HFSS例一:波导腔体分析
- 格式:ppt
- 大小:9.60 MB
- 文档页数:82
一、实验背景与目的随着微波技术、通信技术和雷达技术的发展,波导作为一种重要的微波传输线,其设计优化对于提高微波系统的性能具有重要意义。
本实验旨在通过电磁场仿真软件HFSS,对矩形波导进行仿真设计,分析其传输特性,并对其进行优化,以达到提高传输效率和降低损耗的目的。
二、实验内容与方法1. 实验内容本实验主要包括以下内容:(1)建立矩形波导的几何模型;(2)设置仿真参数,包括介质材料、边界条件等;(3)进行仿真计算,得到波导的传输特性;(4)分析仿真结果,优化波导设计。
2. 实验方法(1)使用HFSS软件建立矩形波导的几何模型;(2)设置仿真参数,包括介质材料、边界条件等;(3)选择合适的仿真求解器,进行仿真计算;(4)分析仿真结果,包括传输线特性、损耗、阻抗匹配等;(5)根据仿真结果,对波导设计进行优化。
三、实验步骤1. 建立矩形波导的几何模型使用HFSS软件,根据设计要求,建立矩形波导的几何模型。
首先,设置波导的尺寸参数,包括内径、外径、高度等。
然后,定义波导的介质材料,如空气、介质板等。
2. 设置仿真参数设置仿真参数,包括介质材料、边界条件等。
例如,设置波导的介质材料为空气,边界条件为完美电导体(PEC)。
3. 进行仿真计算选择合适的仿真求解器,进行仿真计算。
本实验采用时域求解器,设置仿真频率范围为1GHz~20GHz。
4. 分析仿真结果分析仿真结果,包括传输线特性、损耗、阻抗匹配等。
通过分析仿真结果,了解波导的传输特性,并对波导设计进行优化。
5. 优化波导设计根据仿真结果,对波导设计进行优化。
例如,调整波导的尺寸参数、介质材料等,以降低损耗、提高传输效率。
四、实验结果与分析1. 传输特性仿真结果表明,矩形波导在1GHz~20GHz的频率范围内具有良好的传输特性。
在频率较低时,波导的传输损耗较小;在频率较高时,波导的传输损耗较大。
2. 损耗通过分析仿真结果,发现波导的损耗主要由介质损耗和辐射损耗组成。
实验11 波导腔体内场分析一、设计要求建立一个T型波导模型,利用HFSS软件求解、分析,观察分布情T 型波导的场况。
二、实验仪器硬件:PC机软件:HFSS软件三、设计步骤1. 创建工程第 1 步:打开HFSS 软件并保存新工程。
第 2 步:插入HFSS 设计第 3 步:选择求解类型第 4 步:设置单位2. 创建模型第 1 步:创建长方体第 2 步:复制长方体第 3 步:组合长方体第 4 步:创建间隔从而得到如下所示的模型图:O 1 2(H)3.创建模型第1步:添加求解设置第2步:确认设计第3步:分析,对设计的模型进行三维场分析求解第4步:移动间隔的位置第5步:重新进行分析重新进行3D场的分析求解4.比较结果第1步:创建一个S参数的矩形曲线图在上面矩形图中显示不同间隔的S参数曲线。
第2步:创建一个场覆盖图如下图显示,在T接头的上表面显示场的分布情况F Ffeld(V1.7Z I Ie5,, 9 i r11∣≡釘77½Heι0ajZ. 37S3e +□BΞ:Z, IElBe+0EK1. eω7β⅜ma1. TBUMBanIL莊即亡"虚泊JL 3E7≡e→00Ξ:i. Lfr⅛Gf +B3Ξ!几沪帥的?S . g*⅞BΞe+□G3∑5. ⅛L55e÷a32I-鸟H 吉7<≡1 IMi2 .∣∏j第3步:动态演示场覆盖图分别定义场间隔位置为O和0.2时候动态演示场覆盖图。
观察场分布情况,重点比较2、3端口场的分布差异。
具体的图形在第四步的数据记录以及分析里面有详细的演示记录四、数据记录及分析(1)在矩形框中间隔位置分别为0和0.2的时候,S11、S12、S13的参数曲线图:(2)分别演示在间隔距离为0、0.2的时候动态场分布图I 间隔距离为0时:从Odeg 〜160deg 步进为20deg 如下面依次显示=t.3T55√-⅛K ,ι≡∣ 乙 te36⅞ιW3 Z I EΞ17^-H 2!Γ3 Z. 3西兀蛇IFIm 2. I l B I l j 6S≈^⅛⅛5 1. W?■阳亡→ct ∣? 1. ZL5a≡-⅛⅛3 l.l ⅛-H ⅛≡-<⅛? J•乳忙阳iMX>2 3s 3f3U ⅛CΞ ⅛, 219L 4⅛-÷SC ∣Ξ 2. LC972 ∏.W30-⅛4θM1 !5Γ55⅛*ea5 j 3.1I Z 95S6t∙G351 2 肌2C∙∙23I < 5H7ε*ea5■ 2 3"畑3 =-2.lM7e∙ΘO5I l a)e7‰∙ea> >1 W78e∣835 F i∙+7ββe*ea5 12658ete∂31 os⅜9∙∙ml.4M16e∙0aZ i.339ie∙MZi*∙2O219He«Gd;I : 1O∙J^H∙<12F Πe1⅛ΓV.per.t∙3. 3TS5ff*ea33. IWetm2 ⅞S3Ge∙0∂92τl*Z6e*oa32.ςM7e<βaa2. 3^37e*ea32. l∂97e*0∂3IMe7e«QU1 ∞76c*∞∂1 ∙÷7GeetO∂3」2β5仏∙U33I 85⅜9>Φ0e38 ⅛JΘ6fCa2 e329ie*C92・ 219⅛≡*Q322.1M7««Q02 eD∂Xt*eaaL FleH[V.pβr.m3.375Sc∙∞3 3lβ*βe∙<Λ3 29556v∙Ce92.7<δc√Λ3 :U・ E2.92θ7e*GΘ9 2Jiewce 9 1 0537∙<C3X.6B75e∙∞3 1M753e∙Cβ31.2e53e∙∞3 1C5-9v∙∞3e.MMto<e02e.3Z9ie∙εe2⅛.21^e*∞22.ιe97β<eβ2 eBeoM∙ewE Fi∙¼[Y.per.a沢3755"胞 3 !16⅜6e*0ftS2.9536e∙0a3∙ 7∙E∙m2. S317e<β33 2・ 320T"M32. lO97ewβJ1 9wre∙ea3 16976c ∙0∂9 i⅛T6ee*ea31 2856e*eaj 1ΘS⅜9c∙0∂3筠B∙∙Q02E32SH∙∙BP2 >4.219⅛e*eθ2 a.i99?««ee2 eoax¾*c∂D2 On)■31.3. 1⅜⅜B⅞÷H<I32, 7⅛26f+β⅛⅞-3≡.5¾7e*033i. 3207≡÷t!J3I I IOT7t *00 5I 1 m7ħ*Q9!∣I s⅛7se⅜fla31 ⅛76Se*0□3i- ^⅛0et0⅛3-3i 0SH5r⅛y∏-∣i I tlnelc t∏A^6, 3751F+03Z4.2i⅞>te+Qa22. lΠ*a7efEΠ2I E M4X>τ-+Uc∣y- 9.375b*M9⅞. lβ⅛C⅞÷M9g 用沁+0酩M 7⅛2et+O03Σ. 5117f+EM3I 2. ia07<tΛ∏3 I Zi⅞⅛7⅞Φ⅛P⅛5 i.E⅛SΠ⅛+⅛031. e⅛7⅞t+a^1. ⅝7βfrr4iB9I I2⅞5^F+F∣13110■訥⅛E40⅛3ε. U aHE E+EMΣ £.佃丄雹屮址⅜i21⅞⅝⅞+00S2. ia⅞7-e+∂∂2c∣.e⅛⅛E+⅛⅛s∏间隔距离为0.2时:从Odeg〜16Qdeg步进为20deg如下面依次显示■■311 F00∣5-^0P3乙ge2≡⅛4OT∣s2. 76JB«4i®3I 283-¾e≡-H3e3Z… LTZSe -HZE 311. ⅛y^0e,M⅛3‰777Se⅛β31. 3^5s-⅛G31. Lt5Bi-nΞCi3a.e75i≡√5c∙2r i,ια∣i⅝4Θε>z■E Fifflι∣Γ⅛-PEr-IIOI 2 on?E FieHrV.pβr,m-ι∙w・e®32.962Sβ∙39 27650«・GO3Z5675C*W3 2 3苗业•凶 2 21725e∙ce31.9?S0v«M9 IWSdfiS 1 5:00c∙∞31.3fi25c∙ee31.18S0e*G89 S8751v<e2 fQA016∙Γe2S.9Σ50e∙∞2395O□e*W21.9^50e∙CT2 COOnOe・£»oE FlBl(I[VβpBΓ.n1ΛWWJ3Oe2$ AKw7Kee*(B3 ”:3疋B"旳 3U2SA 回 397<βe*OD37775 Ct «3⅞α*ce*a3338Z5C53 久四"∂3?07Sle<D32 心心妙97See^aa?9^Ce*M297SOe4a32ULLoe<∙Uk>JE Ficl<ΓV.per.ι∙RIe^ea?2∙9β25503 2.76∞e∙0βJ2.5675e∙Ra3 237∂3e «0332. lT2Bewa31 SU"I 7775∙fθas1 5a∞<*C∂3 13∂25M33 1 丄MSCi23S 0751c∙C927√WM■驱皐92≈S08Z-f w1 9EM02 fiUflΛ9e∙0O00 1 2(in)O2甌站∙>∞3 2.7⅛50≠√K ⅛2.507Ξffi3032dτe昭询Ei2 L^Sfl ⅛U⅛1∣750⅛-α:?1.7775<r^≡i1.5300⅛-H3C31.3ftSSβ^αB91 ι∣B5a<^c>sβ-e75iτ⅞κT ⅞G01eιGO2⅛⅛25E∣≡-⅛JUL LS ¾5Ce s^C21 9秸如也垃Q驱聪畑02 (∣∏E FiBIdrWβr pιrjι3,1 屈0和€1Tlm2, e∣⅛-25⅛4OT i∣S 乙7B5θ⅛40pi3Z, 3π3Br-H3Γ3z, ι≡r E5¾⅛na1. 57IiQ±-⅛fc∣J1. 7TJ,5C^∞iJ]l5H3ia^≡⅛τ-51, W5e-tflβ3⅛.Lt5Q≡-⅛⅛ι3≡l.θ⅛l≡⅛tz⅛7. ⅞OI1∣-Φ25i⅞i.5Θe⅛⅛i≥3. ⅞5G0i⅛CιΞ 九『他=r赵2 θ.era0⅛4OT32 till:'软件仿真的所有结果图基本都符合要求,达到预定的效果实验总结(一) AWR 软件(1)主要功能:AWR软件是进行射频、微波电路设计的专业软件,也是本行业在本行业在全球范围内最主流、先进的工程设计软件。
实验一:T型波导内部仿真场分析与优化实验目的:理解和分析T型波导分支内部电磁场分布及优化方法。
实验内容:1.建立一个T型波导模型,利用HSFF软件求解,分析,观察T型导波的场分布情况。
2.使用HFSS进行T型波导功分器的优化设计实现,进行参数分析扫描,利用HFSS的优化设计功能实现3端口输出功率为2端口输出功率的2倍、3倍。
然后用重新设计端口激励端,使端口端2为激励端,端口3的输出为端口1的2倍。
实验原理:T型波导功分器又叫T型波导分支器,它能将波导能量从主波导中分路接出,它是微波功率分配器件的一种。
此次设计H面T型分支,使得从1端口输入的功率可以平均的分配给端口2、3,使得2、3端口的TE10波为等幅同向。
同时,通过设置隔片改变各端口的功率分配。
进行扫频设置,观察S参数曲线和电场分布。
实验步骤及结果:一、新建工程设置1.运行HFSS并新建工程双击桌面上的HFSS快捷方式,启动HFSS软件。
HFSS启动后,会自动创建一个默认名称为Project1的新工程和名称为HFSSDesign1的新设计。
从主菜单栏选择命令【File】→【SaveAs】,把工程文件另存为Tee.hfss。
然后右键单击HFSSDesign1,从弹出菜单中选择【Rename】命令项,把设计文件HFSSDesign1重新命名为TeeModal。
2.选择求解类型从主菜单栏选择【HFSS】→【SolutionType】,打开SolutionType对话框,选中DrivenModal单选按钮,单击OK按钮。
3.设置长度单位从主菜单栏选择【Modeler】→【Units】,打开SetModelUnits对话框,选择英寸(in)单位,单击OK按钮。
此时,设置了建模时的默认长度单位,即英寸。
二:创建T形波导模型1.创建长方体(1)从主菜单栏选择【Tools】→【Options】→【ModelerOptions】,打开3DModelerOptions对话框,选择Drawing选项卡,确认选中EditPropertiesofnewprimitives复选框,然后单击确定按钮。
微波技术与天线实验报告实验名称:实验3:利用HFSS仿真分析矩形波导学生班级:学生姓名:学生学号:实验日期:2011年月日一、 实验目的学会HFSS 仿真波导的步骤,画出波导内场分布随时间变化图,理解波的传播与截止概念;计算传播常数并与理论值比较。
二、 实验原理矩形波导的结构如图1,波导内传播的电磁波可分为TE 模和TM 模。
x yz图 1矩形波导1) TE 模,0=z E 。
coscos z z mn m x n y H H e a b γππ-= 2cos sin x mn c z n m x n y E H b a bj k e γπππωμ-= 2sin cos z y mn c j m m x n y E H e k a a b γωμπππ-=-2sin cos z x mn c m m x n y H H e k a a bγλπππ-= 2cos sin z y mn c n m x n y H H e k ba b γλπππ-= 其中,c kmn H 是与激励源有关的待定常数。
2) TM 模Z H =0,由Z E 的边界条件同样可得无穷多个TM 模。
注意:对于mn TM 和mn TE 模,m, n 不能同时为零,否则全部的场分量为零。
mn TM 和mn TE 模具有相同的截止波数计算公式,即c k (mn TM )=c k (mn TE )所以,它们的截止波长c λ和截止频率c f 的计算公式也是一样的,即c λ(mn TM )=c λ(mn TE )=222⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛b n a mc f (mn TM )=c f (mn TE )对于给定的工作频率或波长,只有满足传播条件(f >c f 或λ<c λ)的模式才能在波导中传播。
由公式可以看出矩形波导的c f ,c λ不仅与波导的尺寸a, b 有关,还和模指数m, n 有关。
当a, b 一定时,随着f 的改变,矩形波导可以多模传播,也可以单模传播,甚至也可以处于截止状态。
HFSS谐振腔体实例分析
HFSS设计概述
HFSS设计步骤和设计流程
1.改名:工程名:Resonator;设计名:Cavity
2.修改模式:本征模求解模式
3.修改单位:mm
4.创建谐振腔模型4.1创建圆柱体
4.2修改属性:Cavity,0.8
4.3修改参数:顶点(0,0,0),H=15,r=15
5.设置边界条件:有限导体边界条件
6.添加求解设置项
7.设计检查
7.1有错误,查看之
7.2再检查
8.运行分析
9.查看谐振频率和品质因数
10.查看模式1的中心平面的电场和磁场的分布10.1创建中心平面:顶点:(0,0,7.5) 法线方向(0,0,1)
10.2查看电场分布
10.3查看磁场分布
11.查看模式1的YZ平面上的电场和磁场的分布11.1查看电场
11.2查看磁场
12.查看模式2的电场和磁场的分布12.1更改为模式2
12.2电场和磁场分布已经自动改变
13.隐藏电场和磁场分布
14.添加圆柱介电层
14.1创建圆柱
14.2修改属性:DielREs,Roger R03010
14.3修改参数:顶点(0,0,0),r=5,H=height(4mm)
15.添加参数扫描:0-15,步长:1mm
15.1分析
16.查看结果。
肇庆学院 12通信2班杨桐烁 2实验一 T形波导的内场分析和优化设计实验目的1、熟悉并掌握HFSS的工作界面、操作步骤及工作流程。
2、掌握T型波导功分器的设计方法、优化设计方法和工作原理。
实验仪器1、装有windows 系统的PC 一台2、 HFSS13.0 或更高版本软件3、截图软件T形波导的内场分析实验原理本实验所要分析的器件是下图所示的一个带有隔片的T形波导。
其中,波导的端口1是信号输入端口,端口2和端口3是信号输出端口。
正对着端口1一侧的波导壁凹进去一块,相当于在此处放置一个金属隔片。
通过调节隔片的位置可以调节在端口1传输到端口2,从端口1传输到端口3的信号能量大小,以及反射回端口1的信号能量大小。
实验步骤1、新建工程设置:运行HFSS并新建工程、选择求解类型、设置长度单位2、创建T形波导模型:创建长方形模型、设置波端口源励、复制长方体、合并长方体、创建隔片3、分析求解设置:添加求解设置、添加扫频设置、设计检查4、运行仿真分析5、查看仿真分析计算结果内场分析结果1、图形化显示S参数计算结果8.008.258.508.759.009.259.509.7510.00Freq [GHz]0.130.250.380.500.630.75Y1TeeModalXY Plot 1ANSOFTCurve Infomag(S(P ort1,P ort1))Setup1 : Sw eep1mag(S(P ort1,P ort2))Setup1 : Sw eep1mag(S(P ort1,P ort3))Setup1 : Sw eep1图形化显示S参数幅度随频率变化的曲线2、查看表面电场分布表面场分布图3、动态演示场分布图T 形波导的优化设计实验原理利用参数扫描分析功能。
分析在工作频率为10GHz 时,T 形波导3个端口的信号能量大小随着隔片位置变量Offset 的变化关系。
利用HFSS 的优化设计功能,找出隔片的准确位置,使得在10GHz 工作频点,T 形波导商品3的输出功率是端口2输出功率的两倍。
以一个三腔矩形波导滤波器的仿真为例,我得到以下仿真经验:1。
当计算出结构尺寸的时候,包括膜片间距和每个腔体的长度,要开始建立3D模型的时候,不必着急,现将这些数据进行一下预处理,腔体长度进行预缩短,最多不要超过0.03,膜片间距进行预加长,最多不要超过0。
07。
这些数字可能打了也可能小了,按你仿真出来的曲线进行细致调节!我主要针对S21曲线的特点进行细致调节。
2。
如果通频带内有较大的波纹(超过最小插入损耗),那么一定要扩大内侧腔(同时缩短了外侧腔,这没有关系,正是需要),必要时同时减小外侧腔缩小的程度。
3。
大量数据表明:内侧膜间距变小—〉频带右移,通频带左侧波纹变小,右侧变大;外侧膜间距变大—-〉频带左移,通频带左侧波纹变小,右侧变大;以上变化,相对而言,通频带左侧波纹变化特别大。
因此如果通频带有偏移或者通频带左侧波纹太大,可以调整膜片间距,适当的调整并不会导致右侧波纹大过最小插入损耗.4。
如果S11的曲线比较对称美观,说明调整的方向大致是对的,可以继续。
5.如果S21曲线右侧带外抑制不足的时候(一般高端都不容易实现抑制,低端一般从一开始仿真就是对的),可增大外侧膜片间距,减小内侧膜片间距,一般得到的最后结果膜片尺寸是对称的,为方便生产也应尽量使其对称,即在改变间距的时候要对称地改。
此外,刚开始接触滤波器设计仿真的我还在实践中得到几条结论:1。
S11的最大值是由给定的波纹决定的。
2.S11的最大值、S21曲线的平滑程度和右侧带外抑制这三者之间有互相牵制的关系,仿真的时候不可能同时达到比较好的程度,只能尽量让这三者在符合要求的同时更好。
S11的最大值可单侧达到很好,但这样的话另一侧肯定很差.S11也可以整体达到比较理想的程度,但是这时高端抑制必然不足.。
HFSS谐振腔体实例分析HFSS(高频结构仿真软件)是一种用于高频电磁场的模拟和分析的软件。
在HFSS中,可以使用该软件来模拟和分析谐振腔体。
谐振腔体是一种用于储存微波能量并产生谐振现象的设备。
本文将介绍如何使用HFSS对谐振腔体进行分析。
首先,我们需要创建一个空的立方体,其尺寸根据实际需求确定。
然后,在立方体内部选择一个位置,添加一个约束面。
约束面可以是金属板、气体或者介电体等材料。
在我们的例子中,我们将使用一个金属板作为约束面。
接下来,我们需要定义约束面的物理特性。
这包括面的材料类型、导电性等参数。
在HFSS中,可以选择不同类型的约束面材料,如铜、铝等。
根据应用需求,我们可以选择适当的材料类型。
然后,我们需要定义谐振腔体的几何参数。
这包括谐振腔体的长度、宽度和高度等。
几何参数的选择对谐振腔体的性能有重要影响,因此需要根据具体需求进行优化。
接下来,我们需要定义谐振腔体的边界条件。
边界条件是一个非常重要的因素,它决定了电磁场在谐振腔体内部的传播方式。
在HFSS中,可以选择不同类型的边界条件,如理想导电壁、理想电介质等。
然后,我们需要定义谐振腔体的激励方式。
激励方式可以是通过导线、天线或者端口等。
在HFSS中,可以选择不同类型的激励方式,如电流激励、电压激励等。
根据实际需求,我们可以选择适当的激励方式。
最后,我们需要进行仿真和分析。
在HFSS中,可以进行多种分析,如频率域分析、时域分析等。
在我们的例子中,我们将进行频率域分析。
通过分析结果,我们可以得到谐振腔体的谐振频率、谐振模式等信息。
综上所述,使用HFSS对谐振腔体进行分析可以帮助我们了解谐振腔体的电磁场分布、谐振特性等。
这对于设计和优化谐振腔体非常有帮助。
在实际应用中,我们可以根据分析结果进行优化,以满足特定的需求。