第3章 高层建筑结构荷载
- 格式:ppt
- 大小:572.00 KB
- 文档页数:38
第3章 高层建筑结构的荷载和地震作用[例题] 某高层建筑剪力墙结构,上部结构为38层,底部1-3层层高为4m,其他各层层高为3m ,室外地面至檐口的高度为120m ,平面尺寸为m m 4030⨯,地下室采用筏形基础,埋置深度为12m ,如图3.2.4(a)、(b)所示。
已知基本风压为2045.0m kN w =,建筑场地位于大城市郊区。
已计算求得作用于突出屋面小塔楼上的风荷载标准值的总值为800kN 。
为简化计算,将建筑物沿高度划分为六个区段,每个区段为20m ,近似取其中点位置的风荷载作为该区段的平均值,计算在风荷载作用下结构底部(一层)的剪力和筏形基础底面的弯矩。
解:(1)基本自振周期:根据钢筋混凝土剪力墙结构的经验公式,可得结构的基本周期为: s n T 90.13805.005.01=⨯==222210m s kN 62.19.145.0T w ⋅=⨯=(2)风荷载体型系数:对于矩形平面,由附录1可求得80.01=s μ57040120030480L H 0304802s .....-=⎪⎭⎫ ⎝⎛⨯+-=⎪⎭⎫ ⎝⎛+-=μ (3)风振系数:由条件可知地面粗糙度类别为B 类,由表3.2.2可查得脉动增大系数502.1=ξ。
脉动影响系数ν根据H/B 和建筑总高度H 由表3.2.3确定,其中B 为迎风面的房屋宽度,由H/B=3.0可从表3.2.3经插值求得=ν0.478;由于结构属于质量和刚度沿高度分布比较均匀的弯剪型结构,可近似采用振型计算点距室外地面高度z 与房屋高度H 的比值,即H H i /z =ϕ,i H 为第i 层标高;H 为建筑总高度。
则由式(3.2.8)可求得风振系数为:HH 478050211H H 11iz i z ⋅⨯+=⋅+=+=μμξνμϕνξβ.. z z z(4)风荷载计算:风荷载作用下,按式(3.2.1)可得沿房屋高度分布的风荷载标准值为:()z z z z ....)z (q βμβμ6624=40×570+80×450=按上述公式可求得各区段中点处的风荷载标准值及各区段的合力见表3.2.4,如图3.2.4(c)所示。
高层建筑结构课后习题答案【篇一:高层建筑试题及答案】)填空题1、我国《高层建筑混凝土结构技术规程》(jgj3—2002)规定:把或房屋高度大于28m的建筑物称为高层建筑,此处房屋高度是指室外地面到房屋主要屋面的高度。
2.高层建筑设计时应该遵循的原则是。
3.复杂高层结构包括4.8度、9度抗震烈度设计时,高层建筑中的和结构应考虑竖向地震作用。
5.高层建筑结构的竖向承重体系有框架结构体系,剪力墙结构体系,框架—剪力墙结构体系,筒体结构体系,板柱—剪力墙结构体系;水平向承重体系有现浇楼盖体系,叠合楼盖体系,预制板楼盖体系,组合楼盖体系。
6.高层结构平面布置时,应使其平面的和尽可能靠近,以减少。
7.《高层建筑混凝土结构技术规程》jgj3-2002适用于10层及10层以上或房屋高度超过28m的非抗震设计和抗震设防烈度为6至9度抗震设计的高层民用建筑结构。
9第二章高层建筑结构设计基本原则(一)填空题1.天然地基是指的地基。
2.当埋置深度小于或小于,且可用普通开挖基坑排水方法建造的基础,一般称为浅基础。
3,为了增强基础的整体性,常在垂直于条形基础的另一个方向每隔一定距离设置拉梁,将条形基础联系起来。
4.基础的埋置深度一般不宜小于m,且基础顶面应低于设计地面mm以上,以免基础外露。
5.在抗震设防区,除岩石地基外,天然地基上的箱形和筏形基础,其埋置深度不宜小于建筑物高度的1/15;桩箱或桩筏基础的埋置深度(不计桩长)不宜小于建筑物高度的1/18—1/20。
6.当高层建筑与相连的裙房之间设置沉降缝时,高层建筑的基础埋深应大于裙房基础的埋深至少2m。
7.当高层建筑与相连的裙房之间不设置沉降缝时,宜在裙房一侧设置,其位置宜设在距主楼边柱的第二跨内。
8.当高层建筑与相连的裙房之间不设置沉降缝和后浇带时,应进行验算。
9.基床系数即地基在任一点发生单位沉降时,在该处单位面积上所需施加压力值。
10.偏心受压基础的基底压应力应满足还应防止基础转动过大。
浅谈高层建筑结构风荷载及抗风设计摘要:风荷载与高层建筑的安全和使用有着密切关系,过大的侧向位移会使结构产生过大的附加内力,这种内力与位移成正比,附加内力越大位移越大,以致形成恶性循环,可能导致或者加速建筑物的倒塌。
过大的侧向变形也会导致结构性的损坏或者裂缝,从而危及结构的正常使用,影响人们的生活和工作,本文简要介绍了风的起因、特性、风荷载的计算,以及高层建筑结构抗风设计。
关键词:风荷载;高层建筑;体型;抗风设计一、风荷载1、风的特性风是由于气压分布不均引起空气流动的结果,随着建筑物高度的增加,风速也会随之产生变化。
当气流遇到建筑物时,在建筑物表面产生吸力或者压力,即形成风荷载。
风荷载的大小主要与近地风的性质、风速、风向有关,也与建筑物的高度、形状和地表状况有关。
风荷载是由于建筑物阻塞大气边层气流运动而引起的,风荷载的特点有以下几点:1、风荷载与空间位置、时间有关,并且还受到地形、地貌、周围建筑环境的影响,具有不确定性;2、风荷载与建筑物的外形有关,建筑物不同部位对风的敏感程度不同;3、对于具有显著非线性特征的结构,风荷载可能会产生流固耦合反应;4、脉动风的强度、频率、风向是随机的,具有不确定性;5、风荷载具有静力和动力双重特点,动力部分即脉动风的作用会引起高层建筑物的振动。
建筑物风荷载主要包括三部分:平均风压产生的平均力、脉动风压产生的随机脉动力、由于风引起建筑物振动产生的惯性力。
2、风荷载的计算我国规范GB50009-2012《建筑结构荷载规范》规定,垂直于建筑物表面的风荷载标准值应按下式计算式中:为风荷载标准值(KN/m2);为高度Z处的风振系数;为风荷载体型系数;为风压高度变化系数;为基本风压(KN/m2);基本风压与高层建筑结构的安全性、经济性、适用性有着密切关系,基本风压的确定方法和重现期关系到建筑结构在风荷载作用下的安全。
我国确定风压的方法包括对观测场地、风速仪的类型和高度以及统计方法的规定,重现期为50年的风压为基本风压。
⾼层课后思考题答案⾼层课后思考题答案第1章绪论1.我国对⾼层建筑结构是如何定义的?答:我国规定:10层及10层以上或⾼度超过28m的住宅以及房屋⾼度⼤于24m的其他民⽤建筑为⾼层建筑。
2.⾼层建筑结构的受⼒及变形特点是什么?设计时应考虑哪些问题?答:特点:⽔平荷载对结构影响⼤,随⾼度的增加除轴⼒与⾼度成正⽐外,弯矩和位移呈指数曲线上升,并且动⼒荷载作⽤下,动⼒效应⼤,扭转效应⼤。
考虑:结构侧移,整体稳定性和抗倾覆问题,承载⼒问题。
3.从结构材料⽅⾯来分,⾼层建筑结构有哪些类型?各有何特点?答:相应的结构分类(以材料分类):砌体结构、钢结构、钢筋混凝⼟结构、钢-混凝⼟混合结构特点:(1)砌体结构具有取材容易、施⼯简便、造价低廉等优点,但其抗拉、抗弯、抗剪强度均较低,抗震性 __________能较差。
(2)钢结构具有强度⾼,⾃重轻(有利于基础),延性好,变形能⼒⼤,有利于抗震,可以⼯⼚预制,现场拼装,交叉作业但价格⾼,防⽕材料(增加造价),侧向刚度⼩。
(3)钢筋混凝⼟具有价格低,可浇筑成任何形状,不需要防⽕,刚度⼤。
但强度低,构件截⾯⼤占⽤空间⼤,⾃重⼤,不利于基础、抗震,延性不如钢结构。
(4)混合结构与钢构件⽐:⽤钢少,刚度⼤,防⽕、防锈;与混凝⼟构件⽐:重量轻,承载⼒⼤,抗震性能好。
第2章⾼层建筑结构体系与布置1.⾼层结构体系⼤致有哪⼏类?各种结构体系优缺点和受⼒特点如何?答:⾼层结构体系类型:框架结构体系剪⼒墙结构体系框架⼀剪⼒墙结构体系筒中筒结构体系多筒体系巨型结构体系框架结构:受⼒变形特点:框架结构的侧移⼀般由两部分组成:1)⽔平⼒引起的楼层剪⼒,使梁、柱构件产⽣弯曲变形,形成框架结构的整体剪切变形Us ;2)由⽔平⼒引起的倾覆⼒矩,使框架柱产⽣轴向变形(⼀侧柱拉伸,另⼀侧柱压缩)形成框架结构的整体弯曲变形Ub ;3)当框架结构房屋的层数不多时,其侧移主要表现为整体剪切变形,整体弯曲变形的影响很⼩。
《建筑结构荷载规范》(GB50009-2001)新内容有关调整部分:新规范于2002年3月1日启用,原规范(GBJ9-87)于2002年12月31日废止;新规范规定必须严格执行的强制性条文共13条,具体分配为:第1章有1条、第3章有3条、第4章有5条、第6章有2条、第7章有2条;楼面活荷载作了一些调整和增项,屋面不上人活荷载也作了一些调整;风、雪荷载由原按30年一遇重新规定为按50年一遇,同时对滁州市的风、雪荷载值也作了一点调整:10米高50年一遇基本风压值为0.35KN/M2,雪压值为0.40KN/M2,雪荷载准永久值系数为0.2,属于第Ⅱ分区;在计算风载时,风压高度变化系数根据地面粗糙度类别来确定:原规范(GBJ9-87)将地面粗糙度类别分为三类(A、B、C)。
随着我国建设事业的蓬勃发展,城市房屋的高度和密度日益增大,因此,对大城市中心地区的粗糙程度也有不同程度的提高,新规范(GB50009-2001)特将地面粗糙度改为四类(A、B、C、D),其中A、B类的有关参数不变,C类指有密集建筑群的城市市区,其粗糙度指数α由0.2改为0.22,梯度风高度HG仍取400m,新增添的D类,是指有密集建筑群且有大量高层建筑的大城市市区,其粗糙度指数α为0.3,梯度风高度HG取450m;专门规定了围护结构构件的风荷载及相关计算;在常用材料和构件的自重之“附表A”中,增设了“建筑墙板”一览表。
强制性条文部分:第1章“总则”之强制性条文:第1.0.5条:规范采用的设计基准期一律为50年;第3章“荷载分类和荷载效应组合”之强制性条文:第3.1.2条:建筑结构设计时,对不同荷载应采用不同的代表值:对永久荷载应采用标准值作为代表值;对可变荷载应根据设计要求采用标准值、组合值、频遇值或准永久值作为代表值;对偶然荷载应按建筑结构使用的特点确定其代表值。
第3.2.3条:对于基本组合,荷载效应组合的设计值应从以下两种组合值中取最不利值中确定:①由可变荷载效应控制的组合;②由永久荷载效应控制的组合;第3.2.5条:基本组合的荷载分项系数,应按下列规定采用:永久荷载的分项系数:当其效应对结构不利时;——对由可变荷载效应控制的组合,应取1.2;——对由永久荷载效应控制的组合,应取1.35;当其效应对结构有利时;——一般情况下,应取1.0;——对结构的倾覆、滑移或漂浮验算,应取0.9;可变荷载的分项系数:——一般情况下,应取1.4;——对标准值大于4.0KN/M2的工业房屋楼面结构的活荷载,应取1.3;第4章“楼面和屋面活荷载”之强制性条文:第4.1.1条:民用建筑楼面均布活荷载的标准值及其组合值、频遇值和永久值系数应按表4.1.1的规定采用(摘录):住宅、宿舍、旅馆、办公楼、医院病房、托儿所、幼儿园,楼面均布活荷载的标准值取2.0KN/M2;教室、试验室、阅览室、会议室、医院门诊室,楼面均布活荷载的标准值取2.0KN/M2;食堂、餐厅、一般资料档案室,楼面均布活荷载的标准值取2.5KN/M2;礼堂、剧场、影院、有固定座位的看台,楼面均布活荷载的标准值取3.0KN/M2;一般的厨房,楼面均布活荷载的标准值取2.0KN/M2;餐厅的厨房,楼面均布活荷载的标准值取4.0KN/M2;住宅、宿舍、旅馆、办公楼、医院病房、托儿所、幼儿园的浴室,厕所、盥洗室,楼面均布活荷载的标准值取2.0KN/M2;其他民用建筑的浴室,厕所、盥洗室,楼面均布活荷载的标准值取2.5KN/M2;住宅、宿舍、旅馆、医院病房、托儿所、幼儿园的走廊,门厅、楼梯,楼面均布活荷载的标准值取2.0KN/M2;办公楼、教室、餐厅、医院门诊部的走廊,门厅、楼梯,楼面均布活荷载的标准值取2.5KN/M2;消防疏散楼梯和其他民用建筑的走廊,门厅、楼梯,楼面均布活荷载的标准值取3.5KN/M2;对于预制楼梯踏步平板,尚应按1.5KN 集中荷载验算;一般情况下的阳台,楼面均布活荷载的标准值取2.5KN/M2;当人群有可能密集时,楼面均布活荷载的标准值取3.5KN/M2;第4.1.2条:设计楼面梁、墙、柱及基础时,第4.1.1条中的楼面均布活荷载的标准值在下列情况下应乘以规定的折减系数:设计楼面梁时的折减系数:——当住宅、宿舍、旅馆、办公楼、医院病房、托儿所、幼儿园的楼面梁从属面积超过25m2时,应取0.9;——当教室、试验室、阅览室、会议室、医院门诊室、食堂、餐厅、一般资料档案室、礼堂、剧场、影院、有固定座位的看台等的楼面梁从属面积超过50m2时,应取0.9;设计墙、柱及基础时的折减系数,参见下表:活荷载按楼层的折减系数墙、柱及基础计算截面以上的层数12~34~56~89~20>20计算截面以上各楼层活荷载总和的折减系数 1.00(0.90)0.850.700.650.600.55注:当楼面梁的从属面积超过25m2时,应采用括号内的系数。
第1章绪论(1)我国对高层建筑结构是如何定义的?(2)高层建筑结构的受力及变形特点是什么?设计时应考虑哪些问题?(3)从结构材料方面来分,高层建筑结构有哪些类型?各有何特点?(4)为什么要限制结构在正常情况下的侧移?何谓舒适度?高规采用何种限制来满足舒适度要求?(5)什么是结构的重力二阶效应?高层建筑为什么要进行稳定性验算?如何进行框架结构的整体稳定验算?第2章高层建筑结构体系与布置1. 何为结构体系?高层建筑结构体系大致有哪几类?选定结构体系主要考虑的因素有哪些?各种结构体系的优缺点和受力特点如何?2.如何确定高层建筑的结构方案?3.在抗震结构中为什么要求平面布置简单、规则、对称,竖向布置刚度均匀?怎样布置可以使平面内刚度均匀,减小水平荷载引起的扭转?沿竖向布置可能出现哪些刚度不均匀的情况?高层建筑结构平面、竖向不规则有哪些类型?4.防震缝、伸缩缝和沉降缝在什么情况下设置?各种缝的特点和要求是什么?在高层建筑结构中,特别是抗震结构中,怎么处理好这三种缝?5.框架-筒体结构与框筒结构有何异同?框架结构与框筒结构相比,两者平面结构布置和受力特点有何不同?何谓框筒结构的剪力滞后现象?6高层建筑结构总体布置的原则是什么?7为什么规范对每一种结构体系规定最大的适应高度?实际工程是否允许超过规范规定的最大适应高度?8.高层建筑的基础都有哪些形式?高层建筑的基础为什么埋深要求?采用天然地基时高层建筑的基础埋深不小于多少?第3章高层建筑结构荷载(1)高层建筑结构设计时应主要考虑哪些荷载或作用?(2)高层建筑结构的竖向荷载如何取值?进行竖向荷载作用下的内力计算时,是否要考虑活荷载的不利布置?为什么?(3)结构承受的风荷载与哪些因素有关?和地震作用相比,风荷载有何特点?(4)高层建筑结构风荷载标准值计算式中,基本风压、风载体型系数和风压高度变化系数分别如何取值?(5)什么是风振系数?在什么情况下需要考虑风振系数?如何取值?(6)结构自振周期的计算方法有哪些?为什么要对理论周期值进行修正?如何修正?各类结构基本周期的经验公式是什么?第4章高层建筑结构分析原则(1)在多高层建筑结构计算中,假定楼盖在自身平面内为绝对刚性有何意义?如果楼盖不满足绝对刚性的假定,则计算中应如何考虑?(2)水平荷载的作用方向如何确定?把空间结构简化为平面结构的两个基本假定是什么?楼板起什么作用?第5章 高层建筑结构的近似计算方法框架部分 (1) 简述分层法和迭代法的计算要点及步骤。
高层建筑结构设计要求和荷载效应组合高层建筑的结构设计是十分重要的,因为它需要承受巨大的荷载效应,包括自重、风荷载、地震荷载等。
设计师在进行高层建筑结构设计时应考虑以下几个方面的要求和荷载效应组合:1.强度要求:高层建筑需要承受大量的荷载,因此在结构设计中必须满足强度要求。
这包括材料的强度要求,如钢筋混凝土的抗拉、抗压强度等;以及构件的强度要求,如梁、柱、墙等结构构件的尺寸、截面形状、厚度等。
2. 稳定性要求:高层建筑结构设计中,不仅需要考虑结构的强度,还需要考虑结构的稳定性。
稳定性要求包括纵向稳定性和横向稳定性。
纵向稳定性指建筑结构在垂直方向上的承载能力以及抗 overturning 能力;横向稳定性指建筑结构在水平方向上的抗侧倾和抗扭转能力。
3.刚度要求:高层建筑结构设计中,不仅需要考虑结构的强度和稳定性,还需要考虑结构的刚度,即结构的变形和振动。
高层建筑结构的刚度要求会影响到结构的稳定性、舒适度以及非结构性附件的设计和使用。
4.建筑荷载组合:高层建筑结构设计中,需要考虑不同荷载效应的组合。
荷载效应包括恒定荷载、活载、特殊荷载、风荷载、地震荷载等。
根据设计规范,这些荷载效应需要进行组合计算,确保结构在最不利的工况下的承载能力与安全性。
5.抗震设计:高层建筑结构设计中,地震荷载是一个重要的荷载效应。
地震设计要求结构在地震作用下,能够保持抗震安全性。
这包括结构的抗震设计参数、抗震性能要求、荷载效应的组合等。
需要注意的是,高层建筑结构设计不仅要满足上述要求,还需要考虑其他因素,如施工可行性、经济性、可维护性等。
因此,在进行高层建筑结构设计时,需要综合考虑各种因素,并遵守相应的设计规范和标准。
只有满足这些要求,才能确保高层建筑结构工程的安全性、可靠性和稳定性。
高层建筑结构设计确定风荷载高层结构设计要确保结构在风荷载作用下具有足够的抵抗变形能力和承载能力,保证结构在风荷载作用下的安全性。
同时,高层建筑物在风荷载作用下将产生振动,过大的振动加速度将使在高楼内居住的人们感觉不舒适,因此高层建筑结构应具有良好的使用条件,满足舒适度的要求。
1.1 等效静态风荷载一般作用在建筑物上的风包括平均风和脉动风。
其中平均风是风荷载的长周期部分作用在建筑物上,其周期常在10min以上,可认为是作用在建筑物上的静荷载,因为其周期与建筑物的自振周期相差较远;脉动风则是短周期部分作用在建筑物上,其脉动的周期很短,一般只有几秒,其作用可以被认为是作用在建筑物上随机的动荷载,因为其周期与建筑物的自振周期比较接近。
作用在建筑结构上的风荷载除了平均风和脉动风产生的平均风力和脉动风力,还有风振产生的惯性力。
平均风力、脉动风力和惯性力组合得到最终的等效静态风荷载。
(1)惯性力根据高频动态天平试验结果,可以求出高层建筑底部的平均风力(包含力矩和剪力)和脉动风力,在给出高层建筑结构参数的情况下,可以计算出位移和加速度响应,由共振加速度可以进一步求出惯性力。
惯性力是由振动产生的,由加速度和质量决定,沿高度分布惯性力均方根σaf(z)表达式为:上式中m(z)为沿高度的质量,为沿高度的加速度。
(2)平均风力和脉动风力空气来流沿高层建筑高度分布的风力可通过下式表达:其中:ρ为空气密度;是z处单位高度上的力系数,一般通过风压测量试验确定;是来流风速。
风速是平均风速与脉动风速的合成,即:一般来说,脉动风速相对于平均风速是小量,忽略二阶小量,即可得到沿高度分布的平均风力和脉动风力分别如下:脉动力均方根为:其中,为沿高度的来流湍流度。
(3)等效静态风荷载沿高度分布的等效静态风荷载由下式给出:式中g为峰值因子,可取3.5。
1.2 结构体型系数对于普通的高层结构,结构体型系数一般按《建筑结构荷载规范》(GB 50009-2022)表8.3.1和《高层建筑混凝土结构技术规程》(JGJ3-2022)第4.2.3条取包络值。
高层建筑结构设计教案A简化第一章:高层建筑结构概述1.1 教学目标了解高层建筑结构的定义和发展历程。
掌握高层建筑结构的分类及其特点。
理解高层建筑结构设计的基本原则。
1.2 教学内容高层建筑结构的定义和发展历程。
高层建筑结构的分类及其特点。
高层建筑结构设计的基本原则。
1.3 教学方法采用讲授法,介绍高层建筑结构的定义和发展历程。
采用案例分析法,分析高层建筑结构的分类及其特点。
采用讨论法,探讨高层建筑结构设计的基本原则。
第二章:高层建筑结构设计规范2.1 教学目标熟悉我国高层建筑结构设计规范的主要内容。
掌握高层建筑结构设计规范的应用方法。
了解高层建筑结构设计规范的发展趋势。
2.2 教学内容我国高层建筑结构设计规范的主要内容。
高层建筑结构设计规范的应用方法。
2.3 教学方法采用讲授法,介绍我国高层建筑结构设计规范的主要内容。
采用案例分析法,讲解高层建筑结构设计规范的应用方法。
采用讨论法,探讨高层建筑结构设计规范的发展趋势。
第三章:高层建筑结构体系3.1 教学目标了解高层建筑结构体系的分类及其特点。
掌握高层建筑结构体系的设计方法。
理解高层建筑结构体系的经济性和安全性。
3.2 教学内容高层建筑结构体系的分类及其特点。
高层建筑结构体系的设计方法。
高层建筑结构体系的经济性和安全性。
3.3 教学方法采用讲授法,介绍高层建筑结构体系的分类及其特点。
采用案例分析法,分析高层建筑结构体系的设计方法。
采用讨论法,探讨高层建筑结构体系的经济性和安全性。
第四章:高层建筑结构材料4.1 教学目标熟悉高层建筑结构常用材料的特性和应用。
掌握高层建筑结构材料的选择方法。
4.2 教学内容高层建筑结构常用材料的特性和应用。
高层建筑结构材料的选择方法。
高层建筑结构材料的发展趋势。
4.3 教学方法采用讲授法,介绍高层建筑结构常用材料的特性和应用。
采用案例分析法,讲解高层建筑结构材料的选择方法。
采用讨论法,探讨高层建筑结构材料的发展趋势。
第五章:高层建筑结构分析方法5.1 教学目标掌握高层建筑结构分析的基本方法。