当前位置:文档之家› 超越石墨烯的下一代半导体材料--辉钼

超越石墨烯的下一代半导体材料--辉钼

超越石墨烯的下一代半导体材料--辉钼
超越石墨烯的下一代半导体材料--辉钼

超越石墨烯的下一代半导体材料--辉钼

2011-02-22 10:15:40 分类:高性能新材料

辉钼是硫化物的一种,是一种软金属,触摸时有油腻感,又鳞状物组成,呈无光泽的铅灰色,若将其置于容器中加热,会产生黄色烟雾。在不锈钢上镀一层辉钼,能增加其韧度,并能防腐。辉钼矿是钼的二硫化物,是最重要的钼矿资源。辉钼矿中还常含有铼,并且还是含铼最高的矿物,因此它还是提炼铼的最主要矿物。主要产地为挪威,非洲南部和澳大利亚。

据美国物理学家组织网1月31日报道,近日,瑞士洛桑联邦理工学院(EPFL)纳米电子学与结构(LANES)实验室称,用一种名为辉钼(MoS2)的单分子层材料制造半导体,或用来制造更小、能效更高的电子芯片,在下一代纳米电子设备领域,将比传统的硅材料或富勒烯更有优势。

与现在广泛使用的硅材料相比,辉钼具有两个主要优点:一是达到同等效用的体积更小。只有0.65纳米厚的辉钼材料,电子在其中能像在2纳米厚的硅材料中那样自如移动,同时,现有技术还无法将硅材料制作得跟辉钼材料一样薄;二是能耗更低。据估计,辉钼制成的晶体管在待机状态下消耗能量只是硅晶体管的约十万分之一。

辉钼在自然界中含量丰富,通常用于合金钢或润滑油添加剂中的成分,在电子学领域尚未得到广泛研究,是一种二维材料,非常薄,很容易用在纳米技术上,在制造微型晶体管、发光二极管(LEDs)、太阳能电池等方面有很大潜力。辉钼材料同硅当前主要用于电子和计算机芯片。

辉钼的另一大优势是比硅的能耗更低。在固态物理学中,能带理论描述了在特定材料中电子的能量。在半导体中,自由电子存在于这些能带之间,称为“带隙”。如果带隙不太小也不太大,某些电子就能跳过带隙,能更有效控制材料的电子行为,开关电路更容易。

辉钼单分子层内部天然就有较大的带隙,虽然它的电子流动性较差,但在制造晶体管时,用一种氧化铪介质栅门就可使室温下单层辉钼的运动性大大提高,达到富勒烯纳米带的水平。富勒烯没有带隙,要想在上面人为造出带隙非常复杂,还会降低其电子流动性,或者需要高电压。由于辉钼直接就有带隙,可以用单层辉钼制造间带通道场效应晶体管,且在稳定状态下耗能比传统硅晶体管小10万倍。在光电子学和能量捕获应用领域,单层辉钼还能与富勒烯共同使用,形成优势互补。

辉钼的半导体材料实际比石墨烯还要先进和节能,辉钼是良好的下一代半导体材料,在制造超小型晶体管、发光二极管和太阳能电池方面具有很广阔的前景,将对太阳能和军事等领域的发展产生极大的推进作用。

●辉钼概念股一览

介绍概念为主,是否关注应看盘面变化,部分概念股是否真实未考证。

1、金钼股份(601958):

公司拥有的金堆城钼矿是世界六大原生钼矿床之一,拥有金堆城钼矿

2.6282平方公里的采矿权,共分小北露天、南露天和全露天三部分,且均为

大型露天矿,据公司统计资料,截至2006年末,金堆城钼矿保有矿石储量共计约80066万吨,钼金属量约786551吨,平均品位0.099%。其中,探明的经

济基础储量53937万吨,钼金属量577980吨;推断的内蕴经济资源量26129万吨,钼金属量208,571吨;据公司储量统计资料,金堆城钼矿按照现有开采规模,尚可服务约60年。

2008年公司全面完成了对金钼汝阳65%股权的收购,金钼汝阳取得了东沟钼矿采矿权证,该矿钼资源储量68.9万吨(金属量),至此,加上金堆城钼矿的保有储量,公司已控制的钼资源储量达到146.9万吨(金属量),公司资源储量优势十分明显。由于钼矿资源的不可再生性,公司资源储量优势十分明显。

公司从事钼系列产品生产、加工、贸易、科研等业务,拥有钼采矿、选矿、焙烧、钼化工和钼金属加工上下游一体化的完整产业链条,是亚洲最大、国际一流的钼业公司。

2、宏达股份(600331):

子公司投资101亿元生产钼和铜。最新科技成果辉钼二极管,钼的前途不次于稀土。

3、ST偏转(000697):

2010年5月18日,拟以除现金1亿元的其余全部资产与负债与陕西炼石矿业有限公司100%股权进行资产置换;差额部分由公司以2.24元/股向陕西炼石全体股东合计发行不超过29844万股购买。炼石矿业控股股东为张。炼石矿业拥有两个选矿厂,分别为上河钼矿选矿厂和新投资成立的石幢沟矿业选矿厂,选矿能力日处理能力合计为5000吨。上河钼矿选矿日处理能力2000吨;石幢沟矿业建成之后,选矿日处理钼矿石3000吨,年产钼精矿2006吨、铅精矿 3960吨、硫精矿43164吨。

4、长征电气(000112):

公司两个采矿权和一个探矿权目前的储量情况,采矿权方面,目前合计资源价值量为105.44亿元,目前估值基本属于矿业借壳公司的合理水平。不过,通程公司拥有2.67万吨镍,4.2万吨钼储量,折合资源价值量为126.72亿,比现有两个采矿权资源价值量大一倍以上。

5、万好万家(600576):

公司经过重组,变身为矿产资源丰富的有色金属企业,拥有大量的钼金属资源。国土资源部正准备将钼列入保护性开采矿种,对公司形成重大利好。有色金属资源置入脱胎换骨。天宝矿业置入钼、金、银、铁和锌权益储量分别为7.58万吨、7.39吨、2.53吨、3714.15万吨和28.72万吨。天宝矿业具备强大的找矿能力,未来资源仍有进一步增长的空间,公司目前的生产情况也对资源增长提出了强烈诉求。钼、金、铁锌齐发力。公司钼、金矿品位很高,盈利能力远超行业平均水平,目前是公司盈利主力,随着谢尔塔拉铁锌矿逐步投产,铁锌业务也将为公司贡献丰厚收益。未来精彩值得期待。天宝矿业致力于寻找大项目,目前收购标的众多,发展瓶颈在于资金。由于扩张意愿强烈,公司累积的净利润均用于各个生产项目的投资,融资平台对于公司发展至关重要。重组成功之后,未来资产注入预期非常强烈。

6、厦门钨业(600549):

公司稀土产业链已经完成上下游布局,长汀离子型稀土矿权已报国土资

源部审批,预计采矿权落实后建设规模可达1500吨/年。生产能力粗钼丝300吨,30亿米细钼丝。

7、江西铜业(600362):

公司矿产资源储备位居全国第一,铜矿产量占全国的15.5%,精铜产量占全国的18.5%。公司的铜储量达到1228万吨、黄金储量430吨、银储量 8710吨、以及钼储量30万吨。此外,作为国内铜的领头者,公司积极对海外资源进行开发利用,于2008年成功的收购了加拿大北秘鲁铜业40%股权以及阿富汗艾娜克铜矿25%股权,大幅提升了公司的资源储备,并为今后的原料供应提供了有利保障,使公司权益铜储量达到1661万吨、黄金482吨、银 8776吨、以及钼35.6万吨。2010年半年,钼精矿折合量(45%)2,259 吨。

8、紫金矿业(601899):

公司是中国最大的黄金生产企业、第二大矿产铜生产企业、第六大锌生产企业和中国控制金属矿产资源最多的企业之一。目前,紫金矿业形成了以金为主,铜、铅锌、钨、铁等基本金属并举的产品格局,权属企业分布在全国20余个省、市、自治区和海外7个国家。截止2009年6月30日保有的金金属资源/储量在国内黄金行业上市公司中位居第一,集团公司共拥有探矿权266个,面积总计6567.36km2。共拥有采矿权43个,矿权面积119.3624km2,截至 2009年6月30日,集团保有资源储量:金704.3吨;铜967万吨;铂+钯151吨;铅+锌526.7万吨;铁2.189亿吨,比2008年底增长 30.38%;镍88.5万吨,比2008年底增长32.58%;钨11.68万吨,比2008年底增长14.62%;锡10万吨;银1702吨;钼39 万吨;硫铁矿(标矿)1.35亿吨;煤3亿吨。

9、铜陵有色(000630):

集团公司积极整合国内尤其是安徽省境内的矿产资源。安徽省发现了几处规模比较大的铜多金属矿山,包括庐江沙溪矿60-100万吨、南陵姚家岭矿60万吨、金寨大别山钼矿20-40万吨等。另外控股股东持股51%的在内蒙古赤峰市的国维矿业,是一个铜钼金属矿,铜、钼金属量规模较大,这些矿山合计铜金属储量 200万吨、钼储量80左右,均在集团手中。集团公司在国内拥有的矿山资源有优先向上市公司注入的可能。

10.富龙热电(000426):

重组中拟置入资产为兴业集团拥有的五家采选冶炼企业100%股权,预估值为18.09亿元;重组后的富龙热电将一举转型为主营锌、铁、铅、钼等多种矿业资源的公司,成为内蒙古矿业类上市公司中的新生力量。

11、银鸽投资(600069):

2011年1月漯河市人民政府将银鸽集团100%股权无偿划转给河南煤化集团,本次划转完成后,河南煤化集团共间接持有公司20866万股股份,占公司总股本的25.28%。河南煤化集团是河南省国有独资公司,煤炭资源储备400多亿吨,煤炭产能2011年将达到1亿吨,拥有钼金属储量150万吨,是全国拥有钼资源量最大的企业之一,拥有国内外铝土矿资源20亿吨,是目前亚洲最大的煤制气企业和华中地区最大的甲醇生产企业,将在河南建成国内最大的高性能碳纤维生产基地,亚洲最大的聚甲醛生产基地,全球最大的煤制乙二醇生产基地,下属企业洛阳LYC轴承是中国轴承行业规模最大的综合性轴承制造企业之一,开封空分是中国自行设计与制造大,中型空气分离设备的重点骨干企业,分别拥有全国唯一的轴承研究院和空分研究所。

12.中国铝业(600362):

公司在做大做强铝业的同时,积极向其他有色金属产业拓展,有意收购稀土资源丰富的新疆有色,目前已形成技术先进、规模较大的钼、钛、铜、铅、锌、金、银、锆、钨、钽、铌、铪、镍等有色金属产品的生产和加工能力。

有机功能化石墨烯的制备及其应用

有机功能化石墨烯的制备及其应用 张丽园1,2 ,姚 远 2 (1.蚌埠学院应用化学与环境工程系,安徽蚌埠233000; 2.合肥工业大学化工学院,合肥230009) 摘要:石墨烯是一种新型的二维平面纳米材料,其所具有的单原子层结构使它拥有许多新奇的特性,从2004年被发现以来,引起了科学界的高度重视,目前已成为了材料学、物理学、化学等学科领域的研究热点。然而由于石墨烯易于团聚堆积成石墨,不能均匀的分散在基体中,这很大程度上限制了它的应用。为了将石墨烯与其它物质有效复合,充分发挥其在电子学、生物医学、催化、传感器、储能等领域的优良特性,对其进行功能化改性是有效的方法之一。着重介绍了石墨烯有机功能化制备方法及其应用的最新研究进展,并对石墨烯的功能化发展方向进行了展望。 关键词:石墨烯;氧化石墨;有机功能化;表面改性 中图分类号:O6-1文献标志码:A 文章编号:1671-380X (2012)08-0016-05Preparation and Application of Organo -Functionalized Graphene ZHANG Li -yuan 1,2 ,YAO Yuan 2 (1.Department of Chemistry and Environmental Engineering ,Bengbu College ,Bengbu 233000,China ; 2.School of Chemical Engineering Hefei University of Technology ,Hefei 230009,China ) Abstract :Graphene is a novel two -dimensional nanomaterial with a flat monolayer of carbon atoms structure ,which has contributed to its unique features.Since it had been discovered in 2004,the graphene has attracted a great deal of attention worldwide in the sciences ,and became the focus of the researches all over the world.How-ever ,the structure of the graphene has lots of limitations in the applications in compounding with other materials ,and restricted its wide usage.To materialize the prospect applications as much as possible in the field of electron-ics ,biomedicine ,catalysis ,sensors ,energy storage etc.The key is to ograno -functionalized graphene in a con-trolled way.This paper emphasized on some common preparations and the applications of organo -functionalized graphene.Besides ,the developing trend of organo -functionalizing of graphene was forecasted.Key words :Graphene ;Graphene Oxide ;Organic Functionalize ;Surface Modification 1 引言 石墨烯是一种新型的具有单原子层结构的二维 平面纳米材料,从2004年被发现以来,引起了科学界的高度重视,目前已成为了材料学、物理学、 化学等学科领域的研究热点[1] 。其独特的二维蜂窝状晶格结构,使其拥有许多新奇的特性,如:较高的杨氏模量( 1100GPa )、载流子迁移率(2?105cm 2/(V ·s ))、热导率( 5000J /(m ·K ·s ))和比表面积(理论值2630m 2/g ),还具有分数量子霍尔效应、量子霍尔铁磁性和激子带隙等 现象 [2] ,这些特性使得石墨烯在纳米电子学、纳 米复合物、氢气超级电容器等领域有着广泛潜在的 应用[3] ;其特有的单原子层结构和较大的表面积 的特性还可使其在生物医学方面得到应用[4] 。然而理想石墨烯易团聚堆积成石墨形态,并不利于与 其它物质进行复合,使其的应用受到了大幅限制。为了解决这个问题,石墨烯的有机功能化改性是非常有效的方法,极大地拓展了石墨烯的应用领域。基于材料化学的角度,对石墨烯的表面有机改性及其应用等方面进行简要的综述。 · 61·第34卷第8期2012年8月宜春学院学报 Journal of Yichun College Vol.34,No.8Aug.2012 * 收稿日期:2012-05-31 基金项目:安徽省高等学校自然科学基金(KJ2009B212Z )。 作者简介:张丽园(1980-),男,安徽凤阳人,博士生,主要从事绿色化学和材料学研究。

项目名称生物基石墨烯宏量制备及石墨烯在功能纤维中的产

项目名称:生物基石墨烯宏量制备及石墨烯在功能纤维中的产业化应用 提名意见: 石墨烯具有高导电性、高强度、高韧度等特点。将石墨烯与纺织纤维进行复合将赋予材料诸多优异性能。现有制备石墨烯方法面临着成本高,产量低,对环境产生严重污染等问题,亟待发展简单、安全无毒、低成本、厚度均一、高产率的工业化生产石墨烯材料的方法。 该项目发明了以玉米芯纤维素为原料,采用“基团配位组装”法制备石墨烯材料的新方法,突破了生物基石墨烯配位组装析炭、催化热裂解、精制分散关键技术;研发了石墨烯表面改性及在聚合物中的分散技术,解决了石墨烯在再生纤维素纤维、涤纶短纤维与锦纶 6 纺丝过程中易团聚、品质控制困难等问题;开发了专用组件过滤技术,制备了石墨烯改性再生纤维素纤维、涤纶短纤维与锦纶6 长丝,开发了石墨烯改性纤维高效纺纱系列加工技术、织物与染整技术,建立了石墨烯功能纺织品成型加工技术体系。项目授权国家发明专利26项,具有完整的知识产权体系,整体技术达到国际先进水平。 该项目建立了年产200 吨生物基石墨烯材料的生产线,年产2000 吨的石墨烯功能聚合物母粒生产线。在服饰、家纺、轻工等领域得到了广泛的应用。经济效益和社会效益显著。 提名该项目为国家技术发明二等奖。 项目简介: 石墨烯是一种技术含量非常高、应用潜力非常广泛的碳纳米材料,具有高导电性、高强度、高韧度等多种特点,在军工、航天、锂离子电池、新能源、新材料等新兴领域和传统领域,都将带来革命性的技术进步。将石墨烯与纺织纤维进行复合将赋予材料诸多优异性能。石墨烯包括了单层石墨烯、双层石墨烯、少层石墨烯,不同层数的石墨烯应用领域大相径庭。现有制备石墨烯包括了微机械剥离、SiC 高温热解、CVD 外延、化学还原等方法,这些方法面临着成本高,产量低,对环境产生严重污染等问题,亟待发展简单、安全无毒、低成本、厚度均一、高产率的工业化生产石墨烯材料的方法。 本项目发明了以玉米芯纤维素为原料,采用“基团配位组装”法制备石墨烯材

石墨烯介绍

1石墨烯概述-结构及性质 1.1 石墨烯的结构 石墨烯是一种由碳原子以sp2杂化连接形成的单原子层二维晶体,碳原子规整的排列于蜂窝状点阵结构单元之中,如图1所示。每个碳原子除了以σ键与其他三个碳原子相连之外,剩余的π电子与其他碳原子的π电子形成离域大π键,电子可在此区域内自由移动,从而使石墨烯具有优异的导电性能。同时,这种紧密堆积的蜂窝状结构也是构造其他碳材料的基本单元,如图2所示,单原子层的石墨烯可以包裹形成零维的富勒烯,单层或者多层的石墨烯可以卷曲形成单壁或者多壁的碳纳米管。 图1 石墨烯的结构示意图 图2石墨烯:其他石墨结构碳材料的基本构造单元,可包裹形成零维富勒烯,卷曲形成一维 碳纳米管,也可堆叠形成三维的石墨 1.2石墨烯的性质 石墨烯独特的单原子层结构,决定了其拥有许多优异的物理性质。如前所述,石墨烯中的每个碳原子都有一个未成键的π 电子,这些电子可形成与平面垂直的π轨道,π 电子可在这种长程π 轨道中自由移动,从而赋予了石墨烯出色的导电性能。研究表明室温下载流子在石墨烯中的迁移率可达到15000cm2/(V·s),相当于光速的1/300,在特定条件,如液氦的温度下,更是可达到250000cm2/(V·s),远远超过其他半导体材料,如锑化铟、砷化镓、硅半

导体等。这使得石墨烯中的电子的性质和相对论性的中微子非常相似。并且电子在晶格中的移动是无障碍的,不会发生散射,使其具有优良的电子传输性质。同时,石墨烯独特的电子结构还使其表现出许多奇特的电学性质,比如室温量子霍尔效应等。由于石墨烯中的每个碳原子均与相邻的三个碳原子结合成很强的σ 键,因此石墨烯同样表现出优异的力学性能。最近,哥伦比亚大学科学家利用原子力显微镜直接测试了单层石墨烯的力学性能,发现石墨烯的杨氏模量约为1100GPa,断裂强度更是达到了130GPa,比最好的钢铁还要高100 倍。石墨烯同样是一种优良的热导体。因为在未掺杂石墨中载流子密度较低,因此石墨烯的传热主要是靠声子的传递,而电子运动对石墨烯的导热可以忽略不计。其导热系数高达5000W/(m·K), 优于碳纳米管,更是比一些常见金属,如金、银、铜等高10 倍以上。除了优异的传导性能及力学性能之外,石墨烯还具有一些其他新奇的性质。由于石墨烯边缘及缺陷处有孤对电子,使石墨烯具有铁磁性等磁性能。由于石墨烯单原子层的特殊结构,使石墨烯的理论比表面积高达2630m2/g。石墨烯也具备独特的光学性能,单层石墨烯在可见光区的透过率达97%以上。这些特性使石墨烯在纳米器件、传感器、储氢材料、复合材料、场发射材料等重要领域有着广泛的应用前景。 图3石墨烯的应用 2石墨烯聚酯复合材料的制备方法 由于石墨烯优异的性质以及低的成本,石墨烯作为聚合物纳米填料被广泛报道。为了获得优异性能的聚合物/石墨烯复合材料,首先要保证石墨烯在聚合物基体中均匀分散。石墨烯的分散与制备方法、石墨烯表面化学、橡胶种类以及石墨烯-橡胶界面有着密切关系。聚合物/石墨烯复合材料的制备方法主要有溶液共混、熔体加工、原位聚合和乳液共混四种方法。 2.1 溶液共混法 溶液共混法主要是采用聚合物本身聚合体系的有机溶剂,充分分散石墨烯于体系中,随着体系聚合反应进行,最后石墨烯均匀分散并充分结合于聚合物基体中,得到石墨烯/聚合物复合材料的一种方法。通常先制备氧化石墨烯作为前驱体,对其进行功能化改性使之能在聚合体系溶剂中分散,还原后与聚合物进行溶液共混,从而制备石墨烯/聚合物复合材料。通过溶液共混制备复合材料的关键是将石墨烯及其衍生物均匀分散在能溶解聚合物的溶剂中。

水热合成Fe2O3石墨烯纳米复合材料及其电化学性能研究

常熟理工学院学报(自然科学)Journal of Changshu Institute Technology (Natural Sciences )第26卷第10Vol.26No.102012年10月Oct.,2012 收稿日期:2012-09-05 作者简介:季红梅(1982—),女,江苏启东人,讲师,工学硕士,研究方向:无机功能材料.水热合成Fe 2O 3/石墨烯纳米 复合材料及其电化学性能研究 季红梅1,于湧涛2,王露1,王静1,杨刚1 (1.常熟理工学院化学与材料工程学院,江苏常熟215500;2.吉林石化公司研究院,吉林吉林132021) 摘要:利用水热法成功合成了Fe 2O 3/石墨烯(RGO )锂离子电池负极材料.导电性能良好的石墨烯网络起到连接导电性能极差的Fe 2O 3和集流体的作用.电化学性能测试表明,180℃下得到的 Fe 2O 3/RGO 具有良好的比容量和循环稳定性.在不同倍率充放电过程中,初始放电比容量为1023.6mAh/g (电流密度为40mA/g ),电流密度增加到800mA/g 时,放电比容量维持在406.6 mAh/g ,大于石墨的理论放电比容量~372mAh/g.在其他较高的电流密度下比容量均保持基本不变.该Fe 2O 3/RGO 有望成为高容量、低成本、低毒性的新一代锂离子电池负极材料.关键词:Fe 2O 3;石墨烯;负极材料中图分类号:TM911文献标识码:A 文章编号:1008-2794(2012)10-0055-05 自从P.Poizot [1]等报道过渡金属氧化物可以作为锂离子电池负极材料这一研究后,金属氧化物负极便逐渐引起人们的重视.铁的氧化物具有比容量大、倍率性能好和安全性能高等优点,且原料来源丰富、价格低廉、环境友好,因此是一类很有发展潜力的动力锂离子电池负极材料.Fe 2O 3作为一种常温下最稳定的铁氧化合物,理论容量为1005mAh/g ,远高于石墨类材料的理论比容量,已经成为锂离子电池负极材料的一个研究热点.近年来,石墨烯由于其高的电传导性,大的比表面积,良好的化学稳定性和柔韧性而被尝试用于与活性锂离子电池负极材料复合,提升材料的电化学性能.比如,Cui Y [2]课题组在溶剂热条件下两步法得到Mn 3O 4与石墨烯的复合材料,改善了Mn 3O 4的比容量和循环性能.Co 3O 4,Fe 3O 4等金属氧化物材料与石墨烯复合也有被研究,本课题组在石墨烯和金属氧化物材料复合方面也做了大量的工作[3].本文通过水热法一步合成Fe 2O 3/石墨烯纳米复合材料,并研究了其电化学性能,合成过程中采用三乙烯二胺提供反应的碱性环境,并控制Fe 2O 3的粒子生长.1 实验 1.1试剂和仪器 三乙烯二胺(C 6H 12N 2);无水三氯化铁(FeCl 3);石墨;硝酸钠(NaNO 3);浓硫酸(H 2SO 4);高锰酸钾(KMnO 4);双氧水(H 2O 2)和盐酸(HCl ),以上试剂均为分析纯.实验用水为去离子水.日本理学H-600型透射电子显微镜;日本理学D/max2200PC 型X 射线衍射仪;德国Bruker Vector 22红外光谱仪;日本JEOL-2000CX 透射电镜;美国Thermo Scientific Escalab 250Xi 光电子能谱仪;LAND 电池

石墨烯复合材料的研究及其应用

石墨烯复合材料的研究及其应用 任成,王小军,李永祥,王建龙,曹端林 摘要:石墨烯因其独特的结构和性能,成为物理化学和材料学界的研究热点。本文综述了石墨烯复合材料的结构和分类,主要包括石墨烯-纳米粒子复合材料、石墨烯-聚合物复合材料和石墨烯-碳基材料复合材料。并简述石墨烯复合材料在催化领域、电化学领域、生物医药领域和含能材料领域的应用。 关键词:石墨烯;复合材料;纳米粒子;含能材料 Research and Application of Graphene composites ABSTRACT: Graphene has recently attracted much interest in physics,chemistry and material field due to its unique structure and properties. This paper reviews the structure and classification of graphene composites, mainly inclouding graphene-nanoparticles composites, graphene-polymer composites and graphene-carbonmaterials composites. And resume the application of graphene composites in the field of catalysis, electrochemistry, biological medicine and energetic materials. Keywords: graphene; composites; nanoparticles; energetic materials 石墨烯自2004年曼彻斯特大学Geim[1-3]等成功制备出以来,因其独特的结构和性能,颇受物理化学和材料学界的重视。石墨烯是一种由碳原子紧密堆积构成的二维晶体,是包括富勒烯、碳纳米管、石墨在内的碳的同素异形体的基本组成单元。石墨烯的制备方法主要有机械剥离法,晶体外延法,化学气相沉积法,插层剥离法以及采用氧化石墨烯的高温脱氧和化学还原法等[4-10]。与碳纳米管类似,石墨烯很难作为单一原料生产某种产品,而主要是利用其突出特性与其它材料体系进行复合.从而获得具有优异性能的新型复合材料。而氧化石墨烯由于其特殊的性质和结构,使其成为制备石墨烯和石墨烯复合材料的理想前驱体。本文综述了石墨烯复合材料的结构、分类及其在催化领域、电化学领域、生物医药领域和含能材料领域的应用。

石墨烯分散方法

石墨烯分散方法 石墨烯具有优良的性能,科研工作者考虑将其作为增强体加入到基体材料中以提高基体材料的性能。但是,由于其较大的比表面积,再加上片层与片层之间容易产生相互作用,极易出现团聚现象,而且团聚体难以再分开,不仅降低了自身的吸附能力而且阻碍石墨烯自身优异性能的发挥,从而影响了石墨烯增强复合材料性能的改进。为了得到性能优异的石墨烯增强复合材料,科研工作者在克服石墨烯团聚、使其分散方面做了诸多研究。分散方法简介如下: 1、机械分散发 利用剪切或撞击等方式改善石墨烯的分散效果。吴乐华等以纯净石墨粉为原料,无水乙醇为溶剂,采用湿法球磨配合超声、离心等方式得到石墨烯分散液,通过扫描电镜、透射电镜和拉曼光谱分析均证明石墨烯为几个片层分散。 2、超声分散发 利用超声的空化作用,以高能高振荡降低石墨烯的表面能,从而达到改善分散效果的目的。Umar等将石墨在N-甲基吡咯烷酮(NMP)中采用低功率超声处理,随着超声时间的延长,石墨烯分散液的浓度随之升高,当超声时间超过462h后,石墨烯分散液浓度能够达到1.2mg/mL,这

是由于超声所产生的溶剂与石墨烯之间的能量大于剥离石墨烯片层所需要的能量,进而实现了石墨烯的分散。3、微波辐射发 采用微波加热的方式产生高能高热用以克服石墨烯片层间的范德华力。Janowska等采用氨水作为溶剂,利用微波辐射处理在氨水中的膨胀石墨以制备石墨烯分散液,透射电镜观测结果表明制得的石墨烯主要为单、双和少层(少于十层)石墨烯,并且能够在氨水中稳定分散,研究证实微波辐射产生的高温能够使氨水部分气化,产生的气压对克服石墨烯片层间的范德华力具有显著的作用。 4、表面改性 通过离子液体对膨胀石墨进行表面改性来提高石墨烯的分散性。这种改性属于物理方法,它能降低改性过程对石墨烯结构和官能团的影响。经过改性的石墨烯片层粒径小,呈现出褶皱的状态;通过离子液体改性后的石墨烯可以长时间在丙酮溶液中保持均匀的分散状态,并且能够均匀分布在硅橡胶基体中,离子液体链长增加使得样品更加均匀地分散。 采用具有强还原能力的没食子酸作为稳定剂和还原剂,制得了具有高分散性的石墨烯。由于分子中苯环结构和石墨烯之间形成了π—π共轭相互作用,从而作为稳定剂吸附在石墨烯表面,这使得石墨烯片层具有较强的负电性,

高分子_石墨烯纳米复合材料研究进展

高分子/石墨烯纳米复合材料研究进展 高秋菊1,夏绍灵1,2* ,邹文俊1,彭 进1,曹少魁2 (1.河南工业大学材料科学与工程学院,郑州 450001;2.郑州大学材料科学与工程学院,郑州 450052 )收稿:2012-01-09;修回:2012-04- 24;基金项目:郑州科技攻关项目(0910SGYG23258- 1);作者简介:高秋菊(1984—),女,硕士研究生,主要从事高分子复合材料的研究。E-mail:gaoqiuj u2008@yahoo.com.cn;*通讯联系人,Tel:0371-67758722;E-mail:shaoling _xia@haut.edu.cn. 摘要: 石墨烯以其优异的力学、光学、电学和热学性能,得到日益广泛的关注和研究。本文介绍了石墨烯的结构、性能和特点,并对石墨烯的改性方法进行了概括。本文着重综述了高分子/石墨烯纳米复合材料的研究现状和进展,并介绍了高分子/石墨烯纳米复合材料的三种制备方法,即原位插层聚合法、溶液插层法和熔融插层法。此外,还对高分子/石墨烯纳米复合材料的应用前景进行了展望,并对石墨烯复合材料研究存在的问题和未来的研究方向进行了讨论。 关键词:石墨烯;高分子;纳米复合材料;研究进展 引言 石墨烯是以sp2 杂化连接的碳原子层构成的二维材料, 其厚度仅为一个碳原子层的厚度。这种“只有一层碳原子厚的碳薄片”,被公认为目前世界上已知的最薄、最坚硬、最有韧性的新型材料。石墨烯具 有超高的强度,碳原子间的强大作用力使其成为目前已知力学强度最高的材料。石墨烯比钻石还坚硬, 强度比世界上最好的钢铁还高100倍[1] 。石墨烯还具有特殊的电光热特性, 包括室温下高速的电子迁移率、 半整数量子霍尔效应、自旋轨道交互作用、高理论比表面积、高热导率和高模量、高强度,被认为在单分子探测器、集成电路、场效应晶体管等量子器件、功能性复合材料、储能材料、催化剂载体等方面有广泛 的应用前景[ 2] 。石墨烯是一种疏松物质,在高分子基体中易团聚,而且石墨烯本身不亲油、不亲水,在一定程度上也限制了石墨烯与高分子化合物的复合,尤其是纳米复合。因而,很多学者对石墨烯的改性进行了大量的研究,以提高石墨烯和高分子基体的亲和性,从而得到优异的复合效应。 1 石墨烯的改性方法 1.1 化学改性石墨烯 该方法基于改性Hummers法[3] 。首先,由天然石墨制得石墨氧化物, 再通过几种化学方法获得可溶性石墨烯。其化学方法包括:氧化石墨在稳定介质中的还原[4]、通过羧基酰胺化的共价改性[5] 、还原氧化石墨烯的非共价功能化[ 6]、环氧基的亲核取代[7]、重氮基盐的耦合[8] 等。此外,还出现了对石墨烯的氨基化[9]、酯化[10]、异氰酸酯[11] 改性等。用化学功能化的方法对石墨烯进行改性,不仅可以提高其溶解性 和加工性能,还可以增强有机高分子间的相互作用。1.2 电化学改性石墨烯 利用离子液体对石墨烯进行电化学改性已见报道[12] 。用电化学的方法,使石墨变成用化学改性石 墨烯的胶体悬浮体。石墨棒作为阴极,浸于水和咪唑离子液的相分离混合物中。以10~20V的恒定电 · 78· 第9期 高 分 子 通 报

石墨烯基复合材料的制备及吸波性能研究进展

石墨烯基复合材料的制备及吸波性能研究 进展 摘要随着吉赫兹(GHz)频率范围的电磁波在无线通信领域的广泛应用,诸如电磁干扰、信息泄露等问题亟待解决。此外,军事领域中的电磁隐身技术与导弹的微波制导需要,使得电磁波吸收材料受到持续而广泛的关注。因此,迫切需要发展一种厚度薄、频带宽、强吸收的吸波材料。 石墨烯作为世界上最薄硬度最强的纳米材料,优点很多,例如石墨烯制成的片状材料中,厚度最薄,比表面积较大,具有超过金刚石的强度等,这些优点满足吸波材料的需求。石墨烯基复合材料在满足吸波材料基本要求的基础上又提升了材料吸收波的能力。 本文简单地介绍了吸波材料及石墨烯,综述概况了石墨烯基复合材料的研究现状,包括石墨烯复合材料制备方法、微观形貌以及复合材料的吸波性能,提出了石墨烯基复合吸波材料未来的发展方向。 关键词石墨烯基;吸波材料;纳米材料

Progress in Preparation and absorbing properties of graphene-based composites Abstract With the gigahertz (GHz) frequency range of the electromagnetic waves are widely used in wireless communications, such as electromagnetic interference, information leaks and other problems to be solved. In addition, military stealth technology in the field of electromagnetic and microwave guided missiles require such electromagnetic wave absorbing material is subjected to a sustained and widespread concern. Therefore, an urgent need to develop a thin, wide frequency band, a strong absorption of absorbing materials. Graphene as the strongest of the world's thinnest hardness nanomaterials, has many advantages, such as a sheet material made of graphene, the thinnest, large specific surface area, with more than a diamond of strength, these benefits meet absorbers It needs. Graphene-based composites on the basis of absorbing materials to meet the basic requirements but also enhance the ability of the material to absorb waves. This article briefly describes the absorbing material and graphene, graphene reviewed before the status quo based composite materials research, including graphene composite material preparation, morphology and absorbing properties of composites made of graphene-based composite

氧化石墨烯改性玄武岩纤维及其增强环氧树脂复合材料性能_叶国锐

复合材料学报第31卷 第6期 12月 2014年Acta Materiae Comp ositae SinicaVol.31 No.6 December 2 014文章编号:1000-3851(2014)06-1402-07 收稿日期:2013-09-27;录用日期:2013-11-07;网络出版时间:2014-01-2 0 09:42网络出版地址:www.cnki.net/kcms/detail/10.13801/j .cnki.fhclxb.20141202.001.html基金项目:深圳市战略性新兴产业发展专项(ZD SY20120619141411025)通讯作者:曹海琳,教授,研究方向为复合材料性能设计及开发。 E-mail:caohl@h it.edu.cn引用格式:叶国锐,晏义伍,曹海琳.氧化石墨烯改性玄武岩纤维及其增强环氧树脂复合材料性能[J].复合材料学报,20 14,31(6):1402-1408.Ye Guorui,Yan Yiwu,Cao Hailin.Basalt fiber modified with graphene oxide and properties of its reinforced epoxy  compos-ites[J].Acta Materiae Comp ositae Sinica,2014,31(6):1402-1408.氧化石墨烯改性玄武岩纤维及其增强环氧树脂 复合材料性能 叶国锐1,晏义伍1,曹海琳*1,2 (1.深圳航天科技创新研究院深圳市复合材料重点实验室,深圳518057;2.哈尔滨工业大学化工学院,哈尔滨15 0001)摘 要: 为了改善玄武岩纤维/环氧树脂复合材料的界面性能,通过偶联剂对氧化石墨烯进行改性,并将改性后的氧化石墨烯引入到上浆剂中对玄武岩纤维进行表面涂覆改性,同时制备了氧化石墨烯-玄武岩纤维/环氧树脂复合材料。采用FTIR表征了氧化石墨烯的改性效果;运用SEM分析了改性上浆剂处理对玄武岩纤维表面及复合材料断口形貌的影响和作用机制。结果表明:偶联剂成功接枝到氧化石墨烯表面; 玄武岩纤维经氧化石墨烯改性的上浆剂处理后,表面粗糙度及活性官能团含量增加,氧化石墨烯-玄武岩纤维/环氧树脂界面处的机械齿合作用及化学键合作用增强,界面黏结强度得到改善,玄武岩纤维的断裂强力提高了30.8%,氧化石墨烯-玄武岩纤维/环氧树脂复合材料的层间剪切强度提高了10.6%。 关键词: 氧化石墨烯;表面改性;玄武岩纤维;力学性能;复合材料中图分类号: TB332 文献标志码: A Basalt fiber modified with graphene oxide and properties of its reinforced epoxy  compositesYE Guorui 1, YAN Yiwu1,CAO Hailin*1, 2(1.Shenzhen Key Laboratory of Composite Materials,Shenzhen Academic of Aerospace Technology,Shenzhen 518057,China;2.School of Chemical Engineering and Technology,Harbin Institute of Technology,Harbin 150001,China)Abstract: To improve the interfacial properties of basalt fiber/epoxy composites,the graphene oxide modified withcoupling agent was introduced into sizing agent,and the modified sizing agent was used to modify basalt fiber andthe graphene oxide-basalt fiber/epoxy composites were prepared.The modification effect of graphene oxide wascharacterized by FTIR.The effect of modified sizing modification on surface of basalt fiber and composites cross-sectional morphologies and reaction mechanism were investigated using SEM.The results show that coupling agentis successfully grafted onto the surface of graphene oxide.Surface roughness and reactive functional groups are in-creased after basalt fiber being infiltrated in sizing agent modified by graphene oxide,and the mechanical interlockingand chemical bonding of the graphene oxide-basalt fiber/epoxy interface are enhanced,the interface bonding strengthis improved,the fracture strength of basalt fibers is improved by 30.8%and the interlaminar shear strength of gra-phene oxide-basalt fiber/epoxy  composites is improved by 10.6%.Key words: graphene oxide;surface modification;basalt fiber;mechanical properties;composites 玄武岩纤维是以天然玄武岩矿石作为原料,经 高温熔融、拉丝、冷却而得到的一种新型无机纤 维[1] ,具有突出的力学性能、耐高温、高耐腐蚀与化 学稳定性、吸湿性低等优点。以其为增强相的复合材料制品被广泛应用于航空航天、汽车制造、建筑、化工和医学等领域,被认为是21世纪最具发展潜 力的新型材料之一[ 2- 4]。复合材料的性能很大程度上依赖于复合材料的界面性能,而界面性能除了取

石墨烯磺酸功能化实验方案

实验方案备注 (1)4-磺酸基-氟硼酸重氮苯的合成 S1:称取17.3g4-磺胺酸(0.1 mol)固体溶于100ml蒸 馏水中后 S2: 将31.8 mL氟硼酸水溶液 (40 wt %, 0.2mol) 缓缓逐 滴加入磺胺酸水溶液中。将混合溶液冷却至0℃。 S3:维持恒温5℃,将7.0 g亚硝酸钠(100mmol)溶于 蒸馏水中,缓缓加入上步所得溶液中。添加完成,持 续搅拌2h。 S4:抽滤收集白色沉淀,再用乙醚洗涤数次。将白色 沉淀冷冻干燥和储存。 时间:2.5h (2)GP-SO3H(DS=1.21)的合成 S1:称取0.6g石墨烯粉末(GO,约0.05mol),其分散于500mL蒸馏水中. 使用5 wt %的碳酸钠水溶液调节其PH值至9左右。(5.26gNa2CO3,溶于100ml水中) S2:将调整过得溶液进行轻微的超声处理30min。将GO溶液用离心机分离30min以移除未反应的石墨,转速为2000rpm。 S3:称量3.9g硼氢化钠(0.1 mmol)溶于10mL蒸馏水中,将其加入GO的水溶液中,在70℃下反应1h。抽滤,使用蒸馏水洗涤直至其PH值达到7。 S4:将部分还原的GO重新分散到500mL的蒸馏水中,使用轻微声波震荡30min。使用冰浴将其冷却至室温。 S5:称取0.68 g(2.5mmol)制得的4-磺酸基-氟硼酸重氮苯,溶于10mL蒸馏水中,将其缓缓逐滴加入S4得到的溶液中,在室温下搅拌6h。反应溶液使用声波处理10min称量+30min 分散+1h预还原+2h 抽滤+30min分散+12h偶合+2h抽滤+完全还原24h

30min。再称取0.68g(2.5mmol)制得的4-磺酸基-氟硼酸重氮苯重复上述步骤。 S6:反应完成后,使用5 wt % 的碳酸钠水溶液调节PH 值至10以上,伴随添加有沉淀生成。将沉淀过滤出,并用蒸馏水(水)和乙醇洗涤,即可得到GO-SO3H。S7:将GO-SO3H 重新分散在500mL的蒸馏水中,再加入水合肼(5060%, 32 mL),在 120℃下充分还原 24 h。这步中磺酸基的存在使得石墨烯能够很好分散在水中。再使用5 wt % 的碳酸钠水溶液调节PH值至10以上,过滤得到沉淀,用水完全洗涤,冷冻干燥得到GP-SO3H (1.19 g)。 (3)GP-SO3H纳米纸的制备 S1:将所需量的GP-SO3H分散在水中,使用超声处理。然后使用离心机(2000 rpm)去除不溶的杂质。通过带有400 nm 规格孔隙的PC膜抽滤得到数百纳米至30μm左右的,并自然风干。 S2:从过滤器上将独立的纳米纸剥离,在真空炉中在250℃下进行热处理24h。即可得到可用的GP-SO3H纳米纸。 (4)石墨烯化学键合镀层 S1:将基片预先放置在装有GP-SO3H纳米纸碎片的反应炉中。为防止硅橡胶残余的灰污染基片表面,高温硅橡胶被放置在反应炉预先设定的位置。 S2:将反应炉中抽真空,然后在30min内迅速将温度从室温升至500℃。关闭真空抽取,然后在20min内将温度再次迅速升至1000℃。 S3:管内有气体产生,反应炉内的压力会逐渐升高至大气压,将真空阀转接Ar进气口。将炉中尽快清理干

石墨烯在复合材料中的应用

石墨烯在复合材料中的应用 龚欣 (东南大学机械工程学院南京211189) 摘要:介绍了石墨烯与有机高聚物、无机纳米粒子以及其它碳基材料的复合物,同时展望了这些材料在相关领域中的应用前景. 关键词:石墨烯纳米复合材料 2004年至今, 关于石墨烯的研究成果已在SCI检索期刊上发表了超过2000篇论文, 石墨烯开始超越碳纳米管成为了备受瞩目的国际前沿和热点.基于石墨烯的纳米复合材料在能量储存、液晶器件、电子器件、生物材料、传感材料和催化剂载体等领域展现出许多优良性能,具有广阔的应用前景.目前研究的石墨烯复合材料主要有石墨烯/聚合物复合材料和石墨烯/无机物复合材料两类,其制备方法主要有共混法、溶胶-凝胶法、插层法和原位聚合法.本文将对石墨烯的纳米复合材料及其性能等方面进行简要的综述. 一、基于石墨烯的复合物 利用石墨烯优良的特性与其它材料复合可赋予材料优异的性质.如利用石墨烯较强的机械性能,将其添加到高分子中,可以提高高分子材料的机械性能和导电性能;以石墨烯为载体负载纳米粒子,可以提高这些粒子在催化、传感器、超级电容器等领域中的应用. 1.1 石墨烯与高聚物的复合物 功能化后的石墨烯具有很好的溶液稳定性,适用于制备高性能聚合物复合材料.根据实验研究,如用异氰酸酯改性后的氧化石墨烯分散到聚苯乙烯中,还原处理后就可以得到石墨烯-聚苯乙烯高分子复合物.该复合物具有很好的导电性,添加体积分数为1%的石墨烯时,常温下该复合物的导电率可达0.1S/M,可在导电材料方面得到的应用. 添加石墨烯还可显著影响高聚物的其它性能,如玻璃化转变温度(Tg)、力学和电学性能等.例如在聚丙稀腈中添加质量分数约1%的功能化石墨烯,可使其Tg 提高40℃.在聚甲基丙烯酸甲酯(PMMA)中仅添加质量分数0.05%的石墨烯就可以将其Tg提高近30℃.添加石墨烯的PMMA比添加膨胀石墨和碳纳米管的PMMA具有更高的强度、模量以及导电率.在聚乙烯醇(PVA)和PMMA中添加质量分数0.6% 的功能化石墨烯后,其弹性模量和硬度有明显的增加.在聚苯胺中添加适量的氧化石墨烯所获得的聚苯胺-氧化石墨烯复合物的电容量(531F/g)比聚苯胺本身的电容量(约为216F/g)大1倍多,且具有较大的拉伸强度(12.6MPa).这些性能为石墨烯-聚苯胺复合物在超级电容器方面的应用创造了条件. 石墨烯在高聚物中还可形成一定的有序结构.通过还原分散在Nafition膜中

石墨烯及其纳米复合材料发展.

河北工业大学 材料科学与工程学院 石墨烯及其纳米复合材料发展概况 专业金属材料 班级材料116 学号111899 姓名李浩槊 2015年01月05日

摘要 自从2004年,英国曼彻斯特大学物理学家安德烈·海姆和康斯坦丁·诺沃肖洛夫,成功地在实验中从石墨中分离出石墨烯,石墨烯因其优异的力学、电学和热学性能已经成为备受瞩目的研究热点。 石墨烯的碳原子排列与石墨的单原子层雷同,是碳原子以sp2混成轨域呈蜂巢晶格(honeycomb crystal lattice)排列构成的单层二维晶体。石墨烯可想像为由碳原子和其共价键所形成的原子尺寸网。石墨烯是世上最薄也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高达5300 W/(m·K),高于碳纳米管和金刚石,常温下其电子迁移率超过15000 cm2 /(V·s),又比纳米碳管或硅晶体高,而电阻率只约10-6Ω·cm,比铜或银更低,为世上电阻率最小的材料。因为它的电阻率极低,电子跑的速度极快,因此被期待可用来发展出更薄、导电速度更快的新一代电子元件或晶体管。由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板,甚至是太阳能电池。 石墨烯的结构非常稳定,石墨烯内部的碳原子之间的连接很柔韧,当施加外力于石墨烯时,碳原子面会弯曲变形,使得碳原子不必重新排列来适应外力,从而保持结构稳定。这种稳定的晶格结构使石墨烯具有优秀的导热性。 但是,因为石墨烯片层之间存在很强的范德华力,导致其很容易堆积团聚,在一般溶剂中的分散性很差,所以其应用领域受到了限制。本文通过收集、查阅多篇有关石墨烯研究的论文,分析、整理了石墨烯及其纳米复合材料的制备技术发展及其应用的相关知识、理论。 关键词:石墨烯纳米材料制备复合材料

石墨烯改性

综合实践论文 题目:石墨烯改性研究进展 班级:高分子112 姓名:陈阳建 指导老师:祖立武 日期:2014年6月20日

石墨烯改性研究进展 陈阳建 齐齐哈尔大学材料学院,黑龙江齐齐哈尔10221 摘要: 结合当前国内外石墨烯改性的研究进展,分别从表面改性和电子性能改性两个方面介绍了石墨烯的改性方法。其中,石墨烯表面改性包括共价键功能化和非共价键功能化;石墨烯电子性能改性包括掺杂和离子轰击。讨论了各种改性方法的优缺点,并在原有改性方法的基础上,展望了未来石墨烯改性的发展方向。关键词: 石墨烯;改性;综述;共价键功能化;非共价键功能化;掺杂;离子轰击 Research progress in the modification of graphene Chen yangjian Materials Science,Qiqihar University ,Qiqihar in Heilongjiang 10221 Abstract: Based on the research progress of modification of graphene material at hom e and abroad, the methods of modification of graphene are introduced from the surfac e modification and the electronic properties modification, respectively. The methods o f surface modification contain the covalent functionalization and non-covalent functio nalization; the methods of electronic properties modification contain dopin g and ion b ombardment. Finally, the advantages and disadvantages of various modification met h ods are discussed, and the further development of modification of graphene is pointed out on the basis of original modification methods. Key words: graphene; modification; review; covalent functionalization; non-covalent functionalization; doping; ion bombardment

相关主题
文本预览
相关文档 最新文档