单项式乘以多项式的计算题
- 格式:doc
- 大小:30.50 KB
- 文档页数:2
单项式乘多项式练习题一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.2.计算:(1)6x2•3xy (2)(4a﹣b2)(﹣2b)3.(3x2y﹣2x+1)(﹣2xy)4.计算:(1)(﹣12a2b2c)•(﹣abc2)2= _________ ;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)= _________ .5.计算:﹣6a•(﹣﹣a+2)6.﹣3x•(2x2﹣x+4)7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2 8.(﹣a2b)(b2﹣a+)9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?10.2ab(5ab+3a2b)11.计算:.12.计算:2x(x2﹣x+3)13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)= _________ .14.计算:xy2(3x2y﹣xy2+y)15.(﹣2ab)(3a2﹣2ab﹣4b2)16.计算:(﹣2a2b)3(3b2﹣4a+6)17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.多项式一、填空题1.计算:_____________)(32=+y x xy x .2.计算:)164(4)164(24242++-++a a a a a =________.3.若3k (2k-5)+2k (1-3k )=52,则k=____ ___.4.如果x+y=-4,x-y=8,那么代数式的值是 cm 。
2021-2022学年八年级数学上册尖子生同步培优题典【华师大版】专题12.5单项式乘多项式姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020•贺州模拟)计算6xy﹣2x(3y﹣1),结果正确的是()A.﹣2x B.2x C.1D.12xy+2x【分析】直接利用单项式乘以多项式以及合并同类项法则分别计算得出答案.【解析】原式=6xy﹣6xy+2x=2x.故选:B.2.(2021春•沙坪坝区校级期中)若A(m2﹣3n)=m3﹣3mn,则代数式A的值为()A.m B.mn C.mn2D.m2n【分析】把m3﹣3mn化成m(m2﹣3n),即可得出A的值.【解析】∵A(m2﹣3n)=m3﹣3mn=m(m2﹣3n),∴A=m.故选:A.3.(2021春•未央区月考)在一次数学课上,学习了单项式乘多项式,小刘回家后,拿出课堂笔记本复习,发现这样一道题:2x(﹣3x2﹣3x+1)=﹣6x3﹣□+2x,“□”的地方被墨水污染了,你认为“□”内应填写()A.﹣6x2B.6x2C.6x D.﹣6x【分析】直接利用单项式乘多项式运算法则计算得出答案.【解析】∵2x(﹣3x2﹣3x+1)=﹣6x3﹣6x2+2x=﹣6x3﹣□+2x,∴“□”的地方被墨水污染的式子是:6x2.故选:B.4.(2020秋•西城区期末)如果m2+m=5,那么代数式m(m﹣2)+(m+2)2的值为()A.14B.9C.﹣1D.﹣6【分析】直接利用单项式乘多项式计算,再把已知代入得出答案.【解析】m(m﹣2)+(m+2)2=m2﹣2m+m2+4m+4=2m2+2m+4.当m2+m=5时,原式=2(m2+m)+4=2×5+4=10+4=14.故选:A.5.(2021春•会宁县月考)已知7x5y3与一个多项式之积是28x7y3﹣7x5y3+56x6y5,则这个多项式是()A.4x2﹣xy2+8B.4x2+8xy2C.4x2﹣1+6xy2D.4x2+8xy2﹣1【分析】直接利用整式的乘除运算法则得出答案.【解析】∵7x5y3与一个多项式之积是28x7y3﹣7x5y3+56x6y5,∴这个多项式是:(28x7y3﹣7x5y3+56x6y5)÷7x5y3=4x2+8xy2﹣1.故选:D.6.(2020秋•路北区期末)三个连续奇数,若中间的一个为n,则这三个连续奇数之积为()A.4n3﹣n B.n3﹣4n C.8n2﹣8n D.4n3﹣2n【分析】直接表示出各奇数,再利用乘法公式以及单项式乘以多项式运算法则求出即可.【解析】∵中间的一个为n,∴较小的奇数为:n﹣2,较大的奇数为:n+2,∴这三个连续奇数之积为:n(n﹣2)(n+2)=n(n2﹣4)=n3﹣4n.故选:B.7.(2020•田家庵区校级自主招生)已知a2(b+c)=b2(a+c)=2017,且a、b、c互不相等,对c2(a+b)﹣2016=()A.0B.1C.2016D.2017【分析】先对已知条件进行变形和因式分解,得到ab+ac+bc=0,然后再将2016看成是2017﹣1,即看成a2(b+c)﹣1代入即可求解.【解析】∵a2(b+c)=b2(a+c),∴a2b+a2c﹣ab2﹣cb2=0,∴ab(a﹣b)+c(a+b)(a﹣b)=0,即:(a ﹣b )(ab +ac +bc )=0,∵a ,b ,c 互不相等,∴ab +ac +bc =0,∴c 2(a +b )﹣2016=c 2(a +b )﹣[a 2(b +c )﹣1]=ac 2+bc 2﹣a 2b ﹣a 2c +1=ac (c ﹣a )+b (a +c )(c ﹣a )+1=(c ﹣a )(ac +ab +bc )+1=(c ﹣a )×0+1=0+1=1.故选:B .8.(2019秋•恩阳区 期末)要使(﹣6x 3)(x 2+ax ﹣3)的展开式中不含x 4项,则a =( )A .1B .0C .﹣1D .16 【分析】原式利用单项式乘以多项式法则计算,根据结果不含x 4项求出a 的值即可.【解析】原式=﹣6x 5﹣6ax 4+18x 3,由展开式不含x 4项,得到a =0,故选:B .9.(2019秋•武汉期末)将大小不同的两个正方形按图1,图2的方式摆放.若图1中阴影部分的面积是20,图2中阴影部分的面积是14,则大正方形的边长是( )A .6B .7C .8D .9【分析】设大正方形的边长为a ,小正方形的边长为b ,根据题意列方程组,即可得到结论.【解析】设大正方形的边长为a ,小正方形的边长为b ,根据题意可得:12ab +12b (a ﹣b )=20,12ab =14,解得:a=7.故选:B.10.(2019秋•安居区期末)今天数学课上,老师讲了单项式乘以多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:﹣3xy(4y﹣2x﹣1)=﹣12xy2+6x2y+□,□的地方被钢笔水弄污了,你认为□内应填写()A.3xy B.﹣3xy C.﹣1D.1【分析】先把等式左边的式子根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加,所得结果与等式右边的式子相对照即可得出结论.【解析】∵左边=﹣3xy(4y﹣2x﹣1)=﹣12xy2+6x2y+3xy.右边=﹣12xy2+6x2y+□,∴□内上应填写3xy.故选:A.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2020秋•浦东新区期中)计算:xy(x﹣y)=x2y﹣xy2.【分析】直接利用单项式乘多项式运算法则计算得出答案.【解析】xy(x﹣y)=x2y﹣xy2.故答案为:x2y﹣xy2.12.(2020春•曲阳县期末)一个长方体的长、宽、高分别是3x﹣4、2x、x,它的体积等于6x3﹣8x2.【分析】根据长方体的体积等于长、宽、高之积,计算即可得到结果.【解析】由题意可得,(3x﹣4)×2x×x=(3x﹣4)×2x2=6x3﹣8x2.故答案为:6x3﹣8x2.13.(2019秋•长宁区校级月考)当a=﹣2时,求a2(2a+1)=﹣12.【分析】直接利用单项式乘以多项式运算法则计算,进而把a的值代入即可.【解析】∵a2(2a+1)=2a3+a2,∴当a=﹣2时,原式=2×(﹣2)3+(﹣2)2=﹣16+4=﹣12.故答案为:﹣12.14.(2020春•泰州期末)一个长方形的长、宽分别是3x﹣4和x,它的面积等于3x2﹣4x.【分析】根据长方形的面积公式列出算式,再根据单项式乘以多项式的运算法则进行计算即可.【解析】长方形的面积是(3x﹣4)•x=3x2﹣4x,故答案为:3x2﹣4x.15.(2020•海陵区一模)已知a﹣2b=﹣2,则代数式a(b﹣2)﹣b(a﹣4)的值为4.【分析】直接利用单项式乘多项式计算,再把已知代入得出答案.【解析】a(b﹣2)﹣b(a﹣4)=ab﹣2a﹣ab+4b=﹣2a+4b=﹣2(a﹣2b),∵a﹣2b=﹣2,∴原式=﹣2×(﹣2)=4.故答案为:4.16.(2020•岳阳)已知x2+2x=﹣1,则代数式5+x(x+2)的值为4.【分析】直接将原式变形,再利用已知代入原式得出答案.【解析】∵x2+2x=﹣1,∴5+x(x+2)=5+x2+2x=5﹣1=4.故答案为:4.17.(2019秋•徐汇区校级月考)计算:(−13x)⋅(x2−2xy−6y2)=−13x3+23x2y+2xy2.【分析】直接利用单项式乘以多项式运算法则得出答案.【解析】原式=−13x3+23x2y+2xy2.故答案为:−13x3+23x2y+2xy2.18.(2019秋•浦东新区校级月考)小明外祖母家的住房装修三年后,地砖出现破损,破损部分的图形如图:现有A、B、C三种地砖可供选择,请问需要A砖0块,B砖8块,C砖2块.【分析】计算出破损部分的面积,再根据A、B、C砖的面积进行选择即可.【解析】A砖的面积为a2,B砖的面积为ab,C砖的面积为b2,∵(4a+b)•2b=8ab+2b2,∴需要B砖8块,C砖2块,拼图如图所示:故答案为:0,8,2.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2020春•沙坪坝区校级月考)(﹣3y)(4x2y﹣2xy).【分析】根据单项式乘多项式的运算法则计算即可.【解析】(﹣3y)(4x2y﹣2xy)=(﹣3y)(4x2y)+(﹣3y)(﹣2xy)=﹣12x2y2+6xy2.20.(2020春•沙坪坝区校级月考)[xy(x2﹣xy)﹣x2y(x﹣y)]•3xy2.【分析】根据单项式与多项式相乘的法则计算.【解析】[xy(x2﹣xy)﹣x2y(x﹣y)]•3xy2=(x3y﹣x2y2﹣x3y+x2y2)•3xy2=0.21.(2020春•港南区期末)先化简,再求值:(x﹣2y)2﹣x(x+3y)﹣4y2,其中x=﹣4,y=1 2.【分析】根据完全平方公式、单项式乘多项式的法则把原式进行化简,代入已知数据计算即可.【解析】原式=x2﹣4xy+4y2﹣x2﹣3xy﹣4y2=﹣7xy,当x=﹣4,y=12时,原式=﹣7×(﹣4)×12=14.22.(2019春•江岸区校级月考)计算:(1)(﹣3a4)2﹣2a3a5;(2)2(3xy+x)﹣3x(2y−2 3).【分析】(1)直接利用积的乘方运算法则、同底数幂的乘法运算法则分别化简得出答案;(2)直接利用单项式乘以多项式运算法则化简得出答案.【解析】(1)(﹣3a4)2﹣2a3a5=9a8﹣2a8=7a8;(2)原式=6xy+2x﹣6xy+2x=4x.23.已知A=﹣2x2,B=x2﹣3x﹣1,C=﹣x+1,求:(1)A•B+A•C;(2)A•(B﹣C);(3)A•C﹣B.【分析】(1)直接利用已知结合单项式乘多项式运算法则化简,再合并同类项得出答案;(2)直接利用已知结合单项式乘多项式运算法则化简得出答案;(3)直接利用已知结合单项式乘多项式运算法则化简,再合并同类项得出答案.【解析】(1)∵A=﹣2x2,B=x2﹣3x﹣1,C=﹣x+1,∴A•B+A•C=﹣2x2•(x2﹣3x﹣1)﹣2x2•(﹣x+1)=﹣4x4+6x3+2x2+2x3﹣2x2=﹣4x4+8x3;(2)∵A=﹣2x2,B=x2﹣3x﹣1,C=﹣x+1,∴A•(B﹣C)=﹣2x2(x2﹣3x﹣1+x﹣1)=﹣2x2(x2﹣2x﹣2)=﹣2x4+4x3+4x2;(3)∵A=﹣2x2,B=x2﹣3x﹣1,C=﹣x+1,∴A•C﹣B=﹣2x2(﹣x+1)﹣(x2﹣3x﹣1)=2x3﹣2x2﹣x2+3x+1=2x 3﹣3x 2+3x +1.24.(2019秋•闵行区校级月考)已知x (x ﹣m )+n (x +m )=x 2+5x ﹣6对任意数都成立,求m (n ﹣1)+n (m +1)的值.【分析】把x (x ﹣m )+n (x +m )去括号、合并同类项,然后根据与x 2+5x ﹣6对应项的系数相同,即可求得n ﹣m 和mn 的值,然后代入求值即可.【解析】x (x ﹣m )+n (x +m )=x 2﹣mx +nx +mn=x 2+(n ﹣m )x +mn ,∴{n −m =5mn =−6则m (n ﹣1)+n (m +1)=n ﹣m +2mn =5﹣12=﹣7.。
单项式乘多项式计算题
哎哟喂,说起这个单项式乘多项式嘞计算题,那可真是要动动脑筋,还要手底下有把子硬功夫才行哦。
你想象一下,就像咱们四川人做菜,单项式就是那个主料,比如说“2x”,而多项式呢,就是那些个配料,花椒、海椒、葱蒜姜,一大堆,比如
“3x+4”。
要想把这道菜(哦不,是这道题)做好,就得按照规矩来。
先把主料“2x”跟多项式的每一项都“炒”一遍,就像咱们炒菜一样,先下油,再放主料,接着一样样地加配料。
所以,“2x”先跟“3x”炒,那就是“2x乘以3x等于6x的平方”,再跟“4”炒,就是“2x乘以4等于8x”。
炒完了还得记得把这两盘“菜”加在一起,也就是把“6x的平方”和“8x”合并同类项,变成“6x的平方+8x”。
这样一来,一道单项式乘多项式的计算题就算搞定啦!
说起来简单,做起来还是要细心。
就像咱们四川人说的,“心急吃不了热豆腐”,计算的时候也是一样,慢慢来,一步步地来,才能保证算得又对又快。
而且啊,这数学题目就像咱们四川的火锅,看起来红红火火,吃起来麻辣鲜香,让人欲罢不能,越做越有劲儿!。
《单项式乘以多项式》典型例题例1 计算:(1))123()4(2-+⋅xy x xy(2))478()21(3+-⋅-x x x (3))47(2)24(3)(22222b ab a b b a ab b ab a a +-+----例2 计算题:(1))1944)(3(22+--x x x ; (2)ab b a ab m m 32)1353(11⋅++--. 例3 求值:)43(3)129(1n n n n y y y y y ---++,其中2,3=-=n y .例4 化简(1))323(5132n n n n n n y y x y x y x +-⋅--++;(2)])2(3)2[(2222ab b ab b ab ab -+-.例5 设012=-+m m ,求2000223++m m 的值.例6 计算:(1))123()4(2-+⋅xy x xy(2))478()21(3+-⋅-x x x (3))47(2)24(3)(22222b ab a b b a ab b ab a a +-+----例7 计算题:(1))1944)(3(22+--x x x ; (2)ab b a ab m m 32)1353(11⋅++--。
例8 求值:)43(3)129(1n n n n y y y y y ---++,其中2,3=-=n y 。
例9 化简(1))323(5132n n n n n n y y x y x y x +-⋅--++;(2)])2(3)2[(2222ab b ab b ab ab -+-。
例10 设012=-+m m ,求2000223++m m 的值。
参考答案例1 解:(1)原式)1(424342-⋅+⋅+⋅=xy xy xy x xyxy y x y x 4812223-+=(2)原式4)21()7()21(8)21(3⋅-+-⋅-+⋅-=x x x x x x x x 227424-+-= (3)原式322222232814612222b ab b a ab b a ab b a a +-++---=323242b ab a +-=说明:单项式乘以多项式,积仍是一个多项式,其项数与所乘多项式的项数相等,要注意积的各项符号的确定.若是混合运算,运算顺序仍然是先乘方,再乘除,运算结果要检查,如有同类项要合并,结果要最简.例2 分析:(1)中单项式为23x -,多项式里含有24x ,x 94-,1,乘积结果为三项,特别是1这项不要漏乘.(2)中指数为字母,计算时要注意底数幂相乘底数不变指数相加.解:(1)原式1)3()94()3(432222⋅-+⋅-+⋅-=x x x x x 24433412x x x -+-= (2)ab ab b a ab m m 3232)1353(11+⋅++-- .322523232332532211ab b a b a ab ab b a ab ab m m m m ++=+⨯+⨯=-- 说明:单项式与多项式的第一项相乘时,要注意积的各项符号的确定;同号相乘得正,异号相乘得负.例3 解:原式n n n n n y y y y y 129129112+--+=++n y 2=当2,3=-=n y 时,81)3()3(4222=-=-=⨯n y说明:求值问题,应先化简,再代入求值.例4 分析:在计算单项式乘以多项式时,仍应按有理数的运算法则,先去小括号2)2(ab 和)(32b a ab b +,再去中括号.解:(1)原式)35()2)(5(3521232n n n n n n n n n n y y x y x y x y x y x --+--+⋅-=+-+++ 22122332151015++++-+-=n n n n n n y x y x y x(2)原式])3()3(4[22222ab b a b ab b b a ab --+-+=323322222222222282)4(22]4[2]334[2b a b a ab ab b a ab ab b a ab ab b a ab b a ab -=-+⋅=-=---=例5 分析:由已知条件,显然12=+m m ,再将所求代数式化为m m +2的形式,整体代入求解.解: 2000223++m m2000223+++=m m m20012000120002000)(200022222=+=++=+++=++⋅+⨯=m m m m m m m m m m m说明:整体换元的数学方法,关键是识别转化整体换元的形式.例6 解:(1)原式)1(424342-⋅+⋅+⋅=xy xy xy x xyxy y x y x 4812223-+=(2)原式4)21()7()21(8)21(3⋅-+-⋅-+⋅-=x x x x x x x x 227424-+-= (3)原式322222232814612222b ab b a ab b a ab b a a +-++---=323242b ab a +-=说明:单项式乘以多项式,积仍是一个多项式,其项数与所乘多项式的项数相等,要注意积的各项符号的确定。
《单项式乘以多项式》典型例题例1 计算:(1))123()4(2-+⋅xy x xy(2))478()21(3+-⋅-x x x (3))47(2)24(3)(22222b ab a b b a ab b ab a a +-+----例2 计算题:(1))1944)(3(22+--x x x ; (2)ab b a ab m m 32)1353(11⋅++--. 例3 求值:)43(3)129(1n n n n y y y y y ---++,其中2,3=-=n y .例4 化简(1))323(5132n n n n n n y y x y x y x +-⋅--++;(2)])2(3)2[(2222ab b ab b ab ab -+-.例5 设012=-+m m ,求2000223++m m 的值.例6 计算:(1))123()4(2-+⋅xy x xy(2))478()21(3+-⋅-x x x (3))47(2)24(3)(22222b ab a b b a ab b ab a a +-+----例7 计算题:(1))1944)(3(22+--x x x ; (2)ab b a ab m m 32)1353(11⋅++--。
例8 求值:)43(3)129(1n n n n y y y y y ---++,其中2,3=-=n y 。
例9 化简(1))323(5132n n n n n n y y x y x y x +-⋅--++;(2)])2(3)2[(2222ab b ab b ab ab -+-。
例10 设012=-+m m ,求2000223++m m 的值。
参考答案例1 解:(1)原式)1(424342-⋅+⋅+⋅=xy xy xy x xyxy y x y x 4812223-+=(2)原式4)21()7()21(8)21(3⋅-+-⋅-+⋅-=x x x x x x x x 227424-+-= (3)原式322222232814612222b ab b a ab b a ab b a a +-++---=323242b ab a +-=说明:单项式乘以多项式,积仍是一个多项式,其项数与所乘多项式的项数相等,要注意积的各项符号的确定.若是混合运算,运算顺序仍然是先乘方,再乘除,运算结果要检查,如有同类项要合并,结果要最简.例2 分析:(1)中单项式为23x -,多项式里含有24x ,x 94-,1,乘积结果为三项,特别是1这项不要漏乘.(2)中指数为字母,计算时要注意底数幂相乘底数不变指数相加.解:(1)原式1)3()94()3(432222⋅-+⋅-+⋅-=x x x x x 24433412x x x -+-= (2)ab ab b a ab m m 3232)1353(11+⋅++-- .322523232332532211ab b a b a ab ab b a ab ab m m m m ++=+⨯+⨯=-- 说明:单项式与多项式的第一项相乘时,要注意积的各项符号的确定;同号相乘得正,异号相乘得负.例3 解:原式n n n n n y y y y y 129129112+--+=++n y 2=当2,3=-=n y 时,81)3()3(4222=-=-=⨯n y说明:求值问题,应先化简,再代入求值.例4 分析:在计算单项式乘以多项式时,仍应按有理数的运算法则,先去小括号2)2(ab 和)(32b a ab b +,再去中括号.解:(1)原式)35()2)(5(3521232n n n n n n n n n n y y x y x y x y x y x --+--+⋅-=+-+++ 22122332151015++++-+-=n n n n n n y x y x y x(2)原式])3()3(4[22222ab b a b ab b b a ab --+-+=323322222222222282)4(22]4[2]334[2b a b a ab ab b a ab ab b a ab ab b a ab b a ab -=-+⋅=-=---=例5 分析:由已知条件,显然12=+m m ,再将所求代数式化为m m +2的形式,整体代入求解.解: 2000223++m m2000223+++=m m m20012000120002000)(200022222=+=++=+++=++⋅+⨯=m m m m m m m m m m m说明:整体换元的数学方法,关键是识别转化整体换元的形式.例6 解:(1)原式)1(424342-⋅+⋅+⋅=xy xy xy x xyxy y x y x 4812223-+=(2)原式4)21()7()21(8)21(3⋅-+-⋅-+⋅-=x x x x x x x x 227424-+-= (3)原式322222232814612222b ab b a ab b a ab b a a +-++---=323242b ab a +-=说明:单项式乘以多项式,积仍是一个多项式,其项数与所乘多项式的项数相等,要注意积的各项符号的确定。
单项式乘多项式练习题一.解答题(共18小题)1. 先化简,再求值:2 (a 2b+ab 2)- 2 (a 2b - 1)- ab 2 - 2,其中 a=-2, b=2.2. 计算:2 (1) 6x ?3xy 23. (3x 2y - 2x+1 ) (- 2xy )4. 计算:2 2 1 2 2(1) (- 12a b c ) ? (- pabc ) = ________________ ;(2) (3a 2b - 4ab 2- 5ab - 1) ? (- 2ab 2) =_____________________ .1^-1 25. 计算:-6a?(-专耳-£a+2)6. - 3x? (2x - x+4)2 27.先化简,再求值 3a ( 2a 2- 4a+3)- 2a 2 (3a+4),其中 a=- 29.一条防洪堤坝,其横断面是梯形,上底宽 a 米,下底宽(a+2b )米,坝高米.(1)求防洪堤坝的横断面积; 2(2) ( 4a - b ) (- 2b )(2)如果防洪堤坝长 100米,那么这段防洪堤坝的体积是多少立方米?16.计算: (-2a 2b ) 3 (3b 2- 4a+6)17.某同学在计算一个多项式乘以-3x 2时,因抄错运算符号,算成了加上- 3x 2,得到的结果是x 2- 4x+1,那么正确的计算结果是多少? 18.对任意有理数 x 、y 定义运算如下:x △ y=ax+by+cxy ,这里a 、b 、c 是给定的数,等式右边是通常数的加法及 乘法运算,如当 a=1, b=2, c=3时,I △ 3=1 X +2 X 3+3X1 >3=16,现已知所定义的新运算满足条件,2=3, 2△ 3=4 ,并且有一个不为零的数 d 使得对任意有理数 x △ d=x ,求a 、b 、c 、d 的值. 210. 2ab (5ab+3a b ) 11•计算:(一斗瓷/)° (3砂-4,+1)212 .计算:2x (x - x+3) 13. (- 4a 3+12a 2b - 7a 3b 3) (- 4a 2) = ________________14 .计算:xy 2 (3x 2y - xy 2+y )15 . (- 2ab ) (3a 2- 2ab - 4b 2)参考答案与试题解析一.解答题(共18小题)1. 先化简,再求值:2 (a2b+ab2)- 2 (a2b- 1)- ab2- 2,其中a=-2, b=2.考点:整式的加减一化简求值;整式的加减;单项式乘多项式.分析:先根据整式相乘的法则进行计算,然后合并冋类项,最后将字母的值代入求出原代数式的值. 解答:解:原式=2a2b+2ab2- 2a?b+2 - ab2- 22 2 2 2=(2a b- 2a b) + (2ab - ab ) + (2 - 2)2=0+ab=ab2当a=- 2, b=2 时,原式=(-2)疋2= - 2^4O点评:一 8.本题是一道整式的加减化简求值的题,考查了单项式乘以多项式的法则,合并冋类项的法则和方法.2. 计算:(1)6x2?3xy(2)(4a- b2) (- 2b)考点:单项式乘单项式;单项式乘多项式.分析:(1)根据单项式乘单项式的法则计算;(2)根据单项式乘多项式的法则计算.解答:解:(1) 6x ?3xy=18x y;2 3(2) (4a- b2) (- 2b) = - 8ab+2b3.点评:本题考查了单项式与单项式相乘、单项式与多项式相乘,熟练掌握运算法则是解题的关键.23. (3x y - 2x+1 ) (- 2xy)考点:单项式乘多项式.分析:解答:点评:根据单项式乘多项式的法则,用单项式乘多项式的每一项,再把所得的积相加,计算即可.2 32 2解:(3x y- 2x+1 ) (- 2xy) =- 6x y +4x y - 2xy .本题考查单项式乘多项式的法则,熟练掌握运算法则是解题的关键,本题一定要注意符号的运算.4. 计算:2 2 2、2 '445(1) (- 12a b c) ? (—abc ) = -— a b e4 4(2) (3a2b - 4ab2- 5ab- 1) ? (- 2ab2) = - 6a3b3+8a2b4+10a2b3+2ab2.考点:单项式乘多项式;单项式乘单项式.分析:(1)先根据积的乘方,等于把积中的每一个因式分别乘方,再把所得的幕相乘;单项式乘单项式,把他们的系数,相同字母的幕分别相乘,其余字母连同他的指数不变,作为积的因式的法则计算;(2)根据单项式乘多项式,先用单项式去乘多项式的每一项,再把所得的积相加的法则计算即可.解答:解: (1) (- 12a2b2e) ? (- gabc2) 2,4=(-12a2b2c) ?舄廿|16=—3 J 4 5.故答案为:-上a4b4c5;42 2 2(2) (3a2b —4ab2—5ab—1) ? (—2ab2),=3a2b? (—2ab2)—4ab2? (—2ab2)—5ab? (—2ab2)—1? (—2ab2),=—6a3b3+8a2b4+10a2b3+2ab2.故答案为:-6a b +8a b +10a b +2ab .点评:本题考查了单项式与单项式相乘,单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意运算符号的处理.5. 计算:—6a? (― 2^2 —ga+2)考点:单项式乘多项式.分析:根据单项式乘以多项式,用单项式去乘多项式的每一项,再把所得的积相加,计算即可.解答:解:—6a? ( —2 '—丄a+2) =3a3+2a2—12a.2 3点评:本题主要考查单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意运算符号.26. —3x? (2x —x+4)考点:单项式乘多项式.分析:根据单项式与多项式相乘,用单项式去乘多项式的每一项,再把所得的积相加,计算即可.解答:解:-3x? (2x2—x+4),=—3x?2x2—3x? (—x)—3x?4, =-6x3+3x2—12x.点评:本题主要考查单项式与多项式相乘的运算法则,熟练掌握运算法则是解题的关键,计算时要注意运算符号.7•先化简,再求值3a ( 2a2—4a+3)—2a2(3a+4),其中a=—2考点:单项式乘多项式.分析:首先根据单项式与多项式相乘的法则去掉括号,然后合并冋类项,最后代入已知的数值计算即可.解答:解:3a (2a2- 4a+3)—2a2(3a+4)3 2 3 2 2=6a —12a +9a - 6a —8a = - 20a +9a, 当a=—2 时,原式=—20 >4 —9 >2= —98.点评:本题考查了整式的化简.整式的加减运算实际上就是去括号、合并冋类项,这是各地中考的常考点.8 计算:(-=a2b)(二b2-二a+二)考点:单项式乘多项式.专题:计算题.分析:此题直接利用单项式乘以多项式,先把单项式乘以多项式的每一项,再把所得的积相加,利用法则计算即可.31 2.3 3. 1 2. =——a b +—a b — — a b. 3 战本题考查单项式乘以多项式的运算,熟练掌握运算法则是解题的关键.9.一条防洪堤坝,其横断面是梯形,上底宽a 米,下底宽(a+2b )米,坝高米.(1) 求防洪堤坝的横断面积; (2) 如果防洪堤坝长 100米,那么这段防洪堤坝的体积是多少立方米?考点:单项式乘多项式.专题:应用题.分析:(1)根据梯形的面积公式,然后利用单项式乘多项式的法则计算;(2)防洪堤坝的体积=梯形面积 >坝长.解答:解:(1)防洪堤坝的横断面积 S=_[a+ (a+2b ) ] J a2 2=^a (2a+2b ) 4= ^a 2+」ab .2 2故防洪堤坝的横断面积为(ga 2+gab )平方米;(2)堤坝的体积 V=Sh= (ga 2』ab ) J 00=50a 2+50ab .故这段防洪堤坝的体积是(50a 2+50ab )立方米.点评:本题主要考查了梯形的面积公式及堤坝的体积=梯形面积 >长度,熟练掌握单项式乘多项式的运算法则是解题的关键.2 10. 2ab (5ab+3a b )考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:2ab ( 5ab+3a 2b ) =10a 2b 2+6a 3b 2;故答案为:10a 2b 2+6a 3b 2.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.11.计算:(.一 2〔3勒- + l )考点: 单项式乘多项式.分析: 先根据积的乘方的性质计算乘方,再根据单项式与多项式相乘的法则计算即可.解答:解:(—丄xy 2) 2 ( 3xy — 4xy 2+1)」x 2y 4 (3xy — 4xy 2+1)4解答: 解:「甕)嚕飞叫),(-丄 a2b )匕, 点评: =(- 驴(—护)(4a )3 6 124 y +才 y • 点评:本题考查了积的乘方的性质,单项式与多项式相乘的法则,熟练掌握运算法则是解题的关键,计算时要注意运算顺序及符号的处理.212 .计算:2x (x 2- x+3) 考点:单项式乘多项式.专题:计算题.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答: 解:2x (x 2- x+3)=2x?x 2 - 2x?x+2x?33 2=2x - 2x +6x .点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理. 13. (- 4a 3+12a 2b -7a 3b 3) (- 4a 2) = 16a 5- Ag/b+ZBa 'b 3考点:单项式乘多项式.专题:计算题.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答: 解:(-4a 3+i2a 2b -7a 3b 3) (- 4a 2) =16a 5- 48a 4b+28a 5b 3.故答案为:16a 5- 48a 4b+28a 5b 3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.14 .计算:xy 2 (3x 2y - xy 2+y )考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答: 解:原式=xy 2 (3x 2y )- xy 2?xy 2+xy 2?y33 v 2 4 3=3x y - x y +xy .点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.2 215. (- 2ab ) (3a - 2ab - 4b )考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答: 解:(-2ab ) (3a 2- 2ab - 4b 2)2 2=(-2ab ) ? (3a 2)- (- 2ab ) ? (2ab )- (- 2ab ) ? (4b 2)c 3’ ,2’ 2 c ’ 3=-6a b+4a b +8ab .点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.16 .计算:(-2a 2b ) 3 (3b 2- 4a+6)考点:单项式乘多项式.分析:首先利用积的乘方求得(- 2a 2b ) 3的值,然后根据单项式与多项式相乘的运算法则:先用单项式乘多项式 的每一项,再把所得的积相加计算即可.解答:解:(-2 a 2 b ) 3 (3b 2- 4a+6) = - 8a 6b 3? (3b 2- 4a+6) =-24a 6b 5+32a 7b 3 - 48a 6b 3.点评:本题考查了单项式与多项式相乘.此题比较简单,熟练掌握运算法则是解题的关键,计算时要注意符号的 处理.Jx 3y 5- x417.某同学在计算一个多项式乘以- 3x2时,因抄错运算符号,算成了加上- 3x2,得到的结果是x2- 4x+1,那么正确的计算结果是多少?考点:单项式乘多项式.专题:应用题.分析:用错误结果减去已知多项式,得出原式,再乘以- 3x2得出正确结果.解答:解:这个多项式是(x2- 4x+1) -( - 3x2) =4x2- 4x+1 , (3 分)正确的计算结果是:(4x2-4x+1) ? (- 3x2) = - 12x4+12x3- 3x2. (3 分)点评:本题利用新颖的题目考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.18.对任意有理数x、y定义运算如下:x△ y=ax+by+cxy ,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2, c=3时,I△ 3=1 X+2 X3+3X1 >3=16,现已知所定义的新运算满足条件,2=3, 2△ 3=4 , 并且有一个不为零的数d使得对任意有理数x△ d=x,求a、b、c、d的值.考点:单项式乘多项式.专题:新定义.分析:—1 —ij由*△ d=x,得ax+bd+cdx=x,即(a+cd - 1)x+bd=0,得J ①,由2=3,得a+2b+2c=3②,[bd=O2△ 3=4,得2a+3b+6c=4③,解以上方程组成的方程组即可求得a、b、c、d的值.解答:解:T %△ d=x, /• ax+bd+cdx=x ,(a+cd - 1) x+bd=0 ,•/有一个不为零的数d使得对任意有理数x △ d=x,则有Lbd=O•••〔△ 2=3 , ••• a+2b+2c=3 ②, •/ 2^ 3=4 , • 2a+3b+6c=4 ③,1=0•有方程组a+2c=3詔亦址二4护5解得_1卫二4故a的值为5、b的值为0、c的值为-1、d的值为4.点评: 本题是新定义题,考查了定义新运算,解方程组.解题关键是由一个不为零的数d使得对任意有理数x △ d=x ,得出方程(a+cd - 1)x+bd=0,得到方程组fa+cd- 1=0\bd=0,求出b的值.。
单项式乘多项式练习题一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.2.计算:(1)6x2•3xy (2)(4a﹣b2)(﹣2b)3.(3x2y﹣2x+1)(﹣2xy)4.计算:(1)(﹣12a2b2c)•(﹣abc2)2=_________;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)=_________.5.计算:﹣6a•(﹣﹣a+2)6.﹣3x•(2x2﹣x+4)7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2 8.(﹣a2b)(b2﹣a+)9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?10.2ab(5ab+3a2b)11.计算:.12.计算:2x(x2﹣x+3)13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)= _________.14.计算:xy2(3x2y﹣xy2+y)15.(﹣2ab)(3a2﹣2ab﹣4b2)16.计算:(﹣2a2b)3(3b2﹣4a+6)17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.参考答案与试题解析一.解答题(共18小题)1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.考点:整式的加减—化简求值;整式的加减;单项式乘多项式.分析:先根据整式相乘的法则进行计算,然后合并同类项,最后将字母的值代入求出原代数式的值.解答:解:原式=2a2b+2ab2﹣2a2b+2﹣ab2﹣2=(2a2b﹣2a2b)+(2ab2﹣ab2)+(2﹣2)=0+ab2=ab2当a=﹣2,b=2时,原式=(﹣2)×22=﹣2×4=﹣8.点评:本题是一道整式的加减化简求值的题,考查了单项式乘以多项式的法则,合并同类项的法则和方法.2.计算:(1)6x2•3xy(2)(4a﹣b2)(﹣2b)考点:单项式乘单项式;单项式乘多项式.分析:(1)根据单项式乘单项式的法则计算;(2)根据单项式乘多项式的法则计算.解答:解:(1)6x2•3xy=18x3y;(2)(4a﹣b2)(﹣2b)=﹣8ab+2b3.点评:本题考查了单项式与单项式相乘、单项式与多项式相乘,熟练掌握运算法则是解题的关键.3.(3x2y﹣2x+1)(﹣2xy)考点:单项式乘多项式.分析:根据单项式乘多项式的法则,用单项式乘多项式的每一项,再把所得的积相加,计算即可.解答:解:(3x2y﹣2x+1)(﹣2xy)=﹣6x3y2+4x2y﹣2xy.点评:本题考查单项式乘多项式的法则,熟练掌握运算法则是解题的关键,本题一定要注意符号的运算.4.计算:(1)(﹣12a2b2c)•(﹣abc2)2=﹣a4b4c5;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)=﹣6a3b3+8a2b4+10a2b3+2ab2.考点:单项式乘多项式;单项式乘单项式.分析:(1)先根据积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘;单项式乘单项式,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式的法则计算;(2)根据单项式乘多项式,先用单项式去乘多项式的每一项,再把所得的积相加的法则计算即可.解答:解:(1)(﹣12a2b2c)•(﹣abc2)2,=(﹣12a2b2c)•,=﹣;故答案为:﹣a4b4c5;(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2),=3a2b•(﹣2ab2)﹣4ab2•(﹣2ab2)﹣5ab•(﹣2ab2)﹣1•(﹣2ab2),=﹣6a3b3+8a2b4+10a2b3+2ab2.故答案为:﹣6a3b3+8a2b4+10a2b3+2ab2.点评:本题考查了单项式与单项式相乘,单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意运算符号的处理.5.计算:﹣6a•(﹣﹣a+2)考点:单项式乘多项式.分析:根据单项式乘以多项式,用单项式去乘多项式的每一项,再把所得的积相加,计算即可.解答:解:﹣6a•(﹣﹣a+2)=3a3+2a2﹣12a.点评:本题主要考查单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意运算符号.6.﹣3x•(2x2﹣x+4)考点:单项式乘多项式.分析:根据单项式与多项式相乘,用单项式去乘多项式的每一项,再把所得的积相加,计算即可.解答:解:﹣3x•(2x2﹣x+4),=﹣3x•2x2﹣3x•(﹣x)﹣3x•4,=﹣6x3+3x2﹣12x.点评:本题主要考查单项式与多项式相乘的运算法则,熟练掌握运算法则是解题的关键,计算时要注意运算符号.7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2考点:单项式乘多项式.分析:首先根据单项式与多项式相乘的法则去掉括号,然后合并同类项,最后代入已知的数值计算即可.解答:解:3a(2a2﹣4a+3)﹣2a2(3a+4)=6a3﹣12a2+9a﹣6a3﹣8a2=﹣20a2+9a,当a=﹣2时,原式=﹣20×4﹣9×2=﹣98.点评:本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.8.计算:(﹣a2b)(b2﹣a+)考点:单项式乘多项式.专题:计算题.分析:此题直接利用单项式乘以多项式,先把单项式乘以多项式的每一项,再把所得的积相加,利用法则计算即可.解答:解:(﹣a2b)(b2﹣a+),=(﹣a2b)•b2+(﹣a2b)(﹣a)+(﹣a2b)•,=﹣a2b3+a3b﹣a2b.点评:本题考查单项式乘以多项式的运算,熟练掌握运算法则是解题的关键.9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?考点:单项式乘多项式.专题:应用题.分析:(1)根据梯形的面积公式,然后利用单项式乘多项式的法则计算;(2)防洪堤坝的体积=梯形面积×坝长.解答:解:(1)防洪堤坝的横断面积S=[a+(a+2b)]× a=a(2a+2b)=a2+ab.故防洪堤坝的横断面积为(a2+ab)平方米;(2)堤坝的体积V=Sh=(a2+ab)×100=50a2+50ab.故这段防洪堤坝的体积是(50a2+50ab)立方米.点评:本题主要考查了梯形的面积公式及堤坝的体积=梯形面积×长度,熟练掌握单项式乘多项式的运算法则是解题的关键.10.2ab(5ab+3a2b)考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:2ab(5ab+3a2b)=10a2b2+6a3b2;故答案为:10a2b2+6a3b2.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.11.计算:.考点:单项式乘多项式.分析:先根据积的乘方的性质计算乘方,再根据单项式与多项式相乘的法则计算即可.解答:解:(﹣xy2)2(3xy﹣4xy2+1)=x2y4(3xy﹣4xy2+1)=x3y5﹣x3y6+x2y4.点评:本题考查了积的乘方的性质,单项式与多项式相乘的法则,熟练掌握运算法则是解题的关键,计算时要注意运算顺序及符号的处理.12.计算:2x(x2﹣x+3)考点:单项式乘多项式.专题:计算题.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:2x(x2﹣x+3)=2x•x2﹣2x•x+2x•3=2x3﹣2x2+6x.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=16a5﹣48a4b+28a5b3.考点:单项式乘多项式.专题:计算题.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(﹣4a3+12a2b﹣7a3b3)(﹣4a2)=16a5﹣48a4b+28a5b3.故答案为:16a5﹣48a4b+28a5b3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.14.计算:xy2(3x2y﹣xy2+y)考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:原式=xy2(3x2y)﹣xy2•xy2+xy2•y=3x3y3﹣x2y4+xy3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.15.(﹣2ab)(3a2﹣2ab﹣4b2)考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(﹣2ab)(3a2﹣2ab﹣4b2)=(﹣2ab)•(3a2)﹣(﹣2ab)•(2ab)﹣(﹣2ab)•(4b2)=﹣6a3b+4a2b2+8ab3.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.16.计算:(﹣2a2b)3(3b2﹣4a+6)考点:单项式乘多项式.分析:首先利用积的乘方求得(﹣2a2b)3的值,然后根据单项式与多项式相乘的运算法则:先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(﹣2a2b)3(3b2﹣4a+6)=﹣8a6b3•(3b2﹣4a+6)=﹣24a6b5+32a7b3﹣48a6b3.点评:本题考查了单项式与多项式相乘.此题比较简单,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?考点:单项式乘多项式.专题:应用题.分析:用错误结果减去已知多项式,得出原式,再乘以﹣3x2得出正确结果.解答:解:这个多项式是(x2﹣4x+1)﹣(﹣3x2)=4x2﹣4x+1,(3分)正确的计算结果是:(4x2﹣4x+1)•(﹣3x2)=﹣12x4+12x3﹣3x2.(3分)点评:本题利用新颖的题目考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.考点:单项式乘多项式.专题:新定义.分析:由x△d=x,得ax+bd+cdx=x,即(a+cd﹣1)x+bd=0,得①,由1△2=3,得a+2b+2c=3②,2△3=4,得2a+3b+6c=4③,解以上方程组成的方程组即可求得a、b、c、d的值.解答:解:∵x△d=x,∴ax+bd+cdx=x,∴(a+cd﹣1)x+bd=0,∵有一个不为零的数d使得对任意有理数x△d=x,则有①,∵1△2=3,∴a+2b+2c=3②,∵2△3=4,∴2a+3b+6c=4③,又∵d≠0,∴b=0,∴有方程组解得.故a的值为5、b的值为0、c的值为﹣1、d的值为4.点评:本题是新定义题,考查了定义新运算,解方程组.解题关键是由一个不为零的数d使得对任意有理数x△d=x,得出方程(a+cd﹣1)x+bd=0,得到方程组,求出b的值.。
单项式乘多项式试题精选附答案(供参考)单项式乘多项式试题精选附答案(供参考)一、选择题1.将(x+2)(x-3)展开后的结果是:A. x^2 - x - 6B. x^2 - 6C. x^2 - 5D. x^2 + x - 62.将2x(3x^2 + 4x - 5)展开后的结果是:A. 6x^3 + 8x^2 - 10xB. 6x^3 + 8x^2 - 5xC. 6x^3 + 10x^2 - 5xD. 6x^3 + 10x^2 - 10x3.将3(4x^2 - 2x + 5)展开后的结果是:A. 12x^2 - 6x + 15B. 12x^2 - 6x - 15C. 12x^2 + 6x - 15D. 12x^2 + 6x + 15二、填空题1.将(a + 2b - c)(a - 2b + c)展开后的结果是________。
答案:a^2 - 4b^2 + c^22.将2(3x^2 - 4xy + 5y^2)展开后的结果是________。
答案:6x^2 - 8xy + 10y^23.将5(2x^2 - 3xy + 4y^2)展开后的结果是________。
答案:10x^2 - 15xy + 20y^2三、解答题1.将(x - 2)^2展开后的结果是什么?展开后的单项式是哪些?解答:展开后的结果是x^2 - 4x + 4。
展开后的单项式是x^2、-4x和4。
2.将(3a - 2b)^2展开后的结果是什么?展开后的单项式是哪些?解答:展开后的结果是9a^2 - 12ab + 4b^2。
展开后的单项式是9a^2、-12ab和4b^2。
3.将2(x + 3)^2展开后的结果是什么?展开后的单项式是哪些?解答:展开后的结果是2x^2 + 12x + 18。
展开后的单项式是2x^2、12x和18。
四、综合题将(x - 3)(x + 4)展开后的结果是什么?展开后的单项式是哪些?在展开中应用了什么运算法则?解答:展开后的结果是x^2 + x - 12。
第2课时单项式乘以多项式01基础题知识点1直接运用法则计算1.(湖州中考)计算2x(3x2+1),正确的结果是(C)A.5x3+2x B.6x3+1C.6x3+2x D.6x2+2x2.计算x(y-z)-y(z-x)+z(x-y),结果正确的是(A)A.2xy-2yz B.-2yzC.xy-2yz D.2xy-xz3.计算:a(a-1)-a2=-a.4.计算:(1)(2xy2-3xy)·2xy;解:原式=2xy2·2xy-3xy·2xy=4x2y3-6x2y2.(2)-x(2x+3x2-2);解:原式=-x·2x+(-x)·3x2+(-x)·(-2)=-2x2-3x3+2x.(3)-2ab(ab-3ab2-1).解:原式=-2ab·ab+(-2ab)·(-3ab2)+(-2ab)·(-1)=-2a2b2+6a2b3+2ab.知识点2运用法则解决问题5.若一个长方体的长、宽、高分别为2x,x,3x-4,则长方体的体积为(C) A.3x3-4x2B.6x2-8xC.6x3-8x2D.6x3-8x6.今天数学课上,老师讲了单项式乘以多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:-3xy(4y -2x -1)=-12xy 2+6x 2y +□,□的地方被钢笔水弄污了,你认为□内应填写(A )A .3xyB .-3xyC .-1D .17.要使x(x +a)+3x -2b =x 2+5x +4成立,则a ,b 的值分别为(C )A .a =-2,b =-2B .a =2,b =2C .a =2,b =-2D .a =-2,b =28.化简求值:3a(a 2-2a +1)-2a 2(a -3),其中a =2.解:原式=3a 3-6a 2+3a -2a 3+6a 2=a 3+3a.当a =2时,原式=a 3+3a =14.02 中档题9.(北京中考)图中四边形均为长方形,根据图形,写出一个正确的等式:m(a +b +c)=am +bm +cm .10.方程3x(7-x)=18-x(3x -15)的解为x =3.11.计算:(1)(-12ab)(23ab 2-2ab +43b +1); 解:原式=(-12ab)·23ab 2+(-12ab)·(-2ab)+(-12ab)·43b +(-12ab)×1=-13a 2b 3+a 2b 2-23ab 2-12ab.(2)3ab(a 2b -ab 2-ab)-ab 2(2a 2-3ab +2a).解:原式=3a 3b 2-3a 2b 3-3a 2b 2-2a 3b 2+3a 2b 3-2a 2b 2=a 3b 2-5a 2b 2.12.已知ab 2=-1,求(-ab)(a 2b 5-ab 3-b)的值.解:原式=-a 3b 6+a 2b 4+ab 2=-(ab 2)3+(ab 2)2+ab 2.当ab 2=-1时,原式=-(-1)3+(-1)2+(-1)=1.03 综合题13.某同学在计算一个多项式乘以-3x 2时,算成了加上-3x 2,得到的答案是x 2-12x +1,那么正确的计算结果是多少? 解:设这个多项式为A ,则A +(-3x 2)=x 2-12x +1, ∴A =4x 2-12x +1. ∴A ·(-3x 2)=(4x 2-12x +1)(-3x 2) =-12x 4+32x 3-3x 2.。
八年级上《单项式乘以多项式》同步练习含答案基础题知识点 1 直接运用法则计算1. ( 湖州中考 ) 计算 2x(3x 2+ 1) ,正确的结果是 ( )A . 5x 3+ 2xB . 6x 3+1C . 6x 3+ 2xD . 6x 2+ 2x2.计算 x(y - z) - y(z - x) +z(x - y) ,结果正确的是 ( )A . 2xy - 2yzB .- 2yzC . xy - 2yzD . 2xy - xz3.计算: a(a - 1) -a 2= ________. 4.计算: (1)(2xy2-3xy) ·2xy ;(2) - x(2x + 3x 2- 2) ;(3) - 2ab(ab - 3ab 2-1) ;(4)( 3a n + 1- b) ·ab.4 2知识点 2运用法则解决问题5.若一个长方体的长、宽、高分别为2x, x,3x- 4,则长方体的体积为( ) A. 3x 3- 4x2B. 6x2- 8xC. 6x 3- 8x2D. 6x3- 8x6.化简求值:3a(a 2-2a+ 1) -2a2(a - 3) ,其中 a=2.中档题7.一个矩形的周长为4a+ 4b,若矩形的一边长为a,则此矩形的面积为( ) A. a2+ a2b2B. 4a2+4abC. a2+ 2b2D. a2+ 2ab8.方程 3x(7 - x) =18- x(3x - 15) 的解为 ________.9.计算:1224(1)( -2ab)( 3ab - 2ab+3b+ 1);(2)3ab(a 2b-ab2- ab) -ab2(2a 2- 3ab+ 2a) .综合题122210.某同学在计算一个多项式乘以-3x时,算成了加上-3x,得到的答案是x-2x+ 1,那么正确的计算结果是多少?21 世纪教育网版权所有参考答案1. C 2.A 3. - a 4.(1)4x2y3-6x2y2.(2) -2x2- 3x3+ 2x.(3) - 2a2b2+ 6a2b3+ 2ab.原式= a3+ 3a= 14.7.D3n+ 212. 5.C 6. 原式= 3a32323当 a= 2时,(4) a b- ab-6a+ 3a- 2a+ 6a = a + 3a.421232222132228.x = 39.(1)-3a b+ a b -3ab -2ab.(2)a b - 5a b .10. 设这个多项式221212212433为 A,则 A+ ( - 3x ) = x -2x+ 1,∴ A= 4x-2x+1. ∴A·( - 3x ) = (4x-2x+ 1)(-3x) =- 12x+2x -3x2. 21教育网。
单项式与多项式相乘知识梳理:(知识梳理在第二页)一、选择题1.化简2(21)(2)x x x x ---的结果是( )A .3x x --B .3x x -C .21x --D .31x -2.化简()()()a b c b c a c a b ---+-的结果是( )A .222ab bc ac ++B .22ab bc -C .2abD .2bc -3.如图14-2是L 形钢条截面,它的面积为( )A .ac+bcB .ac+(b-c)cC .(a-c)c+(b-c)cD .a+b+2c+(a-c)+(b-c)4.下列各式中计算错误的是( )A .3422(231)462x x x x x x -+-=+-B .232(1)b b b b b b -+=-+C .231(22)2x x x x --=--D .342232(31)2323x x x x x x -+=-+ 5.2211(6)(6)23ab a b ab ab --⋅-的结果为( ) A .2236a bB .3222536a b a b +C .2332223236a b a b a b -++D .232236a b a b -+二、填空题 1.22(3)(21)x x x --+-= 。
2.321(248)()2x x x ---⋅-= 。
3.222(1)3(1)a b ab ab ab -++-= 。
4.2232(3)(23)3(25)x x x x x x ---+--= 。
5.228(34)(3)m m m m m -+--= 。
6.7(21)3(41)2(3)1x x x x x x ----++= 。
7.22223(2)()a b ab a b a --+= 。
8.223263()(2)2(1)x x y x x y --⋅-+-= 。
9.当t =1时,代数式322[23(22)]t t t t t --+的值为 。
单项式乘以多项式·一.选择题;;1.(2015•黔东南州)下列运算正确的是();A.(a﹣b)2=a2﹣b2B.3ab﹣ab=2ab C.a(a2﹣a)=a2 D.2.(2015春•岱岳区期末)如果长方体的长为3a﹣4,宽为2a,高为a,则它的体积是()A.3a2﹣4a B.a2C.6a3﹣8a2D.6a2﹣8a3.(2015秋•重庆校级月考)化简x(2x﹣1)﹣x2(2﹣x)的结果是()A.﹣x3﹣x B.x3﹣x C.﹣x2﹣1 D.x3﹣14.(2015秋•遂宁校级月考)若三角形的底边为2m+1,高为2m,则此三角形的面积为()A.4m2+2m B.4m2+1 C.2m2+m D.2m2+m5.(2014春•南海区校级期中)下列计算正确的是();;A.(﹣2a)•(3ab﹣2a2b)=﹣6a2b﹣4a3bB.(2ab2)•(﹣a2+2b2﹣1)=﹣4a3b4C.(abc)•(3a2b﹣2ab2)=3a3b2﹣2a2b3D.(ab)2•(3ab2﹣c)=3a3b4﹣a2b2c6.(2013秋•鲤城区校级期末)三个连续的奇数,若中间一个为a,则它们的积为()A.a3﹣4a B.a3﹣6a C.4a3﹣a D.4a3﹣6a7.(2013秋•合浦县期末)今天数学课上,老师讲了单项式乘以多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:﹣3xy(4y﹣2x﹣1)=﹣12xy2+6x2y+□,□的地方被钢笔水弄污了,你认为□内上应填写()A.3xy B.﹣3xy C.﹣1 D.1二.填空题;;8.(2015春•南长区期中)计算(﹣a4)(6a3﹣12a2+9a)= ,十边形的内角和是.9.(2014春•胶南市校级月考)= .10.(2013秋•万载县校级月考)若(x2+ax+1)•(﹣ax3)的展开式中,不含有x4项,则3a ﹣1的值为.11.(2013春•富阳市校级期中)一个多项式与的积为x5y2﹣3x4y3﹣x3y4z,那么这个多项式为.12.(2013秋•江油市校级月考)通过计算图中所示的几何图形的面积,可表示的代数恒等式是.13.(2011秋•淅川县期中)已知ab2=﹣3,则﹣ab(a2b5﹣ab3﹣b)= .三.解答题14.(2014秋•陇西县期末)(1)计算:()2÷(﹣)2(2)计算:(x2y﹣xy2﹣y3)(﹣4xy2).15.若(a m+b)•2a3b4=2a7b4+2a3b n(a≠0,a≠1,b≠0,b≠1).求m+n的值.16.若(1+x4y a)•(﹣x b y)2=x16y4+x2b•y2,求ab的值.17.(2015春•芦溪县期中)某同学在计算一个多项式乘以﹣2a时,因抄错运算符号,算成了加上﹣2a,得到的结果是a2+2a﹣1,那么正确的计算结果是多少?人教版八年级数学上册《14.1.4.2单项式乘以多项式》同步训练习题(教师版)一.选择题1.(2015•黔东南州)下列运算正确的是()A.(a﹣b)2=a2﹣b2B.3ab﹣ab=2ab C.a(a2﹣a)=a2 D.考点:单项式乘多项式;立方根;合并同类项;完全平方公式.分析:根据完全平方公式,合并同类项,单项式乘多项式,立方根的法则进行解答.解答:解:A、应为(a﹣b)2=a2﹣2ab+b2,故本选项错误;B、3ab﹣ab=2ab,正确;C、应为a(a2﹣a)=a3﹣a2,故本选项错误;D、应为=2,故本选项错误.故选:B.点评:本题考查了完全平方公式,合并同类项,单项式乘多项式,立方根,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.2.(2015春•岱岳区期末)如果长方体的长为3a﹣4,宽为2a,高为a,则它的体积是()A.3a2﹣4a B.a2C.6a3﹣8a2D.6a2﹣8a考点:单项式乘多项式;单项式乘单项式.分析:直接利用单项式乘以多项式运算法则以及长方体体积公式得出即可.解答:解:由题意可得:它的体积是:(3a﹣4)×2a×a=6a3﹣8a2.故选:C.点评:此题主要考查了单项式乘以多项式,正确把握运算法则是解题关键.3.(2015秋•重庆校级月考)化简x(2x﹣1)﹣x2(2﹣x)的结果是()A.﹣x3﹣x B.x3﹣x C.﹣x2﹣1 D.x3﹣1考点:单项式乘多项式.专题:计算题.分析:原式利用单项式乘多项式法则计算,去括号合并即可得到结果.解答:解:原式=2x2﹣x﹣2x2+x3=x3﹣x,故选B.点评:此题考查了单项式乘多项式,熟练掌握运算法则是解本题的关键.4.(2015秋•遂宁校级月考)若三角形的底边为2m+1,高为2m,则此三角形的面积为()A.4m2+2m B.4m2+1 C.2m2+m D.2m2+m考点:单项式乘多项式.分析:直接利用三角形面积公式结合单项式乘以多项式运算法则求出即可.解答:解:∵三角形的底边为2m+1,高为2m,∴此三角形的面积为:×2m×(2m+1)=2m2+m.故选:C.点评:此题主要考查了单项式乘以多项式以及三角形面积求法,正确掌握三角形面积求法是解题关键.5.(2014春•南海区校级期中)下列计算正确的是()A.(﹣2a)•(3ab﹣2a2b)=﹣6a2b﹣4a3bB.(2ab2)•(﹣a2+2b2﹣1)=﹣4a3b4C.(abc)•(3a2b﹣2ab2)=3a3b2﹣2a2b3D.(ab)2•(3ab2﹣c)=3a3b4﹣a2b2c考点:单项式乘多项式.分析:根据单项式乘以多项式法则,对各选项计算后利用排除法求解.解答:解:A、应为(﹣2a)•(3ab﹣2a2b)=﹣6a2b+4a3b,故本选项错误;B、应为(2ab2)•(﹣a2+2b2﹣1)=﹣2a3b2+4ab4﹣2ab2,故本选项错误;C、应为(abc)•(3a2b﹣2ab2)=3a3b2c﹣2a2b3c,故本选项错误;D、(ab)2•(3ab2﹣c)=3a3b4﹣a2b2c,正确.故选D.点评:本题考查了单项式乘以多项式法则.单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.要熟记单项式与多项式的每一项都相乘,不能漏乘.6.(2013秋•鲤城区校级期末)三个连续的奇数,若中间一个为a,则它们的积为()A.a3﹣4a B.a3﹣6a C.4a3﹣a D.4a3﹣6a考点:单项式乘多项式.分析:三个连续的奇数,若中间一个为a,则另外两个是a﹣2,a+2,求积即可.解答:解:三个连续的奇数,若中间一个为a,则另外两个是a﹣2,a+2.则a(a﹣2)(a+2)=a3﹣4a.故选A.点评:本题考查了整式的乘法,理解三个连续奇数的关系是关键.7.(2013秋•合浦县期末)今天数学课上,老师讲了单项式乘以多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:﹣3xy(4y﹣2x﹣1)=﹣12xy2+6x2y+□,□的地方被钢笔水弄污了,你认为□内上应填写()A.3xy B.﹣3xy C.﹣1 D.1考点:单项式乘多项式.分析:先把等式左边的式子根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加,所得结果与等式右边的式子相对照即可得出结论.解答:解:∵左边=﹣3xy(4y﹣2x﹣1)=﹣12xy2+6x2y+3xy.右边=﹣12xy2+6x2y+□,∴□内上应填写3xy.故选A.点评:本题考查的是单项式乘多项式,熟知单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加是解答此题的关键.二.填空题8.(2015春•南长区期中)计算(﹣a4)(6a3﹣12a2+9a)= ﹣4a7+8a6﹣6a5,十边形的内角和是1440°.考点:单项式乘多项式;多边形内角与外角.分析:前项根据单项式乘多项式计算,后一项根据多边形的内角和公式计算即可.解答:解:(﹣a4)(6a3﹣12a2+9a)=﹣4a7+8a6﹣6a5;十边形的内角和=(10﹣2)×180°=1440°;故答案为:﹣4a7+8a6﹣6a5;1440°点评:此题考查单项式和多项式的乘法以及多边形的内角和,关键是根据法则和公式计算.9.(2014春•胶南市校级月考)= ﹣a2b3+a2b2﹣ab2.考点:单项式乘多项式.分析:根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:=﹣a2b3+a2b2﹣ab2.故答案为:﹣a2b3+a2b2﹣ab2.点评:本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.10.(2013秋•万载县校级月考)若(x2+ax+1)•(﹣ax3)的展开式中,不含有x4项,则3a ﹣1的值为0 .考点:单项式乘多项式.分析:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加.先依据法则运算,展开式后,因为不含x4项,所以x4项的系数为0,再求a的值.解答:解:(x2+ax+1)(﹣ax3)=﹣ax5﹣a2x4﹣ax3,展开式中不含x4项,则a2=0,∴a=0.∴3a﹣1=1﹣1=0,故答案是:0.点评:本题考查了单项式与多项式相乘,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.11.(2013春•富阳市校级期中)一个多项式与的积为x5y2﹣3x4y3﹣x3y4z,那么这个多项式为﹣2x2+6xy+2y2z .考点:单项式乘多项式.专题:计算题.分析:根据题意列出关系式,利用多项式除单项式法则计算即可得到结果.解答:解:根据题意得:(x5y2﹣3x4y3﹣x3y4z)÷(﹣x3y2)=﹣2x2+6xy+2y2z.故答案为:﹣2x2+6xy+2y2z点评:此题考查了单项式乘多项式,根据题意列出正确的算式是解本题的关键.12.(2013秋•江油市校级月考)通过计算图中所示的几何图形的面积,可表示的代数恒等式是2a(a+b)=2a2+2ab .考点:单项式乘多项式.分析:本题所给的图中,四个小图形的面积与大图形的面积相等,据此列出代数式即可解答.解答:解:由题意可知2a(a+b)=2a2+2ab.故答案为:2a(a+b)=2a2+2ab.点评:本题考查了单项式与多项式相乘,用不同方法表示面积是解题的关键.13.(2011秋•淅川县期中)已知ab2=﹣3,则﹣ab(a2b5﹣ab3﹣b)= 33 .考点:单项式乘多项式;代数式求值.专题:整体思想.分析:对所给的式子变形提取公因式b,使其中出现ab2的因式,然后利用整体代入法计算.解答:解:﹣ab(a2b5﹣ab3﹣b),=﹣ab2(a2b4﹣ab2﹣1),当ab2=﹣3时,原式=﹣(﹣3)[(﹣3)2﹣(﹣3)﹣1]=33;故填:33.点评:本题考查了提公因式法分解因式,提取公因式b出现已知条件的形式比较关键,灵活运用此法则,可简便运算.三.解答题14.(2014秋•陇西县期末)(1)计算:()2÷(﹣)2(2)计算:(x2y﹣xy2﹣y3)(﹣4xy2).考点:单项式乘多项式;分式的乘除法.分析:(1)先算乘方,再把除法转化成乘法,最后约分即可;(2)根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.解答:解:(1)()2÷(﹣)2=×=;(2)(x2y﹣xy2﹣y3)(﹣4xy2)=﹣3x3y3+2x2y4+xy5;点评:此题考查了单项式乘多项式和分式的乘除法,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.15.若(a m+b)•2a3b4=2a7b4+2a3b n(a≠0,a≠1,b≠0,b≠1).求m+n的值.考点:单项式乘多项式.分析:利用单项式与多项式相乘的运算法则求解即可.解答:解:∵(a m+b)•2a3b4=2a7b4+2a3b n,∴2a3+m b4+2a3b5=2a7b4+2a3b n,∴3+m=7,n=5,解得m=4,n=5,∴m+n=4+5=9.点评:本题主要考查了单项式与多项式相乘的运算法则,解题的关键是熟记单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.16.若(1+x4y a)•(﹣x b y)2=x16y4+x2b•y2,求ab的值.考点:单项式乘多项式.分析:先利用单项式与多项式相乘的运算法则计算,再利用对应的项求解即可.解答:解:∵(1+x4y a)•(﹣x b y)2=x16y4+x2b•y2,∴x2b y2+x4+2b y a+2=x16y4+x2b•y2,∴x4+2b y a+2=x16y4,可得4+2b=16,a+2=4,解得b=6,a=2,∴ab=2×6=12.点评:本题主要考查了单项式乘多项式,解题的关键是找准对应项.17.(2015春•芦溪县期中)某同学在计算一个多项式乘以﹣2a时,因抄错运算符号,算成了加上﹣2a,得到的结果是a2+2a﹣1,那么正确的计算结果是多少?考点:单项式乘多项式.分析:根据题意首先求出多项式,进而利用单项式乘以多项式运算法则求出即可.解答:解:∵计算一个多项式乘以﹣2a时,因抄错运算符号,算成了加上﹣2a,得到的结果是a2+2a﹣1,∴这个多项式为:a2+2a﹣1+2a=a2+4a﹣1,∴正确的计算结果是:﹣2a(a2+4a﹣1)=﹣2a3﹣8a2+2a.点评:此题主要考查了单项式乘以多项式,正确掌握运算法则是解题关键.。