中考数学专题复习基础训练及答案
- 格式:doc
- 大小:743.59 KB
- 文档页数:48
基础滚动限时练(25)(时间:20分钟 分值:45分 得分: 分)一、选择题(每小题3分,共15分) 1.下列实数中,有理数是( B ) A. 2 B .2.1 C .πD .392.下列运算正确的是( D ) A.a +b =a +b B .2a ×3a =6a C .x 5·x 6=x 30D .(x 2)5=x 10 3.已知点P 的坐标为(2-a ,3a +6),且P 到两坐标轴的距离相等,则点P 的坐标为( D )A .(3,3)B .(3,-3)C .(6,-6)D .(6,-6)或(3,3)4.如图,在Rt △ABC 中,∠C =90°,AB =5,cos A =45,以点B 为圆心,r 为半径作⊙B ,当r =4时,⊙B 与AC 的位置关系是( C )A .相离B .相切C .相交D .无法确定5.如下图,在平行四边形ABCD 中,∠DAB =60°,AB =5,BC =3,点P 从起点D 出发,沿DC ,CB 向终点B 匀速运动.设点P 所走过的路程为x ,点P 所经过的线段与线段AD ,AP 所围成图形的面积为y ,y 随x 的变化而变化.在下列图象中,能正确反映y 与x 的函数关系的是( A )A. B .C .D .二、填空题(每小题4分,共20分)6.分式x +5x -2的值是0,则x 的值为 -5 .7.若一个数的平方等于6,则这个数等于 ±6 . 8.计算23×(8+2)的结果是 2 . 9.疫情期间居民为了减少外出,更愿意使用APP 在线上买菜,某买菜APP 今年一月份新注册用户为200万,三月份新注册用户为338万,则二、三两个月新注册用户每月平均增长率是 30% .10.如图,在▱ABCD 中,将△ADC 沿AC 折叠后,点D 恰好落在DC 的延长线上的点E 处.若∠B =60°,AB =3,则△ADE 的周长为 18 .三、解答题(共10分)11.某学校计划增加15台监控摄像设备,有甲、乙两种型号的设备可选,其中每台价格,有效监控半径如下表所示.甲型 乙型 价格(元/台) 850 700 有效半径(米/台)150100(1)有哪几种购买方案?(2)在(1)的条件下,若要求监控半径覆盖范围不低于1 600米,为了节约资金,请你设计一种最省钱的购买方案.解:(1)设购买甲型设备x 台,则购买乙型设备(15-x )台. 依题意,得850x +700(15-x )≤11 000,解得x ≤313.∵两种型号的设备均要至少买一台,∴x =1,2,3.∴有三种购买方案:方案1:甲型设备1台,乙型设备14台;方案2:甲型设备2台,乙型设备13台;方案3:甲型设备3台,乙型设备12台.(2)依题意,得150x +100(15-x )≥1 600.解得x≥2.∴x的取值为2或3.当x=2时,购买所需资金为850×2+700×13=10 800(元);当x=3时,购买所需资金为850×3+700×12=10 950(元).∴最省钱的购买方案为购买甲型设备2台,乙型设备13台.。
基础滚动限时练(33)(时间:20分钟 分值:45分 得分: 分) 一、选择题(每小题3分,共15分) 1.4的平方根是( D )A .2B .±2C . 2D .±22.估计a =5×7-1的值应在( C )A .2到3之间B .3到4之间C .4到5之间D .5到6之间3.如图,一次函数y 1=x +b 与y 2=kx +4的图象相交于点P (1,3),则关于x 的不等式x +b >kx +4的解集是( C )A .x >-2B .x >0C .x >1D .x <1第3题图 第4题图 第5题图4.如图,线段BC 的两端点的坐标分别为B (3,8),C (6,3),以点A (1,0)为位似中心,将线段BC 缩小为原来的12后得到线段DE ,则端点D 的坐标为( B ) A .(1,4)B .(2,4)C .⎝⎛⎭⎫32,4D .(2,2)5.如图,在菱形ABCD 中,∠ABC =135°,DH ⊥AB 于H ,交对角线AC 于E ,过E 作EF ⊥AD 于F .若△DEF 的周长为2,则菱形ABCD 的面积为( A )A .2 2B . 2C .22D .2二、填空题(每小题4分,共20分)6.已知∠A 比它的余角大30°,则∠A 的度数是 60° .7.把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为 120° .8.若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧x -y =4k ,x +y =2k 的解也是二元一次方程2x -y =-7的解,则k 的值是 -1 .9.如图,△ABC 内接于⊙O ,若⊙O 的半径为6,∠A =60°,则BC ︵的长为 4π .第9题图 第10题图10.如图,△ABC 中,AB =AC =12,点D 在AC 上,DC =4,将线段DC 沿CB 方向平移7个单位长度得到线段EF ,此时点E ,F 分别落在边AB ,BC 上,则△ADE 的周长是 23 .三、解答题(共10分)11.如图所示,抛物线y =-x 2+8x 的顶点为P ,直线y =3x 与抛物线交于点A .(1)求抛物线顶点P 的坐标和点A 的坐标;(2)求△POA 的面积;(3)M 是位于直线y =3x 上方抛物线上一点,当点M 的坐标为多少时,△MOA 的面积最大?解:(1)∵y =-x 2+8x =-(x -4)2+16,∴顶点P 的坐标为(4,16).联立⎩⎪⎨⎪⎧y =-x 2+8x ,y =3x . 解得⎩⎪⎨⎪⎧x =0,y =0.或⎩⎪⎨⎪⎧x =5,y =15. ∴点A 的坐标为(5,15).(2)如图,连接PO ,P A ,设抛物线的对称轴与OA 交于点Q .∵y =-x 2+8x =-(x -4)2+16,∴对称轴是直线x =4.当x =4时,y =3x =12,∴Q (4,12).∴PQ =16-12=4.∴S △POA =12×4×5=10. (3)如图,过M 作MN ∥y 轴,交OA 于点N , 设M (x ,-x 2+8x ),则N (x ,3x ), ∴MN =-x 2+8x -3x =-x 2+5x .∴S △MOA =12×5(-x 2+5x )=-52x 2+252x =-52⎝⎛⎭⎫x -522+1258. ∵-52<0,∴开口向下. ∴当x =52时,S △MOA 有最大值,最大值为1258, 此时,点M 的坐标为⎝⎛⎭⎫52,554.。
基础滚动限时练(3)(时间:20分钟 分值:50分 得分: 分)一、选择题(每小题3分,共15分)1.2的倒数是( D )A .-2B .2C .-12D .122.已知∠A =70°,则∠A 的补角为( A )A .110°B .70°C .30°D .20°3.已知△ABC ∽△A ′B ′C ′,AB =8,A ′B ′=6,则BC B ′C ′=( B ) A .2B .43C .3D .1694.如图,在平行四边形ABCD 中,AB =3,BC =5,AC 的垂直平分线交AD 于点E ,则△CDE 的周长是( B )A .6B .8C .9D .10第4题图 第5题图 5.如图,在同一平面直角坐标系中,直线y =k 1x (k 1≠0)与双曲线y =k 2x(k 2≠0)相交于A ,B 两点,已知点A 的坐标为(1,2),则点B 的坐标为( A )A .(-1,-2)B .(-2,-1)C .(-1,-1)D .(-2,-2)二、填空题(每小题4分,共20分)6.若a >b ,则-4a +5 < -4b +5.(填”>””=”或”<”)7.若4a +b =6,2a -b =3,则a +b 的值为 32. 8.若代数式2x -35和23x 的值相同,则x 的值为 -94. 9.请写出一个经过点(0,0)和点(-2,0)的二次函数的解析式: y =x 2+2x .(写出一个即可)10.如图,在菱形ABOC 中,AB =2,∠A =60°,菱形的一个顶点C 在反比例函数y =k x (x <0)的图象上,则反比例函数的解析式为 y =-3x(x <0) . 三、解答题(共15分)11.(5分)解方程:(x -4)(x -2)-1=0.解:原式可化为x 2-6x +7=0,移项,得x 2-6x =-7.配方,得x 2-6x +32=-7+32.由此可得(x -3)2=2.∴x 1=2+3,x 2=-2+3.12.(10分)如图,在扇形OAB 中,∠AOB =90°,半径OA =2,将扇形OAB 沿过点B的直线折叠,使点O 恰好落在AB ︵上的点D 处,折痕为BC ,求图中阴影部分的面积.解:如图,连接OD , 根据折叠的性质,得CD =CO ,BD =BO ,∠DBC =∠OBC ,∴OB =OD =BD ,即△OBD 是等边三角形.∴∠DBO =60°.∴∠CBO =12∠DBO =30°. ∵∠AOB =90°,∴OC =OB ·tan ∠CBO =2×33=233. ∴S △BDC =S △OBC =12×OB ×OC =12×2×233=233,S 扇形AOB =90π×22360=π. ∴阴影部分的面积为S 扇形AOB -S △BDC -S △OBC =π-233-233=π-433.。
中考数学复习专题训练精选试题及答案一、选择题1. 以下哪一个数是最小的无理数?A. √2B. πC. 3.14D. √9答案:A2. 若一个等差数列的首项是2,公差是3,则第8项是多少?A. 17B. 18C. 19D. 20答案:A3. 一个二次函数的图像开口向上,顶点坐标为(3,-4),则该二次函数的一般式为:A. y = x² + 6x - 13B. y = x² - 6x + 13C. y = -x² + 6x - 13D. y = -x² - 6x + 13答案:B4. 在三角形ABC中,a = 5,b = 7,C = 60°,则边c 的长度等于:A. 6B. 8C. 10D. 12答案:C二、填空题1. 已知a = 3,b = 4,则a² + b² = _______。
答案:252. 已知一个等差数列的前5项和为35,首项为7,求公差d = _______。
答案:23. 在梯形ABCD中,AB // CD,AB = 6,CD = 8,AD = BC = 5,求梯形的高h = _______。
答案:34. 若函数f(x) = x² - 2x + 1的最小值为m,求m =_______。
答案:0三、解答题1. 已知一元二次方程x² - 4x - 12 = 0,求解该方程。
解:首先,将方程因式分解为(x - 6)(x + 2) = 0。
然后,解得x = 6或x = -2。
答案:x = 6或x = -22. 已知一个长方体的长为a,宽为b,高为c,且a、b、c成等差数列。
若长方体的体积为V,求V的表达式。
解:由题意可知,a + c = 2b,所以c = 2b - a。
长方体的体积V = abc = ab(2b - a)。
答案:V = ab(2b - a)3. 已知三角形ABC,AB = AC,∠BAC = 40°,BC = 6,求三角形ABC的周长。
中考数学复习专题训练精选试题及答案目录实数专题训练 (3)实数专题训练答案 (6)代数式、整式及因式分解专题训练 (7)代数式、整式及因式分解专题训练答案 (10)分式和二次根式专题训练 (11)分式和二次根式专题训练答案 (14)一次方程及方程组专题训练 (15)一次方程及方程组专题训练答案 (19)一元二次方程及分式方程专题训练 (20)一元二次方程及分式方程专题训练答案 (24)一元一次不等式及不等式组专题训练 (25)一元一次不等式及不等式组专题训练答案 (28)一次函数及反比例函数专题训练 (29)一次函数及反比例函数专题训练答案 (33)二次函数及其应用专题训练 (34)二次函数及其应用专题训练答案 (38)立体图形的认识及角、相交线与平行线专题训练 (39)立体图形的认识及角、相交线与平行线专题训练答案 (43)三角形专题训练 (44)三角形专题训练答案 (48)多边形及四边形专题训练 (49)多边形及四边形专题训练答案 (53)圆及尺规作图专题训练 (54)圆及尺规作图专题训练答案 (58)轴对称专题训练 (59)轴对称专题训练答案 (63)平移与旋转专题训练 (64)平移与旋转专题训练答案 (69)相似图形专题训练 (69)相似图形专题训练答案 (74)图形与坐标专题训练 (75)图形与坐标专题训练答案 (80)图形与证明专题训练 (81)图形与证明专题训练答案 (84)概率专题训练 (85)概率专题训练答案 (89)统计专题训练 (90)统计专题训练答案 (94)实数专题训练一、填空题:(每题 3 分,共 36 分)1、-2 的倒数是____。
2、4 的平方根是____。
3、-27 的立方根是____。
4、3-2 的绝对值是____。
5、2004年我国外汇储备3275.34亿美元,用科学记数法表示为____亿美元。
6、比较大小:-12____-13。
7、近似数0.020精确到____位,它有____个有效数字。
基础滚动限时练(30)(时间:20分钟 分值:50分 得分: 分)一、选择题(每小题3分,共15分) 1.下列选项错误的是( C ) A .若a >b ,b >c ,则a >c B .若a >b ,则a -3>b -3 C .若a >b ,则-2a >-2b D .若a >b ,则-2a +3<-2b +3 2.下列计算正确的是( D ) A .x 2·x 3=x 6 B .(x 3)2=x 9 C .(x +1)2=x 2+1D .2x 2÷x =2x3.下列关于10的说法中,错误的是( C ) A .面积为10的正方形的边长是10 B .3<10<4 C .10的平方根是10 D.10是10的算术平方根4.某药店销售五种品牌的N95口罩,店长统计了近一个月内这五种N95口罩的销售量,如下表:品牌 A B C D E 销售量/盒14271186A .众数B .平均数C .中位数D .方差5.如图,在四边形ABCD 中,AB ∥CD ,AB =CD ,∠B =60°,AD =83,分别以B 和C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点P 和Q ,直线PQ 与BA 延长线交于点E ,连接CE ,则△BCE 的内切圆半径是( A )A .4B .4 3C .2D .23二、填空题(每小题4分,共20分) 6.计算18÷2的结果是 3 .7.分解因式:8a -2a 3= 2a (2+a )(2-a ) .8.对于实数a ,b ,定义运算”⊗”如下:a ⊗b =a 2-ab ,例如,5⊗3=52-5×3=10.若(x +1)⊗(x -2)=6,则x 的值为 1 .9.如图,一架竹梯AB 斜靠在墙角MON 处,竹梯顶端距离地面AO =12 m ,梯子底端离墙角的距离BO =5 m .竹梯AB 在滑动的过程中梯子上总有一个定点到墙角O 的距离始终是不变的定值,这个定值是 6.5 m .第9题图 第10题图10.如图,在菱形ABCD 中,∠B =45°,AE 为BC 边上的高,将△ABE 沿AE 所在直线翻折,得到△AB ′E ,若B ′C =2-1,则菱形的边长为 1 .三、解答题(共15分)11.如图,点M 在函数y =3x (x >0)的图象上,过点M 分别作x 轴和y 轴的平行线,交函数y =1x(x >0)的图象于点B ,C ,连接BC .(1)若点M 的坐标为(1,3),求B ,C 两点的坐标;(2)若点M 是y =3x(x >0)的图象上任意一点,求△BMC 的面积.解:(1)∵点M 的坐标为(1,3),MC ⊥x 轴,MB ⊥y 轴,且B ,C 在函数y =1x 的图象上,∴当x =1时,y =1. ∴点C 的坐标为(1,1). ∴当y =3时,x =13.∴点B 的坐标为⎝⎛⎭⎫13,3. (2)设点M 的坐标为(a ,b ).∵点M 在函数y =3x的图象上,∴ab =3.∵点B ,C 在函数y =1x (x >0)的图象上,∴点C 的坐标为⎝⎛⎭⎫a ,1a ,点B 的坐标为⎝⎛⎭⎫1b ,b . ∴BM =a -1b =ab -1b ,MC =b -1a =ab -1a.∴S △MBC =12·BM ·MC =12·ab -1b ·ab -1a =12·(ab -1)2ab =12·(3-1)23=23.。
基础滚动限时练(6)(时间:20分钟 分值:50分 得分: 分)一、选择题(每小题3分,共15分) 1.计算:22 020-(-2)2 019的结果是( B ) A .24 039 B .3×22 019 C .-22 019D .22.已知关于x ,y 的方程组⎩⎪⎨⎪⎧3x +y =m ,2x -my =n 的解是⎩⎪⎨⎪⎧x =3,y =-2,则||m -n 的值是( C )A .8B .10C .13D .153.甲、乙、丙、丁四名选手参加体育训练,近期10次跳绳测试的平均成绩都是每分钟174个,其方差如下表:选手 甲 乙 丙 丁 方差0.0230.0180.0200.021则这10A .甲 B .乙 C .丙D .丁4.如图,将△ABC 绕点C 顺时针旋转40°得到△A ′CB ′,若AC ⊥A ′B ′,则∠BAC =( C )A .30°B .40°C .50°D .60°5.某厂家2020年1~5月份的口罩产量统计如下图所示.设从2月份到4月份,该厂家口罩产量的平均月增长率为x ,根据题意可得方程( B )A .180(1-x )2=461B .180(1+x )2=461C .368(1-x )2=442D .368(1+x )2=442二、填空题(每小题4分,共20分) 6.一个数的算数平方根是2,则这个数是 4 .7.已知点A(a,b)在第四象限,那么点B(b,a)在第二象限.8.如图,菱形ABCD的边长为6,∠ABC=60°,则对角线AC的长是 6 .第8题图第9题图第10题图9.如图,在平面直角坐标系中,△AOB≌△COD,则点D的坐标是(-2,0).10.如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=8 cm,DC=2 cm,则OC = 5 cm.三、解答题(共15分)11.(5分)解不等式组:⎩⎪⎨⎪⎧2x+1≥-1,x+1>4(x-2),并将解集在数轴上表示出来.解:⎩⎪⎨⎪⎧2x+1≥-1,①x+1>4(x-2),②解不等式①,得x≥-1.解不等式②,得x<3.∴不等式组的解集为-1≤x<3.不等式组的解集在数轴上表示如图所示.12.(10分)已知二次函数的解析式是y=x2-2x-3.(1)与x轴的交点坐标是(-1,0),(3,0) ,顶点坐标是(1,-4) ;(2)在坐标系中利用描点法画出此抛物线;(3)结合图象回答:当-2<x<2时,函数值y的取值范围是-4≤y<5 .x …-10123…y …0-3-4-30…。
基础滚动限时练(7)(时间:20分钟 分值:50分 得分: 分)一、选择题(每小题3分,共15分)1.-9的绝对值是( A )A .9B .-9C .19D .-192.在平面直角坐标系中,已知P (a ,-2),Q (3,b ),且PQ ∥x 轴,则( B )A .a =3,b =2B .a ≠3,b =-2C .a =-3,b ≠-2D .a =3,b =-2 3.函数y =x -1x 的自变量x 的取值范围是( B ) A .x >1B .x ≥1C .x ≤1且x ≠0D .x ≤14.已知不等式组⎩⎪⎨⎪⎧x ≥-1,x <3的解集如下图所示,则不等式组的整数解个数为( C )A .2B .3C .4D .55.如图,剪两张对边平行的纸片随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是( B )A .∠DAB +∠ABC =180°B .AB =BCC .AB =CD ,AD =BCD .∠ABC =∠ADC ,∠BAD =∠BCD二、填空题(每小题4分,共20分)6.若7-2×7-1×70=7p ,则p 的值为 -3 .7.分别写有数字15,π,-1,0,3的五张大小和质地均相同的卡片,从中任意抽取一张,抽到无理数的概率是 25 .8.如图,D ,E 分别是△ABC 边AB ,AC 上的点,∠AED =∠B ,若AD =1,BD =AC=3,则AE 的长是 43.第8题图第9题图 9.如图,将长为8 cm 的铁丝首尾相接围成半径为2 cm 的扇形,则S 扇形= 4 cm 2.10.图中的两个滑块A ,B 由一个连杆连接,分别可以在垂直和水平的滑道上滑动.开始时,滑块A 距O 点20厘米,滑块B 距O 点15厘米.问:当滑块A 向下滑到O 点时,滑块B 滑动了 10 厘米.三、解答题(共15分)11.(5分)先化简,再求值:x 2+2x +1x 2-1-x x -1,其中x =3+1. 解:原式=(x +1)2(x +1)(x -1)-x x -1=x +1x -1-x x -1=1x -1, 当x =3+1时,原式=13+1-1=33. 12.(10分)如图,在平面直角坐标系中,已知△ABC 的三个顶点坐标分别是A (2,-1),B (1,-2),C (3,-3).(1)将△ABC 向上平移4个单位长度得到△A 1B 1C 1,请画出△A 1B 1C 1;(2)请画出与△ABC 关于y 轴对称的△A 2B 2C 2;(3)请写出A1,A2的坐标.解:(1)如图所示:△A1B1C1,即为所求.(2)如图所示:△A2B2C2,即为所求.(3)A1(2,3),A2(-2,-1).。
基础知识反馈卡·1.1时间:15分钟 满分:50分一、选择题(每小题4分,共24分) 1.-4的倒数是( )A .4B .-4 C.14 D .-142.下面四个数中,负数是( ) A .-5 B .0 C .0.23 D .6 3.计算-(-5)的结果是( )A .5B .-5 C.15 D .-154.数轴上的点A 到原点的距离是3,则点A 表示的数为( ) A .3或-3 B .3 C .-3 D .6或-65.据科学家估计,地球年龄大约是4 600 000 000年,这个数用科学记数法表示为( ) A .4.6×108 B .46×108 C .4.6×109 D .0.46×1010 6.如果规定收入为正,支出为负.收入500元记作500元,那么支出237元应记作( ) A .-500元 B .-237元 C .237元 D .500元 二、填空题(每小题4分,共12分) 7.计算(-3)2=________.8.13-=______;-14的相反数是______.9.实数a ,b 在数轴上对应点的位置如图J1-1-1,则a ______b (填“<”、“>”或“=”).图J1-1-1答题卡题号 1 2 3 4 5 6 答案7.__________ 8.__________ __________ 9.__________三、解答题(共14分)10.计算:︱-2︱+(2+1)0--113⎛⎫⎪⎝⎭.时间:15分钟满分:50分一、选择题(每小题4分,共12分)1.化简5(2x-3)+4(3-2x)结果为()A.2x-3 B.2x+9 C.8x-3 D.18x-32.衬衫每件的标价为150元,如果每件以8折(即按标价的80%)出售,那么这种衬衫每件的实际售价应为()A.30元B.60元C.120元D.150元3.下列运算不正确的是()A.-(a-b)=-a+b B.a2·a3=a6C.a2-2ab+b2=(a-b)2D.3a-2a=a二、填空题(每小题4分,共24分)4.当a=2时,代数式3a-1的值是________.5.“a的5倍与3的和”用代数式表示是____________.6.当x=1时,代数式x+2的值是__________.7.某班共有x个学生,其中女生人数占45%,用代数式表示该班的男生人数是________.8.图J1-2-1是一个简单的运算程序,若输入x的值为-2,则输出的数值为____________.输入x―→x2―→+2―→输出图J1-2-19.搭建如图J1-2-2(1)的单顶帐篷需要17根钢管,这样的帐篷按图J1-2-2(2)、(3)的方式串起来搭建,则串7顶这样的帐篷需要________根钢管.图J1-2-2答题卡题号12 3答案4.____________7.____________8.____________9.____________三、解答题(共14分)10.先化简下面代数式,再求值:(x+2)(x-2)+x(3-x),其中x=2+1.时间:15分钟 满分:50分一、选择题(每小题4分,共20分) 1.计算2x +x 的结果是( ) A .3x 2 B .2x C .3x D .2x 2 2.x 3表示( )A .3xB .x +x +xC .x ·x ·xD .x +3 3.化简-2a +(2a -1)的结果是( ) A .-4a -1 B .4a -1 C .1 D .-1 4.下列不是同类项的是( )A .0与12 B .5x 与2yC .-14a 2b 与3a 2bD .-2x 2y 2与12x 2y 25.下列运算正确的是( )A .(-2)0=1B .(-2)-1=2 C.4=±2 D .24×22=28 二、填空题(每小题4分,共12分)6.单项式-x 3y 3的次数是________,系数是________.7.计算:3-2=__________.8.计算(ab )2的结果是________. 答题卡题号 1 2 3 4 5 答案6.__________ 8.__________三、解答题(共18分)9.先化简,再求值:3(x -1)-(x -5),其中x =2.时间:15分钟满分:50分一、选择题(每小题4分,共20分)1.把多项式x2-4x+4分解因式,所得结果是()A.x(x-4)+4 B.(x-2)(x+2)C.(x-2)2D.(x+2)22.下列因式分解错误的是()A.x2-y2=(x+y)(x-y) B.x2+6x+9=(x+3)2C.x2+xy=x(x+y) D.x2+y2=(x+y)23.利用因式分解进行简便计算:7×9+4×9-9,正确的是()A.9×(7+4)=9×11=99 B.9×(7+4-1)=9×10=90C.9×(7+4+1)=9×12=108 D.9×(7+4-9)=9×2=184.下列各等式中,是分解因式的是()A.a(x+y)=ax+ayB.x2-4x+4=x(x-4)C.10x2-5x=5x(2x-1)D.x2-16x+3x=(x+4)(x-4)+3x5.如果x2+2(m-1)x+9是完全平方式,那么m的结果正确的是()A.4 B.4或2C.-2 D.4或-2二、填空题(每小题4分,共16分)6.因式分解:a2+2a+1=______________.7.因式分解:m2-mn=____________.8.因式分解:x3-x=____________.9.若把代数式x2-2x-3化为(x-m)2+k的形式,其中m,k为常数,则m+k=____________.答题卡题号1234 5答案6.__________7.__________8.__________9.__________三、解答题(共14分)10.在三个整式x2+2xy,y2+2xy,x2中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解.时间:15分钟 满分:50分一、选择题(每小题4分,共16分)1.若分式32x -1有意义,则x 的取值范围是( )A .x ≠12B .x ≠-12C .x >12D .x >-122.计算1x -1-xx -1的结果为( )A .1B .2C .-1D .-23.化简a -1a ÷a -1a2的结果是( )A.1a B .a C .a -1 D.1a -14.化简1x -1x -1可得( )A.1x 2-x B .-1x 2-x C.2x +1x 2-x D.2x -1x 2-x 二、填空题(每小题4分,共24分)5.化简:a a -b -ba -b =__________.6.化简x (x -1)2-1(x -1)2的结果是____________.7.若分式x +12x -2的值为0,那么x 的值为__________.8.若分式-12a -3的值为正,则a 的取值范围是__________.9.化简x (x -1)2-1x -1的结果是__________.10.化简2x 2-1÷1x -1的结果是__________.答题卡题号 1 2 3 4 答案5.____________6.____________7.____________8.____________9.____________ 10.____________ 三、解答题(共10分)11.先化简,再求值:21211a a a -⎛⎫- ⎪+-⎝⎭÷1a +1,其中a =3+1.时间:15分钟 满分:50分一、选择题(每小题4分,共20分) 1.3最接近的整数是( ) A .0 B .2 C .4 D .5 2.|-9|的平方根是( ) A .81 B .±3 C .3 D .-3 3.下列各式中,正确的是( ) A.(-3)2=-3 B .-32=-3 C.(±3)2=±3 D.32=±34.对任意实数a ,下列等式一定成立的是( ) A.a 2=a B.a 2=-a C.a 2=±a D.a 2=|a |5.下列二次根式中,最简二次根式( )A.15B.0.5C. 5D.50二、填空题(每小题4分,共12分) 6.4的算术平方根是__________. 7.实数27的立方根是________. 8.计算:12-3=________. 答题卡题号 1 2 3 4 5 答案6.__________ 8.__________三、解答题(每小题9分,共18分)9.计算:|2 2-3|-212-⎛⎫- ⎪⎝⎭+18.10.计算:212-⎛⎫ ⎪⎝⎭-2cos45°+(3.14-π)0+12 8+(-2)3.时间:15分钟 满分:50分一、选择题(每小题4分,共20分)1.方程5x -2=12的解是( )A .x =-13B .x =13C .x =12D .x =22.A 种饮料比B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,那么下面所列方程正确的是( )A .2(x -1)+3x =13B .2(x +1)+3x =13C .2x +3(x +1)=13D .2x +3(x -1)=133.二元一次方程组20x y x y +=⎧⎨-=⎩,的解是( )A.02x y =⎧⎨=⎩,B.11x y =⎧⎨=⎩,C.20x y =⎧⎨=⎩,D.11x y =-⎧⎨=-⎩,4.有下列各组数:①22x y =⎧⎨=⎩,;②21x y =⎧⎨=⎩,;③22x y =⎧⎨=-⎩,;④16x y =⎧⎨=⎩,,其中是方程4x +y =10的解的有( )A .1个B .2个C .3个D .4个5.李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用15分钟.他骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2 900米.如果他骑车和步行的时间分别为x ,y 分钟,列出的方程组是( )A. 14250802900x y x y ⎧+=⎪⎨⎪+=⎩,B.158********x y x y +=⎧⎨+=⎩,C. 14802502900x y x y ⎧+=⎪⎨⎪+=⎩,D.152********x y x y +=⎧⎨+=⎩, 二、填空题(每小题4分,共16分) 6.方程3x -6=0的解为__________.7.已知3是关于x 的方程3x -2a =5的解,则a 的值为________.8.在x +3y =3中,若用x 表示y ,则y =______;若用y 表示x ,则x =______.9.对二元一次方程2(5-x )-3(y -2)=10,当x =0时,y =__________;当y =0时,x =________.答题卡题号 1 2 3 4 5 答案6.__________ 8.__________ __________ 9.__________ __________ 三、解答题(共14分)10.解方程组: 281.x y x y +=⎧⎨-=⎩,基础知识反馈卡·2.1.2时间:15分钟 满分:50分一、选择题(每小题4分,共20分)1.分式方程2x -42+x=0的根是( )A .x =-2B .x =0C .x =2D .无实根2.分式方程12x 2-9-2x -3=1x +3的解为( )A .3B .-3C .无解D .3或-33.分式方程xx -3=x +1x -1的解为( )A .x =1B .x =-1C .x =3D .x =-34.有两块面积相同的试验田,分别收获蔬菜900 kg 和1 500 kg.已知第一块试验田每亩收获蔬菜比第二块少300 kg ,求第一块试验田每亩收获蔬菜多少千克?设第一块试验田每亩收获蔬菜x kg ,根据题意,可得方程( )A.900x +300=1 500xB.900x =1 500x -300C.900x =1 500x +300D.900x -300=1 500x 5.解分式方程1x -1=3(x -1)(x +2)的结果为( )A .1B .-1C .-2D .无解 二、填空题(每小题4分,共16分)6.方程xx +2=3的解是________.7.方程1x -1=4x 2-1的解是________.8.请你给x 选择一个合适的值,使方程2x -1=1x -2成立,你选择的x =________________________________________________________________________.9.甲计划用若干天完成某项工作,在甲独立工作两天后,乙加入此项工作,且甲、乙两人工效相同,结果提前两天完成任务.设甲计划完成此项工作的天数是x ,则x 的值是________.答题卡题号 1 2 3 4 5 答案6.__________ 8.__________ 9.__________ 三、解答题(共14分)10.解方程:3x -2=2x +1.时间:15分钟 满分:50分一、选择题(每小题4分,共20分)1.已知x =1是一元二次方程x 2+mx +2=0的一个解,则m 的值是( ) A .-3 B .3C .0D .0或32.已知一元二次方程x 2-4x +3=0的两根为x 1,x 2, 则x 1·x 2的值为( ) A .4 B .3 C .-4 D .-3 3.方程x 2+x -1=0的一个根是( )A .1- 5 B.1-52C .-1+ 5 D.-1+524.用配方法解一元二次方程x 2+4x =5时,此方程可变形为( ) A .(x +2)2=1 B .(x -2)2=1 C .(x +2)2=9 D .(x -2)2=95.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x .根据题意,下面列出的方程正确的是( )A .100(1+x )=121B .100(1-x )=121C .100(1+x )2=121D .100(1-x )2=121 二、填空题(每小题4分,共16分)6.一元二次方程3x 2-12=0的解为__________. 7.方程x 2-5x =0的解是__________.8.若x 1,x 2是一元二次方程x 2-3x +2=0的两根,则x 1+x 2+ x 1·x 2的值是________. 9.关于x 的一元二次方程kx 2-x +1=0有两个不相等的实数根,则k 的取值范围是_____________.答题卡题号 1 2 3 4 5 答案6.__________ 8.__________ 9.__________ 三、解答题(共14分)10.滨州市体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛?时间:15分钟 满分:50分一、选择题(每小题4分,共20分)1.若a <b ,则下列各式中一定成立的( )A .a -1<b -1 B.a 3>b3C .-a <-bD .ac <bc2.不等式x -1>0的解集是( )A .x >1B .x <1C .x >-1D .x <-13.不等式10,324x x x ->⎧⎨>-⎩的解集是( )A .x <1B .x >-4C .-4<x <1D .x >14.如图J2-2-1,数轴上表示的是下列哪个不等式组的解集( )图J2-2-1A.5,3x x ≥-⎧⎨>-⎩B.5,3x x >-⎧⎨≥-⎩C.5,3x x <⎧⎨<-⎩D.5,3x x <⎧⎨>-⎩5.小刚准备用自己节省的零花钱购买一台MP4来学习英语,他已存有50元,并计划从本月起每月节省30元,直到他至少有280元.设x 个月后小刚至少有280元,则可列计算月数的不等式为( )A .30x +50>280B .30x -50≥280C .30x -50≤280D .30x +50≥280 二、填空题(每小题4分,共16分)6.若不等式ax |a -1|>2是一元一次不等式,则a =______________.7.把不等式组的解集表示在数轴上,如图J2-2-2,那么这个不等式组的解集是______________.图J2-2-28.已知不等式组321,0x x a +≥⎧⎨-<⎩无解,则实数a 的取值范围是______________.9.不等式组10,240x x -≤⎧⎨+>⎩的整数解是__________.答题卡题号 1 2 3 4 5 答案6.__________7.__________ 8.__________ 9.__________ 三、解答题(共14分)10.解不等式组34,26x x +>⎧⎨<⎩并把解集在如图J2-2-3的数轴上表示出来.图J2-2-3基础知识反馈卡·3.1时间:15分钟 满分:50分一、选择题(每小题4分,共20分)1.点M (-2,1)关于y 轴对称的点的坐标是( )A .(-2,-1)B .(2,1)C .(2,-1)D .(1,-2) 2.在平面直角坐标系中,点M (2,-3)在( )A .第一象限B .第二象限C .第三象限D .第四象限 3.如果点P (a,2)在第二象限,那么点Q (-3,a )在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 4.点M (-3,2)到y 轴的距离是( ) A .3 B .2 C .3或2 D .-3 5.将点A (2,1)向左..平移2个单位长度得到点A ′,则点A ′的坐标是( ) A .(2,3) B .(2,-1) C .(4,1) D .(0,1) 二、填空题(每小题4分,共16分)6.已知函数y =2x,当x =2时,y 的值是________.7.如果点P (2,y )在第四象限,那么y 的取值范围是________.8.小明用50元钱去购买单价为5元的某种商品,他剩余的钱y (单位:元)与购买这种商品的件数x (单位:件)之间的关系式为__________________.9.如图J3-1-1,将正六边形放在直角坐标系中,中心与坐标原点重合,若A 点的坐标为(-1,0),则点E 的坐标为________.图J3-1-1答题卡题号 1 2 3 4 5 答案6.________________ 8.________________ 9.________________ 三、解答题(共14分)10.在图J3-1-2的平面直角坐标系中,描出点A (0,3),B (1,-3),C (3,-5),D (-3,-5),E (3,2),并回答下列问题:(1)点A 到原点O 的距离是多少?(2)将点C 向x 轴的负方向平移6个单位,它与哪个点重合? (3)点B 分别到x 、y 轴的距离是多少?(4)连接CE ,则直线CE 与y 轴是什么关系?图J3-1-2基础知识反馈卡·3.2时间:15分钟满分:50分一、选择题(每小题4分,共20分)1.直线y=x-1的图象经过象限是()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限2.一次函数y=6x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限3.已知一次函数y=3x+b的图象经过第一、二、三象限,则b的值可以是() A.-2 B.-1C.0 D.24.一个矩形被直线分成面积为x,y的两部分,则y与x之间的函数关系只可能是() 5.若正比例函数的图象经过点(-1,2),则这个图象必经过点()A.(1,2) B.(-1,-2)C.(2,1) D.(1,-2)二、填空题(每小题4分,共16分)6.写出一个具体的y随x的增大而减小的一次函数解析式________.7.已知一次函数y=2x+1,则y随x的增大而________(填“增大”或“减小”).8.(1)若一次函数y=ax+b的图象经过第一、二、三象限,则a____0,b____0;(2)若一次函数y=ax+b的图象经过二、三、四象限,则a____0,b____0.9.将直线y=2x-4向上平移5个单位后,所得直线的表达式是____________.答题卡6.________ 8.(1)______ ______ (2)______ ______ 9.____________ 三、解答题(共14分)10.已知直线l 1∶y 1=-4x +5和直线l 2∶y 2=12x -4.(1)求两条直线l 1和l 2的交点坐标,并判断交点落在哪一个象限内;(2)在同一个坐标系内画出两条直线的大致位置,然后利用图象求出不等式-4x +5>12x-4的解.基础知识反馈卡·3.3时间:15分钟 满分:50分一、选择题(每小题4分,共20分)1.若双曲线y =2k -1x的图象经过第二、四象限,则k 的取值范围是( )A .k >12B .k <12C .k =12D .不存在2.下列各点中,在函数y =-6x图象上的是( )A .(-2,-4)B .(2,3)C .(-1,6) D.1,32⎛⎫- ⎪⎝⎭3.对于反比例函数y =1x,下列说法正确的是( )A .图象经过点(1,-1)B .图象位于第二、四象限C .图象是中心对称图形D .当x <0时,y 随x 的增大而增大4.已知如图J3-3-1,A 是反比例函数y =kx的图象上的一点,AB ⊥x 轴于点B ,且△ABO 的面积是2,则k 的值是( )图J3-3-1A .2B .-2C .4D .-45.函数y =2x 与函数y =-1x在同一坐标系中的大致图象是( )二、填空题(每小题4分,共16分)6.如图J3-3-2,已知点C 为反比例函数y =-6x上的一点,过点C 向坐标轴引垂线,垂足分别为A ,B ,那么四边形AOBC 的面积为____________.图J3-3-2 图J3-3-3 图J3-3-47.如图J3-3-3,点P 是反比例函数y =-4x上一点,PD ⊥x 轴,垂足为D ,则S △POD=__________.8.(2012年江苏盐城)若反比例函数的图象经过点P (-1,4),则它的函数关系是________. 9.如图J3-3-4所示的曲线是一个反比例函数图象的一支,点A 在此曲线上,则该反比例函数的解析式为_______________.答题卡题号 1 2 3 4 5 答案6.__________7.__________ 8.__________ 9.__________ 三、解答题(共14分)10.如图J3-3-5,已知直线y =-2x 经过点P (-2,a ),点P 关于y 轴的对称点P ′在反比例函数y =kx(k ≠0)的图象上.图J3-3-5 (1)求a 的值;(2)直接写出点P ′的坐标; (3)求反比例函数的解析式.基础知识反馈卡·3.4时间:15分钟 满分:50分一、选择题(每小题4分,共20分)1.抛物线y =-(x +2)2+3的顶点坐标是( ) A .(2,-3) B .(-2,3) C .(2,3) D .(-2,-3)2.抛物线y =(x +2)2-3可以由抛物线y =x 2平移得到,则下列平移过程正确的是( ) A .先向左平移2个单位,再向上平移3个单位 B .先向左平移2个单位,再向下平移3个单位 C .先向右平移2个单位,再向下平移3个单位 D .先向右平移2个单位,再向上平移3个单位 3.二次函数y =x 2-2x -3的图象如图J3-4-1.当y >0时,自变量x 的取值范围是( ) A .-1<x <3 B .x <-1 C .x >3 D .x <-1或x >3图J3-4-1图J3-4-24.如图J3-4-2,二次函数y =ax 2+bx +c 的图象与y 轴正半轴相交,其顶点坐标为1,12⎛⎫ ⎪⎝⎭,下列结论:①ac <0;②a +b =0;③4ac -b 2=4a ;④a +b +c <0.其中正确的个数是( )A .1B .2C .3D .45.下列二次函数中,图象以直线x =2为对称轴,且经过点(0,1)的是( ) A .y =(x -2)2+1 B .y =(x +2)2+1 C .y =(x -2)2-3 D .y =(x +2)2-3 二、填空题(每小题4分,共16分)6.将二次函数y =x 2-4x +5化为y =(x -h )2+k 的形式,则y =__________.7.将抛物线y =x 2+1向下平移2个单位,则此时抛物线的解析式是____________. 8.若二次函数y =-x 2+2x +k 的部分图象如图J3-4-3,则关于x 的一元二次方程-x 2+2x +k =0的一个解x 1=3,另一个解x 2=________.图J3-4-39.y=2x2-bx+3的对称轴是直线x=1,则b的值为________.答题卡6.__________8.__________9.__________三、解答题(共14分)10.在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点为B(2,1),且过点A(0,2),求该抛物线的表达式.基础知识反馈卡·4.1时间:15分钟满分:50分一、选择题(每小题4分,共20分)1.下面四个图形中,∠1与∠2是对顶角的图形为()2.如图J4-1-1,梯子的各条横档互相平行,若∠1=80°,则∠2的度数是()A.80°B.100°C.120°D.150°图J4-1-1图J4-1-23.一只因损坏而倾斜的椅子,从背后看到的形状如图J4-1-2,其中两组对边的平行关系没有发生变化,若∠1=75°,则∠2的大小是()A.75°B.115°C.65°D.105°4.如图J4-1-3,AB∥CD,∠C=65°,CE⊥BE,垂足为点E,则∠B的度数为() A.15°B.25°C.35°D.75°图J4-1-3图J4-1-45.将一直角三角板与两边平行的纸条如图J4-1-4所示放置,下列结论:①∠1=∠2;②∠3=∠4;③∠2+∠4=90°;④∠4+∠5=180°.其中正确的个数是()A.1个B.2个C.3个D.4个二、填空题(每小题4分,共16分)6.线段AB=4 cm,在线段AB上截取BC=1 cm,则AC=__________cm.7.有如下命题:①三角形三个内角的和等于180°;②两直线平行,同位角相等;③矩形的对角线相等;④相等的角是对顶角.其中属于假命题的有__________.8.如图J4-1-5,请填写一个适当的条件:____________,使得DE∥AB.图J4-1-5图J4-1-69.如图J4-1-6,AB∥CD,直线EF与AB,CD分别相交于E,F两点,EP平分∠AEF,过点F作FP⊥EP,垂足为P,若∠PEF=30°,则∠PFC=________度.答题卡题号1234 5答案6.____________7.____________8.____________9.____________三、解答题(共14分)10.如图J4-1-7,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由.图J4-1-7基础知识反馈卡·4.2.1时间:15分钟满分:50分一、选择题(每小题4分,共20分)1.下列各组线段能组成三角形的一组是()A.5 cm,7 cm,12 cm B.6 cm,8 cm,10 cmC.4 cm,5 cm,10 cm D.3 cm,4 cm,8 cm2.三角形的下列线段中能将三角形的面积分成相等两部分的是()A.中线B.角平分线C.高D.中位线3.如图J4-2-1,BE=CF,AB=DE,添加下列哪些条件可以推证△ABC≌△DEF()图J4-2-1A.BC=EF B.∠A=∠DC.AC∥DF D.AC=DF4.在△ABC内部取一点P,使得点P到△ABC的三边距离相等,则点P应是△ABC的哪三条线的交点()A.高B.角平分线C.中线D.垂直平分线5.下列说法中不正确的是()A.全等三角形一定能重合B.全等三角形的面积相等C.全等三角形的周长相等D.周长相等的两个三角形全等二、填空题(每小题4分,共16分)6.如图J4-2-2,要测量的A,C两点被池塘隔开,李师傅在AC外任选一点B,连接BA和BC,分别取BA和BC的中点E,F,量得E,F两点间的距离等于23米,则A,C两点间的距离为__________米.图J4-2-27.如图J4-2-3,△ABC≌△ABD,且△ABC的周长为12,若AC=4,AB=5,则BD =________.图J4-2-3图J4-2-4图J4-2-58.将一副三角尺按如图J4-2-4所示放置,则∠1=________度.9.已知:如图J4-2-5,△OAD≌△OBC,且∠O=70°,∠C=25°,则∠AEB=________°.答题卡题号1234 5答案6.____________7.____________8.____________9.____________三、解答题(共14分)10.如图J4-2-6,点A,F,C,D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:BC∥EF.图J4-2-6基础知识反馈卡·4.2.2时间:15分钟满分:50分一、选择题(每小题4分,共20分)1.有一个内角是60°的等腰三角形是()A.钝角三角形B.等边三角形C.直角三角形D.以上都不是2.下列关于等腰三角形的性质叙述错误的是()A.等腰三角形两底角相等B.等腰三角形底边上的高、底边上的中线、顶角的角平分线互相重合C.等腰三角形是中心对称图形D.等腰三角形是轴对称图形3.如图J4-2-7,已知OC平分∠AOB,CD∥OB,若OD=3 cm,则CD等于() A.3 cm B.4 cm C.1.5 cm D.2 cm图J4-2-7图J4-2-84.如图J4-2-8,在△ABC中,AB=AC,∠A=40°,BD为∠ABC的平分线,则∠BDC 为()A.55°B.65°C.75°D.85°5.边长为4的正三角形的高为()A.2 B.4 C. 3 D.2 3二、填空题(每小题4分,共16分)6.如图J4-2-9,Rt△ABC中,∠ACB=90°,DE过点C,且DE∥AB,若∠ACD=50°,则∠A=________度,∠B=________度.图J4-2-97.等腰三角形一腰上的高与另一腰的夹角为30°,腰长为a,则其底边上的高是____________.8.已知等腰三角形的一个内角为80°,则另两个角的度数是______________.9.如图J4-2-10,在△ABC中,AB=AC,∠A=80°,E,F,P分别是AB,AC,BC 边上一点,且BE=BP,CP=CF,则∠EPF=________度.图J4-2-10答题卡题号1234 5答案6.____________8.____________9.____________三、解答题(共14分)10.如图J4-2-11,已知在直角三角形ABC中,∠C=90°,BD平分∠ABC且交AC 于点D,∠BAC=30°.(1)求证:AD=BD;(2)若AP平分∠BAC且交BD于点P,求∠BP A的度数.图J4-2-11基础知识反馈卡·4.3.1时间:15分钟满分:50分一、选择题(每小题4分,共20分)1.平行四边形一边长是6厘米,周长是28厘米,则这条边的邻边长为()A.22厘米B.16厘米C.11厘米D.8厘米2.如图J4-3-1所示,在□ABCD中,对角线AC,BD相交于点O,且AB≠AD,则下列式子不正确的是()图J4-3-1A.AC⊥BD B.AB=CD C.BO=OD D.∠BAD=∠BCD3.若一个多边形的内角和等于900°,则这个多边形的边数是()A.6 B.7 C.8 D.94.已知ABCD是平行四边形,则下列各图中∠1与∠2一定不相等的是()A B C D5.下列条件中,不能判别四边形是平行四边形的是()A.一组对边平行且相等B.两组对边分别相等C.两条对角线垂直且相等D.两条对角线互相平分二、填空题(每小题4分,共16分)6.五边形的外角和等于________度.7.在正三角形,正四边形,正五边形和正六边形中不能单独密铺的是________.8.已知平行四边形ABCD的面积为4,O为两对角线的交点,则△AOB的面积是________.9.如果一个多边形的内角和与外角和相等,则此多边形是________.答题卡题号1234 5答案6.____________7.____________8.____________9.____________三、解答题(共14分)10.如图J4-3-2,已知E,F是四边形ABCD的对角线AC上的两点,AE=CF,BE =DF,BE∥DF.求证:四边形ABCD是平行四边形.图J4-3-2基础知识反馈卡·4.3.2时间:15分钟满分:50分一、选择题(每小题4分,共20分)1.矩形,菱形,正方形都具有的性质是()A.对角线相等B.对角线互相平分C.对角线平分一组对角D.对角线互相垂直2.如图J4-3-3,菱形ABCD中,AC=8,BD=6,则菱形的周长是()A.20 B.24 C.28 D.40图J4-3-3图J4-3-4图J4-3-53.如图J4-3-4,把矩形ABCD沿EF对折,若∠1=60°,则∠AEF等于()A.115°B.130°C.120°D.65°4.四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD5.如图J4-3-5,在矩形ABCD中,对角线AC,BD相交于点O,若∠AOB=60°,AB =4 cm,则AC的长为()A.4 cm B.8 cm C.12 cm D.4 5 cm二、填空题(每小题4分,共16分)6.如图J4-3-6,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E,F,AB=3,BC=5,则图中阴影部分的面积为________.图J4-3-67.如图J4-3-7,四边形ABCD是菱形,对角线AC和BD相交于点O,AC=4 cm,BD =8 cm,则这个菱形的面积是________cm2.图J4-3-7 图J4-3-88.如图J4-3-8所示,已知□ABCD,下列条件:①AC=BD,②AB=AD,③∠1=∠2,④AB⊥BC中,能说明□ABCD是矩形的有____________(填写序号).9.已知四边形ABCD中,∠A=∠B=∠C=90°,添加条件_____________________,此四边形即为正方形(填一个即可).答题卡题号1234 5答案6.____________7.____________8.____________9.____________三、解答题(共14分)10.如图J4-3-9,矩形ABCD中,已知对角线AC与BD交于点O,△OBC的周长为16,其中BC=7,求矩形对角线AC的长.图J4-3-9基础知识反馈卡·4.3.3时间:15分钟满分:50分一、选择题(每小题4分,共20分)1.下列说法正确的是()A.平行四边形是一种特殊的梯形B.等腰梯形的两底角相等C.等腰梯形可能是直角梯形D.有两邻角相等的梯形是等腰梯形2.如图J4-3-10,在梯形ABCD中,AB∥DC,AD=DC=CB,若∠ABD=25°,则∠BAD的大小是()A.40°B.45°C.50°D.60°图J4-3-10 图J4-3-113.下面命题错误的是()A.等腰梯形的两底平行且相等B.等腰梯形的两条对角线相等C.等腰梯形在同一底上的两个角相等D.等腰梯形是轴对称图形4.有一等腰梯形纸片ABCD(如图J4-3-11),AD∥BC,AD=1,BC=3,沿梯形的高DE剪下,由△DEC与四边形ABED不一定能拼成的图形是()A.直角三角形B.矩形C.平行四边形D.正方形5.如图J4-3-12,等腰梯形ABCD中,AD∥BC,对角线AC,BD相交于点O,则图中相等的线段共有()图J4-3-12A.2对B.3对C.4对D.5对二、填空题(每小题4分,共16分)6.如图J4-3-13,等腰梯形ABCD中,AD∥BC,AB∥DE,BC=8,AB=6,AD=5,则△CDE的周长是________.图J4-3-137.等腰梯形的中位线长是15 ,一条对角线平分一个60°的底角,则梯形的周长为______.8.如图J4-3-14,梯形ABCD中,AD∥BC,AB=CD.AD=2,BC=6,∠B=60°,则梯形ABCD的周长是________.图J4-3-149.顺次连接等腰梯形四边中点所得的四边形是________形.答题卡题号1234 5答案6.____________7.____________8.____________9.____________三、解答题(共14分)10.已知:如图J4-3-15,在梯形ABCD中,AD∥BC,AB=DC,P是AD中点.求证:BP=PC.图J4-3-15基础知识反馈卡·5.1时间:15分钟满分:50分一、选择题(每小题4分,共16分)1.如图J5-1-1,点A,B,C都在⊙O上,若∠AOB=40°,则∠C=()A.20°B.40°C.50°D.80°图J5-1-1图J5-1-2图J5-1-3图J5-1-42.如图J5-1-2,AB为⊙O的直径,CD为弦,AB⊥CD,如果∠BOC=70°,那么∠A 的度数为()A.70°B.35°C.30°D.20°3.如图J5-1-3,⊙O的弦AB垂直平分半径OC,若AB=6,则⊙O的半径为()A. 2 B.2 2 C.22 D.624.如图J5-1-4,∠AOB=100°,点C在⊙O上,且点C不与点A,B重合,则∠ACB 的度数为()A.50°B.80°或50°C.130°D.50°或130°二、填空题(每小题4分,共20分)5.如图J5-1-5,将三角板的直角顶点放在⊙O的圆心上,两条直角边分别交⊙O于A,B两点,点P在优弧AB上,且与点A,B不重合,连接P A,PB,则∠APB的大小为________度.图J5-1-5图J5-1-6图J5-1-76.如图J5-1-6,AB是⊙O的弦,OC⊥AB于点C,若AB=8 cm,OC=3 cm,则⊙O 的半径为________cm.7.如图J5-1-7,⊙O的弦CD与直径AB相交,若∠BAD=50°,则∠ACD=______.8.如图J5-1-8,在⊙O的内接四边形ABCD中,若∠BCD=110°,则∠BOD=______度.图J5-1-8图J5-1-99.如图J5-1-9,点O为优弧ACB所在圆的圆心,∠AOC=108°,点D在AB的延长线上,若BD=BC,则∠D=________度.答题卡题号123 4答案5.________6.________7.________8.________9.________三、解答题(共14分)10.某市某居民区一处圆形下水管道破裂,修理人员准备更换一段新管道.如图J5-1-10,污水水面宽度为60 cm,水面至管道顶距离为10 cm,问:修理人员应准备内径多大的管道?图J5-1-10基础知识反馈卡·5.2时间:15分钟满分:50分一、选择题(每小题4分,共24分)1.已知⊙O的半径为5,圆心O到直线l的距离为3,则反映直线l与⊙O的位置关系的图形是()A B C D2.如图J5-2-1,四边形ABCD内接于⊙O,若∠C=30°,则∠A的度数为()图J5-2-1A.36°B.56°C.72°D.144°3.若线段OA=3,⊙O的半径为5,则点A与⊙O的位置关系为()A.点在圆外B.点在圆上C.点在圆内D.不能确定4.已知⊙O的半径为2,直线l上有一点P满足PO=2,则直线l与⊙O的位置关系是() A.相切B.相离C.相离或相切D.相切或相交5.在平面直角坐标系xOy中,以点(-3,4)为圆心,4为半径的圆()A.与x轴相交,与y轴相切B.与x轴相离,与y轴相交C.与x轴相切,与y轴相交D.与x轴相切,与y轴相离6.如图J5-2-2,两个同心圆的半径分别为4 cm和5 cm,大圆的一条弦AB与小圆相切,则弦AB的长为()图J5-2-2A.3 cmB.4 cmC.6 cmD.8 cm二、填空题(每小题4分,共12分)7.如图J5-2-3,P A,PB是⊙O是切线,A,B为切点,AC是⊙O的直径,若∠BAC =25°,则∠P=________度.图J5-2-3图J5-2-4图J5-2-58.如图J5-2-4,在Rt△ABC中,∠C=90°,AC=6,BC=8,则△ABC的内切圆半径r=________.9.如图J5-2-5,点P是⊙O外一点,P A是⊙O的切线,切点为A,⊙O的半径OA =2 cm,∠P=30°,则PO=______cm.答题卡题号12345 6答案7.__________8.__________9.__________三、解答题(共14分)10.如图J5-2-6,AB是⊙O的直径,C为圆周上一点,∠ABC=30°,⊙O过点B的切线与CO的延长线交于点D.求证:(1)∠CAB=∠BOD;(2)△ABC≌△ODB.图J5-2-6基础知识反馈卡·5.3时间:15分钟 满分:50分一、选择题(每小题4分,共20分) 1.在半径为12的⊙O 中,60°圆心角所对的弧长是( ) A .6π B .4π C .2π D .π2.一条弦分圆周为5∶4两部分,则这条弦所对的圆周角的度数为( ) A .80° B .100° C .80°或100° D .以上均不正确3.如图J5-3-1,半径为1的四个圆两两相切,则图中阴影部分的面积为( ) A .4-π B .8-π C .2(4-π) D .4-2π图J5-3-1 图J5-3-2 图J5-3-34.如图J5-2-2是一圆锥的主视图,则此圆锥的侧面展开图的圆心角的度数是( ) A .60° B .90° C .120° D .180°5.如图J5-3-3,P A ,PB 是⊙O 的切线,切点是A ,B ,已知∠P =60°,OA =3,那么∠AOB 所对的弧的长度为( )A .6πB .5πC .3πD .2π 二、填空题(每小题4分,共16分)6.圆锥底面半径为12,母线长为2,它的侧面展开图的圆心角是______.7.正多边形的一个内角为120°,则该多边形的边数为________.8.已知扇形的半径为3 cm ,扇形的弧长为π cm ,则该扇形的面积是________cm 2,扇形的圆心角为________度.9.如图J5-3-4,已知圆锥的高为8,底面圆的直径为12,则此圆锥的侧面积是________.图J5-3-4答题卡题号 1 2 3 4 5 答案6.________7.________8.________ ________ 9.________ 三、解答题(共14分)10.如图J5-3-5,⊙O 的半径为1,弦AB 和半径OC 互相平分于点M .求扇形OACB 的面积(结果保留π).图J5-3-5基础知识反馈卡·6.1时间:15分钟满分:50分一、选择题(每小题4分,共20分)1.下列图形中,是轴对称图形的有()①角;②线段;③等腰三角形;④直角三角形;⑤圆;⑥锐角三角形.A.2个B.3个C.4个D.5个2.下列几种运动属于平移的有()①水平运输带上的砖在运动;②升降机上下做机械运动;③足球场上足球的运动;④超市里电梯上的乘客;⑤平直公路上行驶的汽车.A.2种B.3种C.4种D.5种3.如图J6-1-1,香港特别行政区区徽是由五个同样的花瓣组成的,它可以看作是由其中一个花瓣通过怎样的变化而得到的()A.平移B.对称C.旋转D.先平移,后旋转图J6-1-1图J6-1-24.如图J6-1-2,△ABC与△A′B′C′关于点O成中心对称,下列结论不成立的是()A.OC=OC′B.OA=OA′C.BC=B′C′D.∠ABC=∠A′C′B′5.下列既是轴对称图形又是中心对称图形的是()A B C D二、填空题(每小题4分,共16分)6.正五角星的对称轴的条数是________.7.如图J6-1-3,△ABC按逆时针方向旋转一定的角度后到达△AB′C′的位置,则旋转中心是点________,旋转角度是________度.图J6-1-3图J6-1-4 图J6-1-58.如图J6-1-4,△ABC中,AB=AC=14 cm,D是AB的中点,DE⊥AB于点D,交AC于点E,△EBC的周长是24 cm,则BC=________.9.正方形ABCD在坐标系中的位置如图J6-1-5,将正方形ABCD绕点D按顺时针方向旋转90°后,点B的坐标为________.答题卡题号1234 5答案6.______________7.____________________________8.______________9.______________三、解答题(共14分)10.画图题.如图J6-1-6,将△ABC绕点O顺时针旋转180°后得到△A1B1C1,请你画出旋转后的△A1B1C1;图J6-1-6基础知识反馈卡·6.2时间:15分钟满分:50分一、选择题(每小题4分,共20分)1.下面四个几何体中,其左视图为圆的是()2.如图J6-2-1所示的几何体的主视图是()图J6-2-13.如图J6-2-2是一个用相同的小立方体搭成的几何体的三视图,则组成这个几何体的小立方体的个数是()A.2个B.3个C.4个D.5个图J6-2-2图J6-2-34.如图J6-2-3,箭头表示投影的方向,则图中圆柱体的投影是()A.圆B.矩形C.梯形D.圆柱5.一个几何体的三视图如图J6-2-4,则这个几何体是()图J6-2-4二、填空题(每小题4分,共12分)6.如图J6-2-5是一个几何体的三视图,则这个几何体的名称是__________.图J6-2-57.主视图、左视图和俯视图都是圆的几何体是__________.8.小刚身高1.7 m,测得他站立在阳光下的影子长为0.85 m,紧接着他把手臂竖直举起,测得影子长为1.1 m,那么小刚举起的手臂超出头顶________m.答题卡题号1234 5答案6.______________7.______________8.______________三、解答题(共18分)9.如图J6-2-6是一个包装盒的三视图,则这个包装盒的体积是多少?图J6-2-6基础知识反馈卡·6.3时间:15分钟满分:50分一、操作题(1~6题,每小题7分,7题8分,共50分) 1.如图J6-3-1,作出线段AB的垂直平分线.图J6-3-12.如图J6-3-2,过点C作直线AB的垂线.图J6-3-23.如图J6-3-3,过点C作直线AB的垂线.图J6-3-3。