基于Ansys+Workbench的起重机吊臂结构全伸臂工况的有限元分析
- 格式:pdf
- 大小:1.13 MB
- 文档页数:5
ANSYS分析塔式起重机吊臂步骤塔式起重机吊臂是一种常见的起重机构。
它通常用于吊装重物,并且能够通过伸缩吊臂的长度来适应不同的工作条件。
利用ANSYS软件进行塔式起重机吊臂的分析可以帮助工程师了解吊臂结构的强度和刚度,并优化设计以满足设计要求。
下面是使用ANSYS软件进行塔式起重机吊臂分析的一般步骤:1.几何建模:首先,需要使用CAD软件或者ANSYS自带的几何建模工具创建塔式起重机吊臂的几何模型。
这个几何模型应该包括所有的主要结构组件,例如吊臂、支撑杆、立柱等。
2.材料定义和加载:在进行分析之前,需要对所使用的材料进行定义。
材料定义应包括材料的弹性模量、泊松比和密度等。
另外,还需要定义适当的加载条件,例如自重载荷、外部工况荷载等。
3.网格划分:对几何模型进行网格划分是进行分析的关键步骤。
足够准确的网格划分可以提供更精确的分析结果。
在划分网格之前,需要根据倾斜角度和吊臂的形状来确定合适的划分方式。
4.约束和边界条件:对于塔式起重机吊臂的分析,通常需要施加一些边界条件和约束。
例如,可以将塔座固定在地面上,使其不能发生任何位移。
此外,还可以施加其他约束条件来模拟实际工作条件。
5.应力分析:完成了网格划分和约束设置后,可以进行应力分析。
应力分析可以帮助工程师了解吊臂在不同工况下的应力分布情况。
可以通过绘制应力云图和边界应力图来可视化这些结果。
6.判断强度:针对应力分析的结果,可以对吊臂的强度进行评估。
可以检查吊臂是否满足强度设计要求,例如是否超过了材料的屈服强度或破坏强度。
7.刚度分析:除了强度外,刚度也是塔式起重机吊臂设计中的重要考虑因素。
可以通过刚度分析来评估吊臂在工作状态下的形变情况。
如果形变过大,可能会影响到起重机的操作性能。
8.优化设计:根据应力和刚度分析的结果,可以对塔式起重机吊臂的设计进行优化。
例如,可以增加材料厚度、增加支撑杆数量或改变结构形式等。
优化设计可以提高吊臂的强度和刚度,在满足设计要求的前提下减少结构重量。
基于Ansys Workbench的起重机吊臂结构全伸臂工况的有限元分析李春风;董庆华;李少杰;郝清龙;王宇飞;曹硕【摘要】通过吊臂吊载,起重机能够实现大高度、大幅度的作业,吊臂是起重机的最主要承载构件之一,吊臂的分析研究对于起重机的结构优化起到了大的作用.以50 t 起重机吊臂为例,借助软件Ansys Workbench对吊臂结构的全伸臂工况进行有限元分析,得到其变幅平面内各处位移和应力,为结构的改进和优化提供了一定的参考.【期刊名称】《承德石油高等专科学校学报》【年(卷),期】2016(018)002【总页数】5页(P17-21)【关键词】吊臂;Ansys Workbench;有限元【作者】李春风;董庆华;李少杰;郝清龙;王宇飞;曹硕【作者单位】承德石油高等专科学校工业技术中心,河北承德 067000;承德石油高等专科学校工业技术中心,河北承德 067000;承德石油高等专科学校工业技术中心,河北承德 067000;承德石油高等专科学校工业技术中心,河北承德 067000;承德石油高等专科学校工业技术中心,河北承德 067000;承德石油高等专科学校工业技术中心,河北承德 067000【正文语种】中文【中图分类】TH21通过吊臂吊载,起重机能够实现大高度、大幅度的作业,吊臂是起重机的最主要承载构件之一,吊臂的强度对于起重机承载最大起重量时的整机起重性能起到了决定性的作用,吊臂自重对于起重机整机倾覆稳定性有着最直接的影响,吊臂结构的设计将直接影响整个起重机的性能,所以对吊臂进行有限元分析是很有必要的。
1.1 吊臂工作原理起重机升降重物,是利用吊臂顶端的滑轮组支撑卷扬钢丝绳来悬挂重物,利用吊臂的长度和倾角的变化来改变工作半径和起升的高度,如图1所示。
吊臂有两节、三节、四节、五节等不同形式,通过变幅机构来实现俯仰功能,如图2所示。
起重臂顶端可以加滑轮,实现吊钩单倍率工作,提高工作速度。
另外,起重臂顶端还可以同时加副臂,实现更大的起升高度。
汽车起重机伸缩臂结构有限元分析及优化汽车起重机伸缩臂结构有限元分析及优化引言:汽车起重机作为一种重要的工程机械设备,在建筑、物流等行业中起着重要的作用。
而在汽车起重机的设计中,伸缩臂结构是其关键组成部分之一。
伸缩臂结构的合理设计和优化可以提高汽车起重机的工作效率和承载能力,降低其重量和成本。
因此,对汽车起重机伸缩臂结构进行有限元分析与优化具有重要的理论意义和实际应用价值。
1. 伸缩臂结构的设计和工作原理汽车起重机的伸缩臂结构由伸缩臂筒、伸缩臂滑块、伸缩臂大臂、伸缩臂小臂等组成。
其工作原理是通过液压系统控制伸缩臂筒的伸缩,从而实现伸缩臂的变化和起重高度的调节。
伸缩臂结构的设计直接影响汽车起重机的工作性能和稳定性。
2. 有限元分析的原理和方法有限元分析是一种数值分析方法,通过将结构离散化为有限个小元素,利用数学和力学原理对每个小元素进行计算,最后得到整个结构的应力、应变、位移等相关信息。
有限元分析方法可以精确计算伸缩臂结构在不同工况下的受力情况,为优化设计提供基础。
3. 初始结构的有限元分析首先,采用有限元分析方法对汽车起重机初始伸缩臂结构进行分析。
通过初始结构的有限元模型建立和边界条件的设定,计算得到伸缩臂结构在不同工况下的受力情况,包括应力、应变、变形等参数。
利用有限元分析结果,可以评估初始结构的工作性能,并确定需要改进的方向。
4. 结构优化设计与分析基于初始结构的有限元分析结果,可以进行伸缩臂结构的优化设计。
结构优化的目标是提高结构的工作效率和承载能力,降低结构的重量和成本。
通过在有限元模型中进行参数化设计和分析,可以获得不同设计方案下的结构性能指标。
综合考虑结构的强度、刚度、轻量化等因素,选择最优设计方案。
5. 优化设计的验证与验证对优化设计方案进行验证与评估是优化过程的重要环节。
通过将优化设计方案转化为实际工艺制造过程中的参数,并制作样件进行实际测试和评估,可以验证优化设计方案的有效性,并进一步优化设计方案。
第27卷第3期 辽 宁 工 学 院 学 报 V ol.27,No.32007年 6 月 Journal of Liaoning Institute of Technology Jun.2007收稿日期:2006-11-08基金项目:辽宁省重大科技攻关项目(2006219008-4A ) 作者简介:杨 晶(1982-),女,山东沂水人,硕士生。
李卫民(1965-),男,辽宁朝阳人,教授,博士。
汽车起重机吊臂的有限元分析杨 晶1,李卫民1,刘玉浩2(1.辽宁工业大学 机械工程与自动化学院,辽宁 锦州 121001;2. 空军第三飞行学院, 辽宁 锦州 121000)摘 要:以ANSYS 软件为工具,详细介绍了汽车起重机吊臂的各个臂段在不同工况下的有限元分析过程,包括实体建模、网格划分、载荷和约束的处理;并对汽车起重机吊臂进行了优化设计。
得出的结论为汽车起重机吊臂的设计提供了可靠的依据。
关键词:吊臂;工况;有限元分析;优化设计中图分类号:TP391.72 文献标识码:B 文章编号:1005-1090(2007)03-0195-03Finite Element Analysis of Truck Crane BoomYANG Jing 1,LI Wei-min 1,LIU Yu-hao 2(1.Mechanical Engineering & Automation College, Liaoning University of Technology, Jinzhou 121001, China ;2.The 3rd Flight Institute of Airforce, Jinzhou 121000,China )Key words: boom; work condition; finite element analysis; optimal designAbstract: By means of ANSYS software, finite element analysis of every boom of truck crane under different work condition was described in detail. Its procedure was expatiated, which included solid modeling, meshing, applying loads ;optimal design of the boom was analyzed. Valuable conclusions in application were obtained, with a credible theory foundation for the design of the truck crane boom rendered.吊臂是汽车起重机的重要组成部分。
图9 壁温历史数据
图10 特征值监控曲线
结果表明,在堵管情况,同屏管内的沿程阻力小
内圈管道)的管道流量增加幅度较大。
在管道堵管时,沿程壁温都会有不同程度的上升;设定监测单元,通过监测单元内的变化和正常值95%(或5%)分位数的数量
中国设备工程 2024.03(上)
图1 伸缩臂整体臂架有限元模型
整体伸缩臂臂架模态分析
有限元模态分析一般有两种方式:自由模态分析和约束模态分析,本文选择约束的方式对伸缩臂整体臂架进行模态分析。
在伸缩臂尾部与转台轴连接处和基本臂头部与变幅液压油缸的轴连接处施加约束,约束了三个方向上的平动自由度和两个方向上的转动自由度,仅释放伸缩臂沿连接轴的轴线方向上的转动自由度,从而更接近实际应用地模拟出伸缩臂的工作状态。
Workbench中Modal插件对伸缩臂整体臂架进行模态分析,通过分析得出伸缩臂整体臂架的前六阶固有频率和模态振型。
前六阶固有频率分别为
z、9.8977H z、13.673H z、17.
21.983Hz,模态振型图如图3~图8所示。
~图8可以看出:整体臂架的第一阶模态振型为整体臂架绕轴旋转弯曲;第二阶模态振型为整体臂架绕轴旋转弯曲;第三阶模态振型为整体臂架绕轴旋转,图2 伸缩臂有限元模型局部放大图
图3 整体臂架第一阶模态振型图
图4 整体臂架第二阶模态振型图
图5 整体臂架第三阶模态振型图
143
中国设备工程 2024.03(上)
图6 整体臂架第四阶模态振型图
图7 整体臂架第五阶模态振型图
图8 整体臂架第六阶模态振型图144中国设备工程 2024.03(上)。
基于ANSYSWorkbench汽车起重机副臂的性能分析针对汽车起重机副臂长细比较大,在考虑自重、载重和拉力时,副臂结构易发生变形的这种情况,分别利用有限元分析软件ANSYS Workbench和力学计算方法对副臂进行位移及应力的计算,得到在不同工况下副臂所承受的最大位移和最大应力,为副臂机构的设计计算及以后的结构上的优化提供依据。
标签:副臂;ANSYS Workbench;变形;应力.引言随着现代化速度的不断增加,起重机械在生产生活中应用范围逐步增大,所起到的作用也日益增加。
又由于汽车起重机作业性能高、使用灵活、价格相对便宜的特点,使得其在工程施工和城市建设中扮演着重要的角色。
但是由于伸缩主臂结构布置紧凑,并且自身质量很大,而且回转工作时对机动性能有一定的要求,使得主臂的伸长范围受到一定的限制。
又由于起重机工作时要求幅度很大、扬程较高,副臂为了满足这些要求,渐渐成为主臂结构和性能的补充和延伸。
但是副臂工作时受力大、工作条件恶劣并且结构复杂,人们便提出其自身工作重量轻,工作可靠的要求,因此对副臂进行准确的结构分析也显得十分重要。
ANSYS Workbench是一款大型CAE分析软件和应用平台,它综合了建模工具、分析工具、优化分析等多种功能于一身,其中的概念建模使副臂这种悬臂梁结构创建与修改变得简便。
1 材料属性的建立副臂弦杆材料采用Q345B,屈服极限?滓s=345Mpa。
其安全系数n=1.34,弹性模量E=210000MPa,泊松比?滋=0.28,密度?籽=7.9g/cm3。
Q345B属于普通低合金钢,其塑形及焊接性能十分良好,并且有一定的强度,实用性能好而且价格也比较便宜,性价比较高,适用于副臂这种悬臂梁结构。
2 概念建模概念建模对于创建和修改线体或面体非常便利,并最终将这些体生成有限元中的梁模型或板壳模型,在Design Modeler 使用概念建模中对副臂的桁架结构进行建模时,系统将自动连接梁单元组成的桁架结构,和一般CAD 软件建立的三维模型相比更加适合桁架结构的有限元分析,并且还可以对模型尺寸进行随时的修改,计算结果也可以快速更新,也比普通的CAD 软件模型修改再导入计算的模式更加的方便快捷。