易造成严重冻胀。
冻土的融沉,即无外荷载作用的冻土沉降,称为融沉,外荷载作用下的压缩变形称为融压。
作为建、构筑物地基的冻土,根据持续时间可分为多年冻土与季节冻土。
本文对比分析《冻土地区建筑地基基础设计规范》和《建筑地基基础设计规范》对工程常见的季节冻土地区的地基基础设计的关键条款,提出应用建议。
一、冻土地区地基基础设计目标冻土地区建、构筑物的地基基础设计应保证建、构筑物基础施工和使用过程中满足强度和稳定性要求,即不发生地基冻胀或融沉对基础产生破坏。
季节冻土根据土的平均冻胀率的大小可分为不冻胀土、弱冻胀土、冻胀土、强冻胀土和特强冻胀土五类。
二、对《冻土地区建筑地基基础设计规范》有关规定的分析(一)基础埋深基础埋深是保障建、构筑物基础不发生冻害的关键控制指标。
冻土分类与勘察要求冻土地区建筑地基基础设计3.1 冻土名称与分类3.1.1 作为建筑地基的冻土,根据持续时间可分为季节冻土与多年冻土;根据所含盐类与有机物的不同可分为盐渍化冻土与冻结泥炭化土;根据其变形特性可分为坚硬冻土、塑性冻土与松散冻土;根据冻土的融沉性与土的冻胀性又可分成若干亚类。
3.1.2 盐渍化冻土3.1.2.1 盐渍化冻土的盐渍度ζ应按下式计算:3.1.2.2 盐渍化冻土的强度指标应按附录A表A.0.2-2、表A.0.3-2的规定取值。
3.1.2.3 盐渍化冻土盐渍度的最小界限值按表3.1.2的规定取值。
3.1.3 冻结泥炭化土3.1.3.1 冻结泥炭化土的泥炭化程度ξ应按下式计算:3.1.3.2 冻结泥炭化土的强度指标应按附录A表A.0.2-3、表A.0.3-3的规定取值。
3.1.3.3 当有机质含量不超过15%时,冻土的泥炭化程度可用重铬酸钾容量法,当有机质含量超过15%时可用烧失量法测定。
3.1.4 坚硬冻土的压缩系数α不应大于0.01MPa-1,可近似看成不可压缩土;塑性冻土的压缩系数α应大于0.01MPa-1,受力时应计入压缩变形量。
粗颗粒土的总含水量不大于3%时,应确定为松散冻土。
3.1.5 季节冻土与多年冻土季节融化层土,根据土冻胀率η的大小可分为不冻胀、弱冻胀、冻胀、强冻胀和特强冻胀土五类,并应符合表3.1.5的规定。
冻土层的平均冻胀率η应按下式计算3.1.6 根据土融化下沉系数δo的大小,多年冻土可分为不融沉、弱融沉、融沉、强融沉和融陷土五类,并应符合表3.1.6的规定。
冻土层的平均融化下沉系数δ0可按下列计算:3.2 冻土地基勘察要求3.2.1 对季节冻土与多年冻土季节融化层,应沿其深度方向每隔500mm取一个原状或扰动土样,试验天然含水量、塑限,液限;在基础拟埋深之下土层,还应提供:①粘性土:重度、有机质含量;②粉土:重度、颗分与有机质含量;③砂土:土粒相对密度、最大和最小密度、重度。
怎样解决冻土地基及地基处理有特殊的工程性质,用作建(构)筑物地基时应采取相应的工程措施,其勘察、试验、设计、施工、治理也有各自的技术标准和方法。
冻土区域特征分布明显,本文重点对冻土地基及其处理技术进行研究。
冻土主要分布在高海拔、高度的东北大小兴安岭北部、青藏高原以及天山等地区。
冻土作为建(构)筑物地基主要有地基承载力、稳定性、沉降、水平移、渗透等方面的问题。
针对这些问题,本着“技术先进、经济合理、安全适用、确保质量”的原则提出相应的地基础处理措施。
1良好地基的重要性地基作为支撑建筑物基础的土体或岩体,是建筑物扎根的地方。
地基物理、力学性质的好坏直接影响建筑物的安全性、经济性和合理性。
良好的地基是建筑物最基本的安全条件,对控制工程造价尤为重要,也是设计、施工和工程经济的综合体现。
1.1 冻土地基冻土具有独特的物理力学性质和特殊的物质组成及构造。
它是温度在0℃或0℃以下含有冰晶的岩土。
它也是由矿物质颗粒、冰、冻水和气体组成的多成分体。
1.2 地基处理方法及其应用冻土地基由于自身的特点,其天然地基基本上不能满足工程需要,需通过一定的工程技术措施处理后方可达到对地基承载力及变形的要求。
冻土常采用换填法、物理化学法、保温法和排水隔水法等处理方法。
2 冻土的工程特性及地基处理气体、矿物颗粒、冻水、冰是组成冻土的四种物质成分,气体、冻水和冰的含量随温度变化。
变形特性将冻土地基分为松散、塑性与坚硬冻土;含有机物与盐类的不同将冻土分为冻结泥炭化土与盐渍化冻土;根据持续时间可分为多年与季节冻土;根据冻土的融沉性与土的冻胀性又可分成若干亚类。
冻结状态连续保持三年以上者,物理力学性质随温度变化而改变,伴随发生融陷、热融滑塌、冻胀等现象的视为多年冻土;地面表层冬季冻结,夏季全部融化,年交替冻融一次的土层为季节性冻土。
2.1 工程特性在冻结状态下,具有较低的压缩性(或不具压缩性)和较高的强度属冻土地基的工程特性。
如果冻土融化后则承载力大大降低,压缩性变化较大,使地基产生融陷;冻胀对地基的承载力和安全性极为不利。
冻土作为一种特殊类型的地基土,其强度和变形特性与其他类型土具有较大差别,我国冻土主要分布于青藏高原及大小兴安岭,东西部一些高山顶部,即高纬度、高寒地区。
冻土是在温度等于或低于零摄氏度,并且含有固态冰的土,其划分种类较多,按冻结时间长短可分为:瞬时冻土、季节冻土、多年冻土;按形成与存在的自然条件不同,又可将多年冻土分为:高纬度多年冻土、高海拔多年冻土;按与下卧土层的关系,可将季节冻土分为季节冻结层和季节融化层。
冻土是一种温度敏感性土体,在冻土区工程建设中不可避免地会遇到土层处于冻结、未冻结、正在冻结、正在融化以及已经融化等不同的状态。
即使大的物质成分和含水量等都保持不变,在冻土区的地基土也将比在融化区具有显著的可变性、复杂性。
因此在工程建设中必须加以足够重视,并设法采取预防措施,消除由于冻土变形强度弱化或冻胀、融沉所引起的各种危害。
要想在工程建设中对冻土所引起的危害加以防范,首先应该了解其工程特性。
1冻土的工程特性
冻土的工程特性主要包括其物理性质、力学性质、冻胀及融沉性。
11冻土的物理性质111总含水率
冻土的总含水率是指冻土中所有的冰的质量与骨架质量之比和未冻水的质量与土骨架质量之比的和。
112冻土的含冰量
因为冻土中含有未冻结水,所以冻土的含冰量不等于冻土融化时的含水率,衡量冻土中含冰量的指标有相对含冰量、质量含冰量和体积含冰量。
相对含冰量是冻土中冰的质量与全部水的质量之比;质量含冰量是冻土中冰的质量与冻土中土骨架质量之比;体积含冰量是冻土中冰的体积与冻土总体积之比。
12冻土的力学性质
冻土的强度与变形特性与其他类型土的最大差别在于其中冰的存在,其力学性质主要取决于其中胶结冰的性质,冰的强度随温度的降低而增加,并随冰晶的结构构造变化而变化。
此外,冰的强度还随应变速率的增大而增大,在破坏类型上表现为由塑性向脆性的转变,冰的这些性质直接导致了冻土也具有类似的特征。
冻土的强度受温度、压力、以及应变速率的改变而发生很大变化:当温度降低时,冻土的强度随之增加;当荷载作用历时延长时,颗粒间胶结冰产生塑流而具有流变性,这一特点使得冻土的瞬时强度大而长期强度小;随应变速率的加大,冻土强度增大,破坏类型表现出由塑性破坏向脆性破坏转化。
冻土的强度有别于其他类型土强度的另一突出表现是围压的影响。
在较低围压条件下,冻土的强度是随围压的升高而升高,在较高的围压条件下,随着围压的加大,冻土强度随围压的升高而降低。
13冻土的冻胀性
在季节冻土区或多年冻土区,当温度降低到土的冻结温度以下时,湿土中的水分就向正冻带迁移,并以冰的形式充填土颗粒间隙,而当土中的水冻结成冰时,体积一般会增大9%,当土中水的体积膨胀到足以引起颗粒间的相对位移时就会引起土的冻胀。
冻胀的严重性在于已冻土中由于未冻水分不断地迁移积聚,特别是当负温持续条件及有充分的水源和水的迁移通道时,冻胀会更加严重。
影响冻胀的主要因素有:土颗粒粒径大小、矿物成分、土中水分以及补给来源、冻结条件和外部荷载作用等。
一般来说,粗颗粒的土由于水分易于排出而不易产生冻胀,随着土颗粒粒径的减小冻胀性逐渐增强,但当颗粒粒径达到黏性土粒径范围(即00075mm)时,由于水分迁移量减小,冻胀量也相应减小;亲水性矿物成分含量高的土冻胀性显著增强;对于冻胀敏感性土,初始含水量大,水分补给充足的土冻胀性特别强;温度越低,未冻水含量越少,冰的相对含量增加,冻胀性就越显著;增加土体的外部附加荷载会对土体冻胀产生显著的抑制作用。
14冻土的融沉性
冻结深度或融化层厚度,一般通过勘探和实测地温方法进行直接判定。
我国多年冻土地区融化深度约3m左右,所以对多年冻土融陷性等级评价也按3m考虑,根据计算融陷量及融陷系数对冻土的融陷性分成5级。
冻土在融化过程中在无外部荷载作用下所产生的沉降,称为融化下沉或融陷,在有外部荷载作用下产生的压缩变形称为融化压缩。
2冻土地基工程的施工方法
冻土地基工程的施工方法主要包括冻土地基的工程防护及改造。
21冻土地基的防护
在我国目前由于工程实践水平有限,冻土区工程建设主要集中于冻土工程防护及改造方面,而对其利用尚未开始。
在冻土区工程建设中,冻土危害主要表现为冻胀及融化下沉,从而导致建筑物地基产生不均匀沉降,并造成建筑物破坏。
对冻土进行防治及改造的目的在于,预防冻土天然状态的改变或消除其危害产生的根源,避免冻土对工程产生危害。
防护的方法主要有:采用架空通风基础、粗颗粒土垫高地基、铺设隔垫层及各种热桩、强制循环制冷桩等。
211架空通风基础
是将建筑物通过桩、柱抬升隔离地表通过埋置通风管道或预设隔热垫层,使建筑物不能和地表直接接触,以达到冻土地基不改变其原始温度条件而得以维持其稳定性,净架空距离一般10m,该方法目前使用较为广泛。
它的优点在于:在夏季地基土层由于上部建筑物的遮阳作用而不易融化,在冬季通过寒冷空气在架空空间内的流动,可进一步冷冻地基土层。
212粗颗粒土垫高地基
在年均气温低于0的冻土地区,大多数建筑地基可采用粗颗粒(碎石、砾石)垫高地基,垫高地基超出建筑物外围至少03m,其作用:提供施工操作面,平整场地;阻止热量导出原始冻土地基,保证其冻结状态,该方法具有一定的局限性,一般不适合于采暖建筑物。
213铺设隔热层
作为隔热层的材料必须是具有一定刚度的土工织物或泡沫材料,且使用期间不吸湿(防潮性)。
如果材料在建筑使用期间出现明显的裂缝或防潮性较差,则其隔热性能将很快丧失。
通常隔热层常使用于地板,以阻止建筑物热量散入冻土地基。
214桩基础
由于桩基可隔离上层建筑与冻土的直接接触,且于其间易于设置架空空间及铺设绝热材料,因此桩基础是冻土区建筑采用相对较为广泛的基础形式。
桩的类型主要包括木桩、H型钢桩、钢管桩、混凝土预制桩及钻孔灌注桩等,承载力可由桩端或桩周冻结黏附力提供。
215
热桩
热桩是一种特殊类型的桩,通过自身相转换或强制循环制冷消散土体中热量,故其能够将土体内部的温度降低,因此在改善冻土地基、防止冻土融化下沉和冻胀以及提高地基稳定性方面,都是极好的处理手段。
我国曾将热桩有效地应用于青藏铁路,在稳定性方面效果良好。
22
冻土地基的改造
冻土地基改造的宗旨主要是消除其冻胀和融沉特性,以保证工程建设的正常完成和有效运营。
221冻土地基的防冻胀措施
冻土地基防冻胀措施的实施途径是消除冻胀因素或降低其影响力。
目前采用的方法主要有以下几种:
1)换填法:换填法在冻土改良中是最为广泛采用的工程
措施,换填法即用粗砂、砾石等非或冻胀性的土体材料置换天然地基的冻胀性土,以消除或消弱天然地基的冻胀性。
对于换填材料土颗粒粒径的控制,粗颗粒土中粉、黏粒含量应控制在12%左右,一般以通过0074mm含量来控制换填料中的细颗粒含量。
同时,为增强换填防冻胀效果,采取有效的排水措施也是十分必要的。
2)物理化学法:物理化学法是利用交换阳离子及盐分对冻胀影响规律而改良冻土地基的一种
方法,其中主要包括加入一定量的可溶性无机盐的人工盐渍化,用憎水物质及聚合剂使土颗粒聚集或分散等办法,物理化学法因该法简单易行,材料来源广泛,又比较经济,是目前防治土体冻胀最有效和最有前途的一种方法。
222冻土地基的防融沉措施
对于冻土地基融沉的防治,主要是从改良土体的角度出发,包括以下两个方面:通过剥离土层或其他工业融化方法对冻土进行融、预周结。
是类似于防冻胀的工程措施,即用纯净的粗颗粒土换填富冰土或含土冰层,以直接消除或消弱土层的融沉。
此外,工程中也有采取多填方、少挖方的方针,以尽可能避免对冻土的扰动破坏。
223季节性冻土基础工程防冻胀措施目前多从减少冻胀力和改善周围冻土的冻胀性来防治冻胀。
一般采取的办法有:基础四侧换土,采用较纯净的砂、砂砾石等粗颗粒土换填基础四周冻土,填土夯实;改善基础侧表面平滑度,基础必须浇筑密实,具有平滑表面。
基础侧面在冻土范围内还可以用工业凡士林、渣油等涂刷以减少切向冻胀力;选用抗冻胀性基础改变基础断面形状,利用冻胀反力的自锚作用增加基础抗冻拔的能力。
224多年冻土地基工程的防融沉措施
一般采取的办法有换填基底土,对采用融化原则的基底上可换填碎、卵、砾石或粗砂等,换填深度可到季节融化深度或受压层深度;选择好基础形式,对融沉、强融沉土用轻型墩台,适当增大基底面积,减少压应力,或结合具体情况,加深基础埋置深度;注意隔热措施,采取保持冻结原则时施工中注意保护地表上覆盖植被,或以保温性能较好的材料铺盖地表,减少热渗入量。
施工和养护中,保证结构物周围排水通畅,防止地表水灌入基坑内。
3结束语
我国拥有幅员辽阔的冻土分布区,在世界四大冻土国家中位居第三,其中季节冻土面积514万km2,约占国土面积的54%,多年冻土占我国总面积的20%以上,占世界多年冻土总面积的10%。
尽管人类对于冻土的研究时间较短,还处于起步阶段,但对于冻土的一些基本工程特性已经掌握了一些,并且针对其工程特性在工程建设中积累了一些行之有效的处理办法。
随着人类社会的进步与发展,许多工程建筑都会涉及到冻土,人类对于冻土的研究必将会越来越深入和广泛,只有对其工程特性逐步加以了解,才能更为有效地采取预防和改造措施,从而保证工程的安全。
参考文献:
[1]曲祥民,张滨季节性冻土区水工建筑物抗冻技术[M]北京:
中国水利水电出版社,2008
[2]郭东信中国的冻土[M]兰州:甘肃教育出版社,1。