车轮速度传感器的组成
- 格式:ppt
- 大小:606.50 KB
- 文档页数:10
车轮转速传感器原理
车轮转速传感器原理是基于霍尔效应的。
霍尔效应是指当电流通过导体时,如果有外加磁场,那么导体两侧会产生电位差,这个现象被称为霍尔效应。
车轮转速传感器包含一个磁铁和一个霍尔元件。
磁铁固定在车轮上,当车轮转动时,磁铁也会随之转动。
霍尔元件通常被安装在车轮附近的固定位置上。
当车轮转动时,磁铁就会在霍尔元件附近产生磁场。
霍尔元件能够检测到磁场的变化,并且会根据磁场的方向改变自身的电阻。
这个电阻的变化可以通过电路进行检测和计算。
通过测量车轮上的磁场变化并将其转换为电阻变化,车轮转速传感器能够精确地计算出车轮的转速。
这些数据可以被车辆的控制系统使用,以调整制动系统的工作,或者根据转速的变化进行车辆稳定控制。
车轮转速传感器原理为车辆提供了重要的信息,可以帮助车辆在行驶过程中更加安全和稳定。
| [<<] [>>]差动霍尔电路制成的霍尔齿轮传感器,如图 1 所示,新一代的霍尔齿轮转速传感器,广泛用于新一代的汽车智能发动机,作为点火定时用的速度传感器,用于 ABS (汽车防抱死制动系统 ) 作为车速传感器等。
在 ABS 中,速度传感器是十分重要的部件。
ABS 的工作原理示意图如图 2 所示。
图中,1 是车速齿轮传感器; 2 是压力调节器; 3 是控制器。
在制动过程中,控制器 3 不断接收来自车速齿轮传感器 1 和车轮转速相对应的脉冲信号并进行处理,得到车辆的滑移率和减速信号,按其控制逻辑及时准确地向制动压力调节器2发出指令,调节器及时准确地作出响应,使制动气室执行充气、保持或者放气指令,调节制动器的制动压力,以防止车轮抱死,达到抗侧滑、甩尾,提高制动安全及制动过程中的可驾驭性。
在这个系统中,霍尔传感器作为车轮转速传感器,是制动过程中的实时速度采集器,是 ABS 中的关键部件之一。
在汽车的新一代智能发动机中,用霍尔齿轮传感器来检测曲轴位置和活塞在汽缸中的运动速度,以提供更准确的点火时间,其作用是别的速度传感器难以代替的,它具有如下许多新的优点。
( 1 ) 相位精度高,可满足0.4°曲轴角的要求,不需采用相位补偿。
( 2) 可满足 0.05 度曲轴角的熄火检测要求。
( 3) 输出为矩形波,幅度与车辆转速无关。
在电子控制单元中作进一步的传感器信号调整时,会降低成本。
用齿轮传感器,除可检测转速外,还可测出角度、角速度、流量、流速、旋转方向等等。
图 1 霍 尔速 度传 感 器 的 内 部 结 构1. 车 轮 速度传 感 器2. 压 力 调 节 器3. 电 子 控 制 器图 2ABS 气 制 动 系 统 的 工 作 原 理 示 意 图按 图 3 所 示 的 各 种 方 法 设 置磁 体 ,将 它们 和 霍 尔 开 关 电 路 组合 起 来 可 以 构 成 各 种 旋 转 传 感 器 。
汽车轮数传感器的工作原理
汽车轮数传感器是一种用于测量车辆车轮旋转速度和轮胎压力变化的装置。
它通常由车轮和轮毂安装在轴上,通过传感器感知车轮旋转状态,然后将信息传输到车辆的电子控制单元(ECU)进行处理。
工作原理:
1. 轮速传感器(Wheel Speed Sensor,简称WSS)工作原理: - WSS基于霍尔效应或磁电感应原理,含有一个磁性传感器或霍尔传感器。
- 传感器被安装在车辆的旋转部件上,如车轮或差速器。
- 当车轮旋转时,车轮的齿轮或磁性物体通过传感器。
- 传感器检测到磁性物体时,会产生电信号,并将该信号传输到ECU。
- ECU根据每个车轮的旋转速度来计算车辆的速度,并作出相应的调整。
2. 轮胎压力传感器(Tire Pressure Sensor,简称TPS)工作原理:
- TPS通常由压力传感器和无线电发射器组成。
- 压力传感器被安装在车轮上,可以感知轮胎内部的气压变化。
- 当气压发生变化时,传感器会通过无线电发射器将压力信息发送给车辆的接收器。
- 接收器将这些信息传输给车辆的ECU,ECU会根据传感器提供的数据来监控和控制轮胎压力。
通过测量车轮旋转速度和轮胎压力的变化,车辆可以在驾驶过程中及时获得必要的信息来调整车辆的控制,提高行驶安全性和驾驶体验。
轮速传感器(wheel speed sensor)1、分类主动式和被动式,即霍尔式轮速传感器和电磁感应式轮速传感器。
2、霍尔式轮速传感器根据读取方式的不同,轮速传感器分为低读式和侧读式两种类型。
底读式轮速传感器的读取面为底面,是传统结构的传感器,使用广泛,生产工艺成熟,但是体积较大,在安装环境较为复杂的情况下难以适用;侧读式轮速传感器的读取面为侧面,具有和传统底读式轮速传感器同样的功能,且体积小,能适用于复杂的安装环境。
根据传感器内部是否装有磁体,又分为带磁体和不带磁体两种。
其中,由于体积的原因,侧读式多为不带磁体,而底读式则两者都有,比较均衡。
侧读式不带磁体型内部无永磁铁,因此它采用多级磁环作为脉冲圈。
所谓多级磁环,它由交替分布在环状非磁性金属上的磁化元件组成,这些南北极继承了齿圈脉冲圈上齿的功能,具有相同的作用。
ABS轮速传感器检测ABS防抱死制动系统各元件安装置如图1所示。
图1 ABS/TCS电控系统各元件安装位置①拆下车轮,检查轮速传感器的安装情况,并清洁传感器感应端子,必要时应进行调整安装,使其工作正常。
②检查传感器和转子之间的间隙应为~,如图2所示。
③拆下传感器插头,检查传感器电阻,应为~Ω,否则,应更换轮速传感器。
④检查信号电压。
举升车轮,使四轮悬空,拆下ABS传感器插头。
以每秒转一圈的速度转动转子,检查输出信号电压,应在0. 25~1. 2V(AC)之间,否则,应更换ABS轮速传感器。
⑤检查信号波形。
旋转车轮,用示波器检查传感器输出信号波形,如图3所示,若波形与图3不符,则应更换传感器。
图2 ABS轮速传感器间隙检查图3 ABS轮速传感器波形检查。
2、ABS系统结构组成及工作原理ABS防抱死制动系统通常由电控单元ECU、液压控制单元(液压调节器)和车轮速度传感器等组成。
一、ABS系统电控单元ECU(一)概述ABS系统电子控制部分可分为电子控制单元(ECU)、ABS模块、ABS计算机等,以下简称ECU。
70年代中期之前,电子控制单元正处于开发阶段,当时的ECU是由运算放大器、晶体管、电阻及电容等分立元件组成的模拟电路构成。
模拟电路存在的问题较多,元件数量多、组织生产难度大、噪声难以控制、零点漂移大,集成度很低的分立式ECU的外形尺寸也很大。
目前的ECU主要是由集成度、运算精度都很高的数字电路组成。
由于ABS装置目前已从高级轿车开始逐步向家庭轿车普及,因此,需要在很短的时间内开发出适合各种车型的ABS装置。
各种新开发的ABS几乎都是采用微型电子控制的ECU。
最初的模拟电路约由1000个电子元件组成,现在的ECU采用专用集成电路,混合集成电路,元件数量缩减到70个左右,大大减少了ECU的重量、体积和成本,提高了可靠性和生产率。
随着生产技术及汽车电路可靠性的提高,从原来的穿体安装结构发展到表面安装结构,体积更小。
(二)ECU的基本结构ECU由以下几个基本电路组成:①车速传感器的输入放大电路。
②运算电路。
③电磁阀控制电路。
④稳压电源、电源监控电路、故障反馈电路和继电器驱动电路。
各电路的联接方式如图1-1~图1-3所示。
图1-1 四传感器二通道系统ECU模块图图1-2 四传感器三通道系统ECU模块图图1-3 四传感器四通道系统ECU模块图1、车速传感器的输入放大电路安装在各车轮上的车速传感器根据轮速输出交流信号,输入放大电路将交流信号放大成矩形波并整形后送往运算电路。
不同的ABS系统中轮速传感器的数量是不一样的。
每个车轮都装轮速传感器时,需要四个,输入放大电路也就要求有四个。
当只在左右前轮和后轴差速器安装轮速传感器时,只需要三个,输入放大电路也就成了三个。
胎压传感器的工作原理
胎压传感器是一种用于监测车辆轮胎气压的装置。
它通过内部的电子传感器和加速度传感器来实现。
下面是胎压传感器的工作原理:
1. 压力传感器:胎压传感器内部有一个压力传感器,它由一个微型薄膜片和压力敏感电阻器组成。
当轮胎内的气压增加或减少时,压力传感器的薄膜片会相应变形,从而改变电阻器的阻值。
这个变化的阻值可以转化为电信号。
2. 加速度传感器:胎压传感器还内置了一个加速度传感器,用于检测车轮的运动状态。
当车轮在运动时,加速度传感器会感应到车轮的振动频率和幅度,并将这些信息转化为电信号。
3. 数据处理与传输:胎压传感器将压力传感器和加速度传感器获取到的数据发送给车辆的控制单元,然后由控制单元进行处理和分析。
控制单元可以监测每个轮胎的气压和滚动速度,通过比较不同轮胎之间的差异来判断轮胎是否有漏气或过低的气压。
一旦发现异常情况,控制单元会发送警报信号给驾驶员,提醒其注意轮胎状态。
总结而言,胎压传感器通过压力传感器和加速度传感器获取轮胎的气压和运动状态信息,并将这些数据传输给车辆的控制单元进行处理和分析,以实现对轮胎状态的监测和警报功能。
速度传感器1.霍尔式转速传感器霍尔式转速传感器由霍尔开关集成传感器和磁性转盘组成,霍尔式转速传感器的各种不同结构如图1-48 所示。
将磁性转盘的输入轴与被测转轴相连,当被测转轴转动时,磁性转盘便随之转动,固定在磁性转盘附近的霍尔开关集成传感器便可在每一个小磁铁通过时产生一个相应的脉冲,检测出单位时间的脉冲数,便可知道被测对象的转速。
磁性转盘上的小磁铁数目的多少,将决定传感器的分辨率。
如图1-48所示。
2.磁电式转速传感器磁电式转速传感器的结构如图1-49 所示。
它是由永久磁铁、线圈、磁盘等组成。
在磁盘上加工有齿形凸起,磁盘装在被测转轴上,与转轴一起旋转。
当转轴旋转时,磁盘的凹凸齿形将引起磁盘与永久磁铁间气隙大小的变化,从而使永久磁铁组成的磁路中磁通量随之发生变化。
有磁路通过的感应线圈,当磁通量发生突变时,会感应出一定幅度的脉冲电势,其频率为:式中,Z为磁轮的齿数;n为磁轮的转数,单位rad/min。
3.光电式转速传感器常见的光电式转速传感器有直射式和反射式两种。
直射式输入轴与待测轴相接,光通过开孔圆盘和缝隙板照射在光敏元件上。
开孔盘旋转一周,光敏元件接受光的次数等于盘上的开孔数。
若开孔数为m,记录过程时间为t秒,总脉冲数为N,则转速为:反射型的光电传感器如图1-50所示。
其前端部分采用光纤封装,适应微小物体,特别是微小旋转体的测量。
由于传感器内装有光源(LED)、感光元件(光电晶体管)以及放大器等,所以体积设计得很小,使用方便。
光源是经过频率调制的,所以抗干扰性强,还有状态显示,可供用户测量时确认工作状态。
振荡回路用来产生一个调制频率来点亮光源发光二极管,采用不稳定多谐振荡方式,振荡频率约为7kHz,脉宽约25μs。
从光源发射出来的脉冲光,经过被检测物体的反射,被传感器的光电晶体管所接受,然后经过交流放大器,被放大到适当的电平后,进行检波和积分,再转换成直流电压信号。
然后是波形整形,与一定的直流电压相比较,高于此值,输出为Hi,低于此值,输出为Lo。
速度踏频传感器的工作原理
速度踏频传感器是一种用于测量车辆速度和踏频的装置,常见于自行车、动感单车等运动设备上。
它的工作原理主要基于磁感应现象和霍尔效应。
传感器通常由一个带有磁性物质的磁环和一或多个放置在近距离的霍尔传感器组成。
当车轮转动时,磁环也随之转动。
每当磁环上的磁铁经过霍尔传感器时,传感器会感应到磁场的变化。
这种变化会引起霍尔传感器内部的霍尔元件产生一个电压信号。
这个电压信号的大小和车轮转动的速度和频率成正比。
通过测量这个信号的幅度和周期,系统可以精确地计算出车辆的速度和踏频。
传感器的安装通常要求将磁环固定在车轮上,而霍尔传感器安装在车架上的一个固定位置。
当车轮转动时,磁环就会靠近和离开传感器,从而产生电压信号。
一些高级速度踏频传感器还可能包含加速度计和陀螺仪等其他传感器,以提供更精确的速度和踏频测量。
ABS轮速传感器及其信号处理车轮防抱死制动系统简称ABS是基于汽车轮胎与路面之间的附着特性而开发的高技术制动系统。
ABS由信号传感器、逻辑控制器和执行调节器组成。
其控制目标是:当汽车在应急制动时,使车轮能够获得最佳制动效率,同时又能实现车轮不被抱死、侧滑,使汽车在整个制动过程中保持良好的行驶稳定性和方向可操作性。
在ABS系统中,几乎都离不开对车轮转动角速度的测定,因为只要有了车轮转动角速度,其它参数(如车轮转动角和加速度)均可通过计算机计算获得。
ABS的工作原理就是在汽车制动过程中不断检测车轮速度的变化,按一定的控制方法,通过电磁阀调节轮缸制动压力,以获得最高的纵向附着系数和较高的侧向附着系数,使车轮始终处于较好的制动状态。
因此精确检测车轮速度是ABS系统正常工作的先决条件。
1 ABS轮速传感器及特性分析通常,用来检测车轮转速信号的传感器有磁电式、电涡流式和霍尔元件式。
由于磁电式轮速传感器工作可靠,几乎不受温度、灰尘等环境因素影响,所以在ABS系统中得到广泛应用。
1.1 磁电式轮速传感器的工作原理磁电式传感器的基本原理是电磁感应原理。
根据电磁感应定律,当N匝线圈在均恒磁场内运动时,设穿过线圈的磁通为φ,则线圈内的感应电势ε与磁通变化率有如下关系:若线圈在恒定磁场中作直线运动并切割磁力线时,则线圈两端的感应电势ε为:式中,N为线圈匝数;B为磁感应强度;L为每匝线圈的平均长度:为线圈相对磁场运动的速度;θ为线圈运动方向与磁场方向的夹角。
若线圈相对磁场作旋转运动并切割磁力线时,则线圈两端的感应电势ε为:式中,ω为旋转运动的相对角速度;A为每匝线圈的截面积;φ为线圈平面的法线方向与磁场方向间的夹角。
根据上述基本原理,磁电传感器可以分为两种类型:变磁通式(变磁阻式)和恒定磁通式。
由于变磁通式磁电传感器结构简单、牢固、工作可靠、价格便宜,被广泛用于车辆上作为检测车轮转速的轮速传感器。
图1为变磁通式磁电传感器的结构原理。