材料力学第一章材料力学第一章
- 格式:ppt
- 大小:15.69 MB
- 文档页数:130
第一章绪论第一节材料力学的任务与研究对象一、材料力学的任务1.研究构件的强度、刚度和稳定度载荷:物体所受的主动外力约束力:物体所受的被动外力强度:指构件抵抗破坏的能力刚度:指构件抵抗变形的能力稳定性:指构件保持其原有平衡状态的能力2.研究材料的力学性能二、材料力学的研究对象根据几何形状以及各个方向上尺寸的差异,弹性体大致可以分为杆、板、壳、体四大类。
1.杆:一个方向的尺寸远大于其他两个方向的尺寸的弹性体。
轴线:杆的各截面形心的连线称为杆的轴线;轴线为直线的杆称为直杆;轴线为曲线的杆称为曲杆。
按各截面面积相等与否,杆又分为等截面杆和变截面杆。
2.板:一个方向的尺寸远小于其他两个方向的尺寸,且各处曲率均为零,这种弹性体称为板3.壳:一个方向的尺寸远小于其他两个方向的尺寸,且至少有一个方向的曲率不为零,这种弹性体称为板4.体:三个方向上具有相同量级的尺寸,这种弹性体称为体。
第二节变形固体的基本假设一、变形固体的变形1.变形固体:材料力学研究的构件在外力作用下会产生变形,制造构件的材料称为变形固体。
(所谓变形,是指在外力作用下构建几何形状和尺寸的改变。
)2.变形弹性变形:作用在变形固体上的外力去掉后可以消失的变形。
塑性变形:作用在变形固体上的外力去掉后不可以消失的变形。
又称残余变形。
二、基本假设材料力学在研究变形固体时,为了建立简化模型,忽略了对研究主体影响不大的次要原因,保留了主体的基本性质,对变形固体做出几个假设:连续均匀性假设认为物体在其整个体积内毫无间隙地充满物质,各点处的力学性质是完全相同的。
各向同性假设任何物体沿各个方向的力学性质是相同的小变形假设认为研究的构件几何形状和尺寸的该变量与原始尺寸相比是非常小的。
第三节 构件的外力与杆件变形的基本形式一、构件的外力及其分类1.按照外力在构件表面的分布情况:度,可将其简化为一点分布范围远小于杆的长集中力:一范围的力连续分布在构件表面某分布力: 二、杆件变形的基本形式杆件在各种不同的外力作用方式下将发生各种各样的变形,但基本变形有四种:轴向拉伸或压缩、剪切、扭转和弯曲。
第一讲第一章材料力学基本知识§1.1 基本概念:理论力学------研究物体(刚体)受力和机械运动一般规律的科学。
材料力学------研究构件(杆件)在外力作用下内力、变形、以及破坏或失效一般规律的科学,为合理设计构件提供有关强度、刚度、稳定性等分析的基本理论和方法。
4.1 构件的承载能力为保证构件正常工作,构件应具有足够的能力负担所承受的载荷。
因此,构件应当满足以下要求:1、强度要求:即构件在外力作用下应具有足够的抵抗破坏的能力。
在规定的载荷作用下构件当然不应破坏,包括断裂和发生较大的塑性变形。
例如,冲床曲轴不可折断;建筑物的梁和板不应发生较大塑性变形。
强度要求就是指构件在规定的使用条件下不发生意外断裂或显著塑性变形。
2、刚度要求:即构件在外力作用下应具有足够的抵抗变形的能力。
在载荷作用下,构件即使有足够的强度,但若变形过大,仍不能正常工作。
例如,机床主轴的变形过大,将影响加工精度;齿轮轴变形过大将造成齿轮和轴承的不均匀磨损,引起噪音。
刚度要求就是指构件在规定的事业条件下不发生较大的变形。
3、稳定性要求:即构件在外力作用下能保持原有直线平衡状态的能力。
承受压力作用的细长杆,如千斤顶的螺杆、内燃机的挺杆等应始终维持原有的直线平衡状态,保证不被压弯。
稳定性要求就是指构件在规定的使用条件下不产生丧失稳定性破坏。
如果构件的横截面尺寸不足或形状不合理,或材料选用不当,不能满足上述要求,将不能保证工程结构或机械的安全工作。
相反,如果不恰当的加大构件横截面尺寸或选用高强材料,这虽满足了上述要求,却使用了更多的材料和增加了成本,造成浪费。
我们可以作出以下结论:材料力学是研究各类构件(主要是杆件)的强度、刚度和稳定性的学科,它提供了有关的基本理论、计算方法和实验技术,使我们能合理地确定构件的材料和形状尺寸,以达到安全与经济的设计要求。
在工程实际问题中,一般来说,构件都应具有足够的承载能力,即足够的强度、刚度和稳定性,但对具体的构件又有所侧重。
题型:问答题1.1对图1.2a所示钻床,试求n−n截面上的内力。
答案:见习题答案。
解析:采用截面法。
难度:容易能力:知识运用用途:作业,考试,自测知识点:第一章绪论题型:问答题1.2试求图示结构m−m和n−n两截面上的内力,并指出AB和BC两杆的变形属于哪一类基本变形。
答案:见习题答案。
解析:采用截面法。
难度:一般能力:知识运用用途:作业,考试,自测知识点:第一章绪论题型:问答题1.3在图示简易吊车的横梁上,力F可以左右移动。
试求截面1−1和2−2上的内力及其最大值。
答案:见习题答案。
解析:利用平衡方程求支座约束力,利用截面法求指定截面上的内力。
难度:一般能力:知识运用用途:作业,考试,自测知识点:第一章绪论题型:问答题1.4图示拉伸试样上A、B两点的距离l称为标距。
受拉力作用后,用引伸计量出两点距离的增量为Δl=5×10−2 mm。
若l的原长为100 mm,试求A与B两点间的平均线应变εm。
答案:见习题答案。
解析:利用线应变的定义。
难度:容易能力:知识运用用途:作业,考试,自测知识点:第一章绪论题型:问答题1.5图示三角形薄板因受外力作用而变形,角点B垂直向上的位移为0.03 mm,但AB和BC仍保持为直线。
试求沿OB的平均线应变,并求薄板在B点处的切应变。
答案:见习题答案。
解析:利用线应变和切应变的定义。
难度:一般能力:知识运用用途:作业,考试,自测知识点:第一章绪论题型:问答题1.6图示圆形薄板的半径为R,变形后R的增量为ΔR。
若R=80 mm,ΔR=3×10−3 mm,答案:见习题答案。
解析:利用线应变的定义。
难度:一般能力:知识运用用途:作业,考试,自测知识点:第一章绪论题型:问答题1.7取出某变形体在A点的微元体如图中实线所示,变形后的微元体如图中虚线所示。
试求A点的切应变。
答案:见习题答案。
解析:利用切应变的定义。
难度:容易能力:知识运用用途:作业,考试,自测知识点:第一章绪论题型:问答题1.8图示正方形薄板,边长为a AB的平均线应变。