水解酸化设计方法.
- 格式:doc
- 大小:64.01 KB
- 文档页数:11
水解酸化实验步骤步骤一:准备实验器材和试剂1.准备一个干净的烧杯、玻璃棒和试剂瓶。
2.准备所需的试剂,如硫酸、盐酸、醋酸等。
步骤二:制备不同浓度的溶液1.使用称量器称取一定质量的试剂。
2.将试剂加入一定体积的水中,并用玻璃棒搅拌均匀。
注意,在加入试剂时要小心,避免溅出或接触皮肤。
步骤三:测量酸碱度1.使用pH计或酸碱指示剂来测量每种试剂溶液的酸碱度。
注意,使用pH计时要校正,并根据使用说明进行操作。
2.将pH计或酸碱指示剂插入试剂溶液中,并等待几秒钟,直到读数稳定。
记录下每种溶液的pH值。
3.若使用酸碱指示剂,可以通过颜色的变化来判断溶液的酸碱性,如红色代表酸性,蓝色代表碱性,绿色代表中性。
步骤四:进行水解酸化实验1.将待测试的物质加入干净的烧杯中。
2.向烧杯中加入一定体积的水,并用玻璃棒搅拌均匀。
注意,加水的过程中要小心,避免溅出或接触皮肤。
3.使用pH计或酸碱指示剂测量溶液的初始酸碱度,并记录下初始的pH值。
4.加入一定量的试剂溶液到待测试物质中,继续搅拌均匀。
5.等待一段时间,让水解酸化反应进行。
6.定期使用pH计或酸碱指示剂测量溶液的酸碱度,并记录下每次的pH值。
7.根据pH值的变化情况,判断待测试物质的酸性程度,并记录下反应时间和酸化程度。
步骤五:实验结果分析1.根据实验结果,观察pH值的变化情况,并判断待测试物质是否具有酸性。
如果pH值逐渐下降并在酸性范围内稳定,则说明待测试物质具有酸性。
2.记录实验中末期的pH值,并将其与浓度进行比较,以确定物质的酸化程度。
3.根据实验结果,可以用化学方程式表示水解酸化反应的过程。
总结:水解酸化实验是一种用来检测物质酸性的实验方法。
通过观察和测量待测试物质在水中的酸碱度变化,可以判断其是否具有酸性。
本实验的步骤包括准备实验器材和试剂、制备不同浓度的溶液、测量酸碱度、进行水解酸化实验以及分析实验结果。
实验过程中要注意安全措施,避免试剂的接触或溅出。
通过这种实验方法,可以了解待测试物质的酸碱性质,并进一步研究其酸化程度。
关于水解酸化工艺的详解!1、水解酸化法的机理厌氧生物反应包括水解、酸化和甲烷化三个大的阶段,将反应控制在水解和酸化两个阶段的反应过程,可以将悬浮性有机物和大分子物质(碳水化合物、脂肪和脂类等)通过微生物胞外酶水解成小分子,小分子有机物在酸化菌作用下转化成挥发性脂肪酸的过程。
在这一过程中同时可以将悬浮性固体水解为溶解性有机物、将难生物降解的大分子物质转化为易生物降解的小分子物质。
首先,水解反应器中大量微生物将进水中颗粒状颗粒物质和胶体物质迅速截留和吸附,这是一个物理过程的快速反应。
一般只要几秒钟到几十秒即可完成。
因此,反应是迅速的。
截留下来的物质吸附在水解酸化污泥的表面,慢慢地被分解代谢,其在系统内的污泥停留时间要大于水力停留时间。
在大量水解酸化细菌的作用下,大分子、难于生物降解物质转化为易于生物降解的小分子物质后,重新释放到液体中。
在较高的水力负荷下随水流出系统。
由于水解和产酸菌世代期较短,往往以分钟和小时计,因此,这一降解过程也是迅速的。
在这一过程中溶解性 BOD、COD 的去除率虽然从表面上讲只有10%左右,但是由于颗粒状有机物发生水解增加了系统中溶解性有机物的浓度,因此,溶解性BOD、COD 去除率远大于10%。
但是由于酸化过程的控制不能严格划分,在污泥中可能仍有少量甲烷菌的存在,可能产生少量的甲烷,但甲烷在水中的溶解度也相当可观,故以气体形成释放的甲烷量很少。
可以看出,水解反应器集沉淀、吸附、网捕和生物絮凝等物理化学过程,与水解、酸化和甲烷化过程等生物降解功能于一体。
2、水解酸化法的反应器类型水解酸化反应器主要包括升流式水解反应器、复合式水解反应器及完全混合式水解反应器。
此外,水解反应器还可以包括采用其他厌氧反应器型式实现水解酸化的反应器,如厌氧折流板反应器、厌氧接触反应器等。
1、升流式水解反应器升流式水解反应器的示意图见图 1,水解酸化微生物与悬浮物形成污泥层,污水通过布水装置自反应器底部均匀上升至顶部出水堰排出过程中,污泥层可截留污水中悬浮物,并在水解酸化菌作用下降解有机物、提高污水可生化性等。
基于水解酸化+改造A2O工艺设计及运行效果分析基于水解酸化+改造A2O工艺设计及运行效果分析一、引言水质污染已经成为全球面临的严重问题之一。
随着城市化进程的加速,在工业、农业、生活等各个领域中产生的废水大量排放,给环境和生态系统带来了巨大的危害。
为了解决废水处理问题,传统的废水处理工艺已经无法满足需求。
因此,我们需要不断创新和改进当前的废水处理工艺。
二、水解酸化工艺介绍水解酸化工艺是一种通过微生物的作用将有机废水中的复杂有机物分解为简单的有机物和气体的工艺。
这个过程主要是通过酸化菌将有机污染物转化为挥发性脂肪酸(VFA),然后通过产生的VFA提供给甲烷菌生成甲烷气体。
水解酸化工艺具有处理复杂有机废水、减少污泥产生、提高废水处理效果等优点。
三、改造A2O工艺设计为了进一步提高废水处理效果,我们对传统的A2O工艺进行了改造,并引入了水解酸化工艺。
改造后的A2O工艺由预处理、缺氧区、好氧区和沉淀池四个部分组成。
1. 预处理预处理部分主要是将生活污水中的大颗粒物和可悬浮物去除,采用格栅和沉砂池进行初步过滤和沉淀。
2. 缺氧区进入缺氧区的废水通过水泵提升至缺氧区,主要是为了水解酸化的进行提供有利条件。
在缺氧区培养大量的厌氧菌,使有机废水中的复杂有机物转化为挥发性脂肪酸。
同时,由于没有外界氧气的进入,碳源被良好的保存下来。
3. 好氧区由于经过缺氧区的处理,废水中的有机污染物被转化成了挥发性脂肪酸,这些挥发性脂肪酸进入好氧区进行氧化降解。
在好氧区培养大量的好氧菌,将有机污染物进一步降解。
好氧菌通过氧化反应将有机废物降解为CO2和H2O。
此时,废水中的COD和氨氮等污染物得到进一步去除。
4. 沉淀池经过好氧区处理后的废水进入沉淀池,通过自然沉淀将过程中产生的污泥分离。
废水中的悬浮物和污泥沉淀到底部,清水从上部流出。
四、运行效果分析经过一段时间的运行,我们对改造后的A2O工艺进行了运行效果分析。
1. 污水处理效果在改造后的A2O工艺中,水解酸化工艺的引入极大地提高了废水的处理效果。
水解酸化-接触氧化工艺处理印染废水\摘要:印染行业是工业废水排放大户,本文对印染废水的处理方法进行归纳总结,着重介绍一种水解酸化—接触氧化法生化处理为主的印染废水处理方法。
水解酸化—接触氧化法是近年提出的一种新型处理工业废水的方法。
水解酸化串联接触氧化解决了印染废水中难降解物质多、单一传统活性污泥处理效果差的问题,这一工艺可产生较好的经济效益及处理效果,并且使其更易满足营养物质、温度、氨氮去除率的要求。
本文试设计水解酸化—好氧生物接触氧化工艺处理高浓度印染废水。
印染废水经工艺处理后CODcr去除率高达95.3%,SS去除率为92.5%,该工艺具有污泥少,耐冲击负荷能力强,难降解有机物去除率高等优点,在纺织印染废水处理中具有实用性。
关键词:印染废水水解酸化生物接触氧化前言随着纺织工业的高速发展,印染废水已经成为水系环境的重点污染源之一.染料是印染废水中的主要污染物,全世界投放市场的染料多达30000种,每年以废弃物的形式排放到环境中染料约为6×108kg。
特别是近年来化学纤维织物的发展,纺真丝的兴起和印染后整理技术的进步使PV A染料,人造丝碱解物(主要是邻苯二甲酸类物质)新型助剂等难生化降解有机物大量进入印染废水,其COD 浓度也由原先的数百毫克/升到2000~3000毫克/生,从而使得原有生物处理系统COD去除率从70%下降到50%左右,甚至更低,传统的生物处理工艺已受到严重挑战,传统的沉淀,气浮法对着类型的印染废水的COD去除率也仅为30%左右,因此,印染废水的经济有效的处理技术正日益成为当今环保的一大难题。
[1]1.废水来源及起特点印染废水的水质复杂,污染源按来源分为两类:一类来自纤维原料本身的夹带物,另一类是加工过程中所用的浆料,油剂,染料,化学助剂等。
分析其废水特点,主要有以下方面:1.1 水量大,有机物污染物含量高,色度深,碱性和pH值变化大,水质变化剧烈。
因此纤织物的发展和印染后整理技术的进步,使PV A染料,新型助剂等难以生化降解的有机物大量进入印染废水中,增加了处理难度1.2由于不同染料,不同助剂,不同织物的染整要求,所以废水中的pH值,CODcr,BOD5,颜色等也各不相同,但其共同特点是BOD5/ CODcr值均很低,一般在20%左右,可生化性差,因此需要采取措施,使BOD5/ CODcr值提高到30%左右或更高些,以利于进行生化处理1.3印染废水的碱减量废水,其CODcr值有的可达10万mg/L以上,pH≥12,因此必须进行预处理,把碱收回,并投加酸降低pH值,经预处理达到一定要求后,再进入调节池,与其他的印染废水一起进行处理1.4 印染废水的另一个特点是色度高,有的可达4000倍以上。
水解酸化池设计规范水解酸化池是污水处理系统中的关键设备,主要用于酸化有机物质以及产生可溶解的有机酸,为后续的生物处理过程提供有机碳源。
设计合理的水解酸化池能够提高有机物的降解效率和稳定性。
本文将介绍水解酸化池的设计规范。
1. 设计原则水解酸化池的设计应遵循以下原则:(1) 确定适当的水解反应时间,通常为4-8小时;(2) 控制水解酸化池的温度,一般为35-40°C;(3) 确保水解酸化池的氧化还原电位为负值,以保证有机物的降解;(4) 考虑底污泥的产生和液位的控制。
2. 设计参数(1) 污水流量:根据进水量和生活污水的污染指标确定水解酸化池的设计流量。
(2) 污水COD浓度:确定水解酸化池的COD负荷,一般为1-2 kg COD/m3.d。
(3) 水解反应时间:根据水解酸化池的水解反应速率和进水COD浓度来确定水解反应时间。
(4) 水解酸化池温度:根据污水的特性和气候条件确定水解酸化池的温度,通常为35-40°C。
(5) 水解酸化池体积:根据进水COD负荷和水解反应时间确定水解酸化池的体积。
3. 设计计算(1) 水解反应速率:根据水解酸化池的COD浓度和水解反应时间,计算水解反应速率。
(2) 底污泥量:根据水解酸化池的底污泥深度和水解反应时间,计算底污泥的产生量。
(3) 水解酸化池体积:根据进水COD负荷、水解反应时间和水解反应速率,计算水解酸化池的体积。
(4) 液位控制:根据水解酸化池的进水流量和出水流量,计算出水流量和液位控制。
4. 设计要点(1) 进水管道应具有均匀进水和冲混功能,以保证水解反应的均匀性。
(2) 污泥回流系统应设置,以提供充足的活性污泥和维持稳定的底污泥。
(3) 底部设置搅拌器,以保证水解酸化池内的废水充分混合。
(4) 设置排气系统,以防止气体积聚和异味的产生。
(5) 考虑水解酸化池的排放标准,设置合适的出水口。
综上所述,水解酸化池的设计规范主要包括设计原则、设计参数、设计计算和设计要点。
1 前言SBR工艺早在20世纪初已有应用,由于人工管理的困难和烦琐未于推广应用。
此法集进水、曝气、沉淀在一个池子中完成。
一般由多个池子构成一组,各池工作状态轮流变换运行,单池由撇水器间歇出水,故又称为序批式活性污泥法。
该工艺将传统的曝气池、沉淀池由空间上的分布改为时间上的分布,形成一体化的集约构筑物,并利于实现紧凑的模块布置,最大的优点是节省占地。
另外,可以减少污泥回流量,有节能效果。
典型的SBR工艺沉淀时停止进水,静止沉淀可以获得较高的沉淀效率和较好的水质。
由SBR发展演变的又有CASS和CAST等工艺,在除磷脱氮及自动控制等方面有新的特点。
但是,SBR工艺对自动化控制要求很高,并需要大量的电控阀门和机械撇水器,稍有故障将不能运行,一般必须引进全套进口设备。
由于一池有多种功能,相关设备不得已而闲置,曝气头的数量和鼓风机的能力必须稍大。
池子总体容积也不减小。
另外,由于撇水深度通常有 1.2—2米,出水的水位必须按最低撇水水位设计,故总的水力高程较一般工艺要高1米左右,能耗将有所提高。
SBR工艺一般适用于中小规模、土地紧张、具有引进设备条件的场合。
我国自九十年代中期开始,国家建设部属市政设计研究院和上海、北京、天津等市政设计研究院,开始了SBR工艺技术的研究和应用,但大部分处于试验研究和小型污水处理厂的应用阶段。
目前,只有几座城市污水处理厂采用SBR法工艺处理城市混合污水,其处理效果较好,如:昆明市日处理污水量15万吨的第三污水处理厂,其工艺为SBR法ICEAS技术,自投产以来,运行正常,出水水质稳定,达到了设计标准。
天津经济技术开发区污水处理厂所采用的DAT-IAT工艺是一种SBR法的变形工艺和中国目前最大的SBR法城市污水处理厂。
该工艺为方案的确定是根据天津市政工程设计研究院和开发区、以及国内有关污水处理专家共同完成的,经过对国内外污水厂的考察并充分论证,认为SBR法DAT-IAT工艺能够克服天津开发区工业废水比重大、水质水量变化幅度大的水质特征,其处理后的水质能够满足国家的排放标准。
水解酸化池设计规范水解酸化池是污水处理工艺中的一个重要环节,有效的设计规范能够保证其正常运行和高效处理污水。
下面,我将为您介绍水解酸化池设计规范。
1. 污水水质分析:在设计水解酸化池之前,需要对进水污水进行水质分析,包括COD(化学需氧量)、BOD(生化需氧量)、SS(悬浮固体)等指标的测定。
通过水质分析来确定水解酸化池的设计负荷和处理效果。
2. 污水流量计算:根据工厂或小区的生活污水产生量以及污水处理的要求,确定水解酸化池的处理能力。
一般来说,设计时会采用单位时间内的平均流量作为设计参数。
3. 水解酸化池尺寸:根据水解酸化池的处理能力和停留时间要求,计算水解酸化池的尺寸。
通常情况下,水解酸化池的长度应为进水口到出水口的3倍。
4. 水解酸化池进出水管道:进水管道和出水管道的设计应避免死角和积水,尽量保持流动均匀,避免堵塞和积淤。
5. 搅拌设备:水解酸化池需要进行充分的搅拌,以保证物理和化学反应的均匀进行。
因此,需要配置搅拌设备,例如机械搅拌器或气泡搅拌器。
6. 防渗透措施:水解酸化池的设计应采取防渗透措施,以避免地下水的渗入和污水的外溢。
通常采用地下渗漏涵洞、密封层等措施进行防渗透处理。
7. 温度调控:水解酸化池对温度要求较高,通常在32-38摄氏度之间。
因此,在设计中需要考虑保温措施,例如采用保温材料对水解酸化池进行包裹,确保池内温度的稳定。
8. 污泥处理:水解酸化池中会产生大量的污泥,需要考虑污泥的处理方法。
一般来说,可以采用厌氧消化或厌氧发酵等方法将污泥进行处理,减少其对环境的影响。
9. 安全措施:在设计水解酸化池时,需要考虑操作人员的安全,配置相应的安全设施和警示标志,以确保操作人员的生命财产安全。
10. 运维和维护:水解酸化池的设计中应考虑到运维和维护的便利性,例如设备的位置设置以及进出口的确定,方便操作和进行正常的维护。
总的来说,水解酸化池的设计规范包括污水水质分析、流量计算、尺寸设计、进出水管道设计、搅拌设备配置、防渗透措施、温度调控、污泥处理、安全措施和运维维护等方面。
总设计参数:进水流量Q=5000m³/d;污泥回流比R:1)二沉池回流比R二沉=10%~30%;2)初沉池回流比R初沉=50%~100%;有效停留时间tHRT=0.5d;设计计算:一、总回流比范围Rmax=130%,Rmin=50%;二、池体结构尺寸有效容积:=5000×0.5=2500m³分格n=4个;单格尺寸:=11.2×11.2=125㎡总面积S=125×4=500㎡有效池深: =5.0m超高取值: =0.5m布水区分支管开孔距池底=0.2m则总高度H=4.89+0.41+0.2=5.5m表面水力负荷校核=5000×(1+1.3/(24×512=0.94m³/(㎡×h)=5000×(1+0.5/(24×512=0.61m³/(㎡×h)经复核计算,在此表面水力负荷下,可以实现通过均匀布水减少死区的目的。
三、分支布水管计算采用大阻力配水系统,总布水点256个,每个池内布水点64个,进水口距池底0.2m,进水负荷1.96㎡/个布水口;分支配水管内流速取值:;;;;1)= 0.1879m,取值200mm校核:,符合设计要求;2)=0.1329m,取值125mm校核:,符合设计要求;3)=0.0939m,取值80mm校核:,符合设计要求;4)=0.05147m,取值40mm校核:,符合设计要求;四、潜水搅拌选型型号:GQT022×φ325功率:2.2KW叶轮直径:325mm转速:750r/min台数:16台推流面积:32㎡/台;6×10m五、污泥龄≥20d。
六、二沉池回流污泥安装电动阀DN150一个七、水解酸化池排泥电动阀DN200四个,时间控制,触摸屏显示,可调。
八、放空手动蝶阀DN300四个水损计算:1、分支管DN40=(。
水解酸化池一、水解酸化池的作用水解酸化主要用于有机物浓度较高、SS较高的污水处理工艺,是一个比较重要的工艺。
如果后级接入UASB工艺,可以大大提高UASB的容积负荷,提高去除效率。
水中有机物为复杂结构时,水解酸化菌利用H2O电离的H+和-OH将有机物分子中的C-C打开,一端加入H+,一端加入-OH,可以将长链水解为短链、支链成直链、环状结构成直链或支链,提高污水的可生化性。
水中SS高时,水解菌通过胞外粘膜将其捕捉,用外酶水解成分子断片再进入胞内代谢,不完全的代谢可以使SS成为溶解性有机物,出水就变的清澈了。
这其间水解菌是利用了水解断键的有机物中共价键能量完成了生命的活动形式。
但是COD在表象上是不一定有变化的,这要根据你在设计时选择的参数和污水中有机物的性质共同确定的,长期的运行控制可以让菌种产生诱导酶定向处理有机物,这也就是调试阶段工艺控制好以后,处理效果会逐步提高的原因之一。
水解工艺并不是简单的,设计时要考虑污水中有机物的性质,确定水解的工艺设计,水解停留时间、搅拌方式、循环方式、污泥回流方式、设计负荷、出水酸化度、污泥消解能力、后级配套工艺(UASB或接触氧化)。
二、解酸化池的具体作用和实际运用情况1. 水解酸化池可将大分子物质转化为小分子物质,将环状结构转化为链状结构,进一步提高了废水的BOD/COD比,增加了废水的可生化性,为后续的好氧生化处理创造了良好的环境。
2. 水解酸化处理有机废水,取其厌氧处理的前两个阶段(水解阶段、酸化阶段),不需密封及搅拌,在常温下进行即可提高废水的可生化性。
由于水解酸化反应迅速,故池容小,停留时间短,水解酸化反应能适应较大的水质范围,出水水质稳定。
有个误区要说一下,停留时间不是越长越好的,印染行业大致在14小时左右,生活污水就短了,大致在3小时左右。
水解酸化能去色,而好氧是不行的。
也是上面说的开环、断键的作用有两种水解酸化池,一种是设置搅拌,使泥水充分混合,另一种是形成污泥层,需要均匀布水。
三、水解酸化池的设计水解酸化池的设计参数池深H:应大于5.5~6m。
容积负荷N_v=2~2.5kgCOD/〖(m〗^3*d)水力停留时间:6~8h污泥浓度:MLSS=10~20g/L溶解氧:<0.2~0.3mg/L,用氧化还原电位之-50~+20mvPH值:5.5~6.5水温尽可能高,大于25摄氏度效果较好配水:由配水区进入反应区的配水孔流速v=0.20~0.23m/s;v不宜太小,以免不均。
水解酸化池的设计水解酸化工艺属于升流式厌氧污泥床反应器技术范畴。
水解池内分污泥床区和清水层区,待处理污水以及滤池反冲洗时脱落的剩余微生物膜由反应器底部进入池内,并通过带反射板的布水器与污泥床快速而均匀地混合。
污泥床较厚,类似于过滤层,从而将进水中的颗粒物质与胶体物质迅速截留和吸附。
由于污泥床内含有高浓度的兼性微生物,在池内缺氧条件下,被截留下来的有机物质在大量水解—产酸菌作用下,将不溶性有机物水解为溶解性物质,将大分子、难于生物降解的物质转化为易于生物降解的物质;同时,生物滤池反冲洗时排出的剩余污泥(剩余微生物膜)菌体外多糖粘质层发生水解,使细胞壁打开,污泥液态化,重新回到污水处理系统中被好氧菌代谢,达到剩余污泥减容化的目的。
由于水解酸化的污泥龄较长(一般15~20天),所以在本设计中,采用水解酸化池代替常规的初沉池,除达到截留污水中悬浮物的目的外,还具有部分生化处理和污泥减容稳定的功能。
水解酸化池设计停留时间为3.6h,有效容积为750m3,共分2格,每格工艺尺寸为:13 m×5.5 m×5.6m(超高0.35m)。
中间管廊工艺尺寸为:13 m×2.0 m ×5.6m。
水解酸化池泥层高 2.5m。
排泥位置主要位于泥层上部,池底设有排砂设施,泥龄一般18天左右,设计污泥混合区浓度20g/L,泥区总体积约为320m3,每天产干泥量约0.25吨。
水解酸化池的设计水解酸化就是将大分子有机物转化成小分子有机物,可提高废水的可生化性(B/C),即是提高BOD。
它是厌氧生化的第一过程,即产酸阶段。
水解酸化对DO有严格的要求,一般在0-0.5,高于0.5变成了好氧,等于0是严格意义的厌氧即产甲烷阶段,因此水解酸化一般均要设置通入空气量,保证DO 值。
水解酸化不一定会使COD降低,很多情况下还可能使COD增加,当然也有COD 降低的。
水解酸化的水力停留时间一般不超过6小时。
水解酸化池</B>一般设置成长方形且超过2格。
为提高水解酸化池酸化处理效果,水解酸化池中设置潜水搅拌机,避免污泥沉淀。
无论是搅拌泵搅拌、脉冲搅拌等都没有问题。
鼓风机不一定要,但如果后面的好氧池要用风机,建议你将输气管接入酸化池并设置曝气软管,这样酸化池在必要时也可作好氧池用,也可作辅助搅拌用,在有机负荷高的情况下,适量的曝气不会对酸化造成影响的,如单独配风机就没必要了。
水解酸化池一、水解酸化池的作用水解酸化主要用于有机物浓度较高、SS较高的污水处理工艺,是一个比较重要的工艺。
如果后级接入UASB工艺,可以大大提高UASB的容积负荷,提高去除效率。
水中有机物为复杂结构时,水解酸化菌利用H2O电离的H+和-OH将有机物分子中的C-C打开,一端加入H+,一端加入-OH,可以将长链水解为短链、支链成直链、环状结构成直链或支链,提高污水的可生化性。
水中SS高时,水解菌通过胞外粘膜将其捕捉,用外酶水解成分子断片再进入胞内代谢,不完全的代谢可以使SS成为溶解性有机物,出水就变的清澈了。
这其间水解菌是利用了水解断键的有机物中共价键能量完成了生命的活动形式。
但是COD在表象上是不一定有变化的,这要根据你在设计时选择的参数和污水中有机物的性质共同确定的,长期的运行控制可以让菌种产生诱导酶定向处理有机物,这也就是调试阶段工艺控制好以后,处理效果会逐步提高的原因之一。
水解工艺并不是简单的,设计时要考虑污水中有机物的性质,确定水解的工艺设计,水解停留时间、搅拌方式、循环方式、污泥回流方式、设计负荷、出水酸化度、污泥消解能力、后级配套工艺(UASB或接触氧化)。
二、解酸化池的具体作用和实际运用情况1. 水解酸化池可将大分子物质转化为小分子物质,将环状结构转化为链状结构,进一步提高了废水的BOD/COD比,增加了废水的可生化性,为后续的好氧生化处理创造了良好的环境。
2. 水解酸化处理有机废水,取其厌氧处理的前两个阶段(水解阶段、酸化阶段),不需密封及搅拌,在常温下进行即可提高废水的可生化性。
由于水解酸化反应迅速,故池容小,停留时间短,水解酸化反应能适应较大的水质范围,出水水质稳定。
有个误区要说一下,停留时间不是越长越好的,印染行业大致在14小时左右,生活污水就短了,大致在3小时左右。
水解酸化能去色,而好氧是不行的。
也是上面说的开环、断键的作用有两种水解酸化池,一种是设置搅拌,使泥水充分混合,另一种是形成污泥层,需要均匀布水。
三、水解酸化池的设计水解酸化池的设计参数池深H:应大于5.5~6m。
容积负荷N_v=2~2.5kgCOD/〖(m〗^3*d)水力停留时间:6~8h污泥浓度:MLSS=10~20g/L溶解氧:<0.2~0.3mg/L,用氧化还原电位之-50~+20mvPH值:5.5~6.5水温尽可能高,大于25摄氏度效果较好配水:由配水区进入反应区的配水孔流速v=0.20~0.23m/s;v不宜太小,以免不均。
水解酸化池的设计水解酸化工艺属于升流式厌氧污泥床反应器技术范畴。
水解池内分污泥床区和清水层区,待处理污水以及滤池反冲洗时脱落的剩余微生物膜由反应器底部进入池内,并通过带反射板的布水器与污泥床快速而均匀地混合。
污泥床较厚,类似于过滤层,从而将进水中的颗粒物质与胶体物质迅速截留和吸附。
由于污泥床内含有高浓度的兼性微生物,在池内缺氧条件下,被截留下来的有机物质在大量水解—产酸菌作用下,将不溶性有机物水解为溶解性物质,将大分子、难于生物降解的物质转化为易于生物降解的物质;同时,生物滤池反冲洗时排出的剩余污泥(剩余微生物膜)菌体外多糖粘质层发生水解,使细胞壁打开,污泥液态化,重新回到污水处理系统中被好氧菌代谢,达到剩余污泥减容化的目的。
由于水解酸化的污泥龄较长(一般15~20天),所以在本设计中,采用水解酸化池代替常规的初沉池,除达到截留污水中悬浮物的目的外,还具有部分生化处理和污泥减容稳定的功能。
水解酸化池设计停留时间为3.6h,有效容积为750m3,共分2格,每格工艺尺寸为:13 m×5.5 m×5.6m(超高0.35m)。
中间管廊工艺尺寸为:13 m×2.0 m ×5.6m。
水解酸化池泥层高 2.5m。
排泥位置主要位于泥层上部,池底设有排砂设施,泥龄一般18天左右,设计污泥混合区浓度20g/L,泥区总体积约为320m3,每天产干泥量约0.25吨。
水解酸化池的设计水解酸化就是将大分子有机物转化成小分子有机物,可提高废水的可生化性(B/C),即是提高BOD。
它是厌氧生化的第一过程,即产酸阶段。
水解酸化对DO有严格的要求,一般在0-0.5,高于0.5变成了好氧,等于0是严格意义的厌氧即产甲烷阶段,因此水解酸化一般均要设置通入空气量,保证DO 值。
水解酸化不一定会使COD降低,很多情况下还可能使COD增加,当然也有COD 降低的。
水解酸化的水力停留时间一般不超过6小时。
水解酸化池</B>一般设置成长方形且超过2格。
为提高水解酸化池酸化处理效果,水解酸化池中设置潜水搅拌机,避免污泥沉淀。
无论是搅拌泵搅拌、脉冲搅拌等都没有问题。
鼓风机不一定要,但如果后面的好氧池要用风机,建议你将输气管接入酸化池并设置曝气软管,这样酸化池在必要时也可作好氧池用,也可作辅助搅拌用,在有机负荷高的情况下,适量的曝气不会对酸化造成影响的,如单独配风机就没必要了。
水解酸化池一、水解酸化池的作用水解酸化主要用于有机物浓度较高、SS较高的污水处理工艺,是一个比较重要的工艺。
如果后级接入UASB工艺,可以大大提高UASB的容积负荷,提高去除效率。
水中有机物为复杂结构时,水解酸化菌利用H2O电离的H+和-OH将有机物分子中的C-C打开,一端加入H+,一端加入-OH,可以将长链水解为短链、支链成直链、环状结构成直链或支链,提高污水的可生化性。
水中SS高时,水解菌通过胞外粘膜将其捕捉,用外酶水解成分子断片再进入胞内代谢,不完全的代谢可以使SS成为溶解性有机物,出水就变的清澈了。
这其间水解菌是利用了水解断键的有机物中共价键能量完成了生命的活动形式。
但是COD在表象上是不一定有变化的,这要根据你在设计时选择的参数和污水中有机物的性质共同确定的,长期的运行控制可以让菌种产生诱导酶定向处理有机物,这也就是调试阶段工艺控制好以后,处理效果会逐步提高的原因之一。