第2章 简单线性回归Final
- 格式:ppt
- 大小:778.00 KB
- 文档页数:94
第二章 简单线性回归第一节 概述一 两个变量之间的关系让我们在给定一个变量的条件下,研究另一个变量与给定变量的关系。
在给定变量条件下,变量Y 与给定变量X 的关系主要有两种关系:一种是变量Y 与变量X 由方程)(X f Y =所决定的确定性函数关系。
对于变量X 的定义域中的任一给定值,在变量Y 的值域中都有一个唯一确定的值与给定值相对应。
这种关系是我们在数学中早已研究过的函数关系,而且我们在宏观经济学和微观经济学中的研究的变量之间的关系在形式上往往以函数关系的形式出现。
另一种关系是在变量X 的值给定的条件下,变量Y 的值并不是完全确定的,而是以某个值为中心的一个完整的概率分布,而这个中心与给定变量X 的关系则是完全确定的。
我们称这种关系为随机性关系。
显然,这两种关系是全然不同的。
为了明确这两种关系的区别我们通过一个假想的例子来说明。
假设我们在课堂上进行一系列实验以决定某种玩具在不同价格的需求量。
用t p 表示该种玩具在时刻t 的价格,t q 表示该种玩具在时刻t 的需求量.首先,我们假设经过实验得到如下结果。
上述结果表示在价格为25的任何时刻,需求量都为1,在价格为20的任何时刻,需求量都为3,在价格为15的任何时刻,需求量都为5,等等。
这些结果所表明的需求量与价格之间的关系就是确定性关系。
这种关系可用下列线性方程表示:t t p q 4.011-= (2.1)其次,我们假设经过实验得到下列结果。
表2.1t p t q25 ⎪⎩⎪⎨⎧的时刻实验中有的时刻实验中有的时刻实验中有25% 2%05 125% 020 ⎪⎩⎪⎨⎧的时刻实验中有的时刻实验中有的时刻实验中有25% 4%05 325% 25 ⎪⎩⎪⎨⎧的时刻实验中有的时刻实验中有的时刻实验中有25% 10%05 925% 8上述结果表示在价格为25的时刻中,有25%的需求量为0,50%的需求量为1,25%的需求量为2;在价格为20的时刻中,有25%的需求量为2,50%的需求量为3,25%的需求量为4;……;在价格为5的时刻中,有25%的需求量为8,50%的需求量为9,25%的需求量为10。
第二章 简单线性回归模型学习辅导一、本章的基本内容(一)基本内容图2.1 第二章的基本内容(二)本章的教学目标在计量经济模型中,只有两个变量且为线性的回归模型是最简单的,称为简单线性回归模型。
简单线性回归模型形式简单,估计和检验的结果表述较为容易,其原理可以直接用代数式和平面坐标图形去直观表述,更容易使初学者理解和接受。
而且先讨论简单线性回归模型,使其对计量经济学的理论和思想有较深刻的认识,然后可以很容易拓展到更一般的多元的情况。
所以,本章从简单线性回归模型入手,讨论计量经济学最基本的理论与方法,为以后各章对计量经济学理论与方法的拓展和深化打下基础。
本章的教学目标是:深刻理解计量经济分析的基本思想;明确估计计量经济模型的基本假定;掌握估计和检验计量经济模型的基本思想和方法;能够运用简单线性回归模型作经济结构分析和经济预测等方面的应用;并要求初步掌握EViews最基本的操作方法。
二、重点与难点分析1. 从条件期望的角度深刻认识回归函数的实质总体回归函数(PRF)是将总体被解释变量Y的条件期望表现为解释变量X的某种函数。
总体回归函数所体现的实际是经济现象或经济变量之间的客观规律性。
由于受种种偶然因素的影响, 经济变量之间的数量规律在经济现象的个别观测值中难以直接观测,只有从变量条件期望的角度才能揭示经济现象数量关系的规律性。
作为经济总体运行的客观规律,总体回归函数是客观存在的,但是在实际的经济研究中总体回归函数通常又是未知的,只能根据经济理论和研究者的实践经验去设定。
在计量经济学研究中,“计量”的根本目的是去揭示客观存在的经济数量规律,也就是要努力寻求总体回归函数。
我们所设定的计量经济模型实际就是在设定总体回归函数的具体形式。
样本回归函数(SRF)是将被解释变量Y的样本条件均值表示为解释变量X的某种函数。
样本回归线会随着抽样波动而变化,每次抽样都能获得一个样本,也就可以拟合出一条样本回归线,所以样本回归函数是不唯一的。