2019备战中考数学(苏科版)巩固复习-第六章平面图形的认识(一)(含解析)
- 格式:docx
- 大小:66.25 KB
- 文档页数:9
苏科版七年级上册数学第6章平面图形的认识(一)含答案一、单选题(共15题,共计45分)1、∠1=45゜24′,∠2=45.3゜,∠3=45゜18′,则()A.∠1=∠2B.∠2=∠3C.∠1=∠3D.以上都不对2、如图,OA⊥OC,OB⊥OD,四位同学观察图形后分别说了自己的观点.甲:∠AOB=∠COD;乙:∠BOC+∠AOD=180°;丙:∠AOB+∠COD=90°;丁:图中小于平角的角有6个.其中观点正确的有()A.甲、乙、丙B.甲、丙、丁C.乙、丙、丁D.甲、乙、丁3、12点15分,时针与分针所夹的小于平角的角为()A.90°B.67.5°C.82.5°D.60°4、已知:如图,点E,F分别在AB,CD上,AF⊥CE,垂足为点O,∠1=∠B,∠A+∠2=90°.求证:AB∥CD.证明:如图,∵∠1=∠B(已知)∴CE∥BF(同位角相等,两直线平行)______________∴∠AFC+∠2=90°(等式性质)∵∠A+∠2=90°(已知)∴∠AFC=∠A(同角或等角的余角相等)∴AB∥CD(内错角相等,两直线平行)请你仔细观察下列序号所代表的内容:①∴∠AOE=90°(垂直的定义)②∴∠AFB=90°(等量代换)③∵AF⊥CE(已知)④∵∠AFC+∠AFB+∠2=180°(平角的定义)⑤∴∠AOE=∠AFB(两直线平行,同位角相等)横线处应填写的过程,顺序正确的是()A.⑤③①②④B.③④①②⑤C.⑤④③①②D.⑤②④5、如图,C是线段AB的中点,D是线段CB的中点,下列说法错误的是()A.CD=AC﹣BDB.CD= AB﹣BDC.AC+BD=BC+CDD.CD= AB6、如图,∠DOB=140°,OA⊥OB,则∠AOC=()A.40°B.45°C.50°D.55°7、如图,射线 AB,DC 交于点O,射线OM平分∠AOC,若∠BOD=80°,则∠COM的度数为()A.30°B.40°C.50°D.60°8、如图,直线AC和直线BD相交于点0,若∠1+∠2=90°,则∠BOC的度数是()A.100°B.115°C.135°D.145°9、如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能符合题意解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点之间,线段最短 D.经过两点,有且仅有一条直线10、如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM长的最小值为()A.2B.3C.4D.511、下列六个命题:①有理数与数轴上的点一一对应;②两条直线被第三条直线所截,内错角相等;③直线外一点到这条直线的垂线段叫做点到直线的距离;④平行于同一条直线的两条直线互相平行;⑤垂直于同一条直线的两条直线互相平行;⑥如果一个角的两边分别平行于另一个角的两边,那么这两个角相等,其中假命题的个数是()A.3个B.4个C.5个D.6个12、下列结论中,不正确的是()A.两点确定一条直线B.两点之间的所有连线中,线段最短C.对顶角相等D.过一点有且只有一条直线与已知直线平行13、下列说法:①如果∠1+ ∠2+∠3=180°,那么∠1,∠2,∠3三个角互为补角;②如果∠A+ ∠B=90°,那么∠A与∠B互为余角;③“对顶角相等”成立,反之“相等的角是对顶角”也成立;④两条直线被第三条直线所截,同位角相等;⑤两点之间,线段最短. 正确的个数是()A.2个B.3个C.4个D.5个14、在墙壁上固定一根横放的木条,则至少需要()枚钉子A.lB.2C.3D.随便多少枚15、修建高速公路时,经常将弯曲的道路改直,从而缩短路程,这样做的数学根据是()A.两点确定一条直线B.两点之间,线段最短C.垂线段最短D.同位角相等,两直线平行二、填空题(共10题,共计30分)16、请补充完成以下解答过程,并在括号内填写该步骤的理由.已知:如图,, , 平分,若,求的度数.解:因为,所以________ .因为________ ,所以.所以.(________)因为,所以.因为平分,所以________ ________°所以________°.17、如图所示:直线AB与CD相交于O,已知∠1=30°,OE是∠BOC的平分线,则∠2=________°,∠3=________°.18、数轴上到表示数4的点的距离为5个单位长度的点表示的数是________.19、如图,已知从甲地到乙地共有四条路可走,你应选择第________ 路,所用的数学原理为:________20、如图,射线表示西北方向,若射线表示南偏西的方向,则锐角的大小是________度.21、下午3点30分时,钟面上时针与分针所成的角等于________°.22、若∠1+∠2=180°,∠1+∠3=180°,则∠2与∠3的关系是________.23、火车往返于A、B两个城市,中途经过4个站点(共6个站点),不同的车站来往需要不同的车票,共有________种不同的车票.24、以下说法:①两点确定一条直线;②两点之间直线最短;③若x=y,则= ;④若|a|=﹣a,则a<0;⑤若a,b互为相反数,那么a,b的商必定等于﹣1.其中正确的是________.(请填序号)25、如图,已知AE//CD,BC⊥CD于C,若∠A=28°,则∠ABC=________三、解答题(共5题,共计25分)26、一个角的余角比它的补角还多1°,求这个角.27、如图,轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则∠A的度数为多少?28、已知A、B、C.三点在同一直线上,DE⊥AB, ∠DBE=2∠EBC,求∠DBE的度数。
备战中考数学(苏科版)巩固复习第六章平面图形的认识(一)(含解析)一、单选题1.同一平面内的三条直线满足a⊥b,b⊥c,则下列式子成立的是()A.a∥cB.b⊥aC.a⊥cD.b∥c2.如图,AOE是一条直线,图中小于平角的角共有()A.4个B.8个C.9个D.10个3.木匠在木料上画线,先确定两个点的位置,就能把线画得专门准确,其依据是()A.两点确定一条直线B.两点确定一条线段 C.过一点有一条直线 D.过一点有许多条直线4.如图,假如在阳光下你的身影的方向北偏东60°方向,那么太阳相关于你的方向是()A.南偏西60° B.南偏西3 0° C.北偏东6 0° D.北偏东3 0°5.下列说法正确的是()A.线段AB和线段BA表示的不是同一条线段B.射线AB和射线BA表示的是同一条射线C.若点P是线段AB的中点,则PA=ABD.线段AB叫做A、B两点间的距离6.用一副三角尺,你能画出下面那个度数的角()A.65度B.105度C.85度D.95度7.过一点画已知直线的平行线,则()A.有且只有一条 B.有两条 C.不存在 D.不存在或只有一条8.如图,射线OB、OC将∠AOD分成三部分,下列判定错误的是()A.假如∠AOB=∠COD,那么∠AOC=∠BOD B.假如∠AOB>∠COD,那么∠AOC>∠BO DC.假如∠AOB<∠COD,那么∠AOC<∠BODD.假如∠AOB=∠BOC,那么∠AOC=∠BOD9.下列说法中是真命题的有()①一条直线的平行线只有一条;②过一点与已知直线平行的直线只有一条;③因为a∥b,c∥b,因此a∥c;④通过直线外一点有且只有一条直线与已知直线平行。
A.1个B.2个C.3个D.4个10.已知∠1=37°36′,∠2=37.36°,则∠1与∠2的大小关系为()A.∠1<∠2B.∠1=∠2C.∠1>∠2D.无法比较二、填空题11.34.37°=34°________′________″.12.已知∠α=53°27′,则它的余角等于________.13.如图,将一副三角板的直角顶点重合,摆放在桌面上,若∠BOC=6 3°,则∠AOD=________.14.下午2点30分时,时钟的分针与时针夹角的度数为________。
苏教版七年级上册数学重难点突破知识点梳理及重点题型巩固练习《平面图形的认识(一)》全章复习与巩固(提高)知识讲解【学习目标】1.掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法;2.初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题;3.正确理解“相交”、“互相平行”、“互相垂直”等概念,发展空间想象力.【知识网络】【要点梳理】要点一、直线、射线、线段1.直线,射线与线段的区别与联系2. 基本性质(1)直线的性质:两点确定一条直线. (2)线段的性质:两点之间线段最短. 要点诠释:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线. ②连接两点间的线段的长度,叫做两点的距离.3.画一条线段等于已知线段(1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段. (2)用尺规作图法:用圆规在射线AC 上截取AB =a,如下图: 4.线段的比较与运算(1)线段的比较:比较两条线段的长短,常用两种方法,一种是度量法;一种是叠合法.(2)线段的和与差:如下图,有AB+BC =AC ,或AC =a+b ;AD =AB-BD.(3)线段的中点:把一条线段分成两条相等线段的点,叫做线段的中点.如下图,有:12AM MB AB ==.要点诠释:①线段中点的等价表述:如上图,点M 在线段上,且有12AM AB =,则点M 为线段AB 的中点.②除线段的中点(即二等分点)外,类似的还有线段的三等分点、四等分点等. 如下图,点M,N,P 均为线段AB 的四等分点,则有AB PB NP MN AM 41====. PNMBA(4)线段的延长线:如下图,图①称为延长线段AB ,或称为反向延长线段BA ;图②称为延长线段BA ,或称为反向延长线段AB. 图中延长的部分叫做原线段的延长线.要点二、角1.角的概念及其表示(1)角的定义:从一点引出的两条射线所形成的图形叫做角,这个点叫做角的顶点,这两条射线是角的边;此外,角也可以看作由一条射线绕着它的端点旋转而形成的图形.(2)角的表示方法:角通常有三种表示方法:一是用三个大写英文字母表示,二是用角的顶点的一个大写英文字母表示,三是用一个小写希腊字母或一个数字表示.例如下图:要点诠释:①角的两种定义是从不同角度对角进行的定义.②当一个角的顶点有多个角的时候,不能用顶点的一个大写字母来表示. 2.角的分类3.角的度量1周角=360°,1平角=180°,1°=60′,1′=60″. 要点诠释:①度、分、秒的换算是60进制,与时间中的小时分钟秒的换算相同. ②度分秒之间的转化方法:由度化为度分秒的形式(即从高级单位向低级单位转化)时用乘法逐级进行;由度分秒的形式化成度(即低级单位向高级单位转化)时用除法逐级进行. ③同种形式相加减:度加(减)度,分加(减)分,秒加(减)秒;超60进一,减一 成60.4.角的平分线从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线,例如:如下图,因为OC 是∠AOB 的平分线,所以∠1=∠2=12∠AOB ,或∠AOB =2∠1=2∠2. ∠β 锐角 直角 钝角 平角 周角 范围0<∠β<90°∠β=90°90°<∠β<180°∠β=180°∠β=360°类似地,还有角的三等分线等.5.余角、补角、对顶角(1)余角、补角:若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角. 若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角. 结论: 同角(或等角)的余角相等;同角(或等角)的补角相等.要点诠释:①余角(或补角)是两个角的关系,是成对出现的,单独一个角不能称其为余角(或补角).②一个角的余角(或补角)可以不止一个,但是它们的度数是相同的.③只考虑数量关系,与位置无关.④“等角是相等的几个角”,而“同角是同一个角”.(2)对顶角:对顶角相等.要点三、平行与垂直1.同一平面内的两条直线的位置关系:平行与相交. 平行用符号“∥”表示.要点诠释:只有一个公共点的两条直线叫做相交直线,这个公共点叫做交点.2.垂线(1)垂线的定义:两条直线相交所成的四个角中,有一个角是直角时,就称这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫垂足.垂直用符号“⊥”表示,如下图.(2)垂线的性质:①在同一平面内,过一点有且只有一条直线与已知直线垂直.②垂线段最短.(3)点到直线的距离:从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.【典型例题】类型一、概念或性质的理解1.(2014秋•上杭县月考)下列语句错误的有()①角的大小与角两边的长短无关;②过两点有且只有一条直线;③若线段AP=BP,则P一定是AB中点;④A与B两点间的距离是指连接A、B两点间的线段.A.1个B.2个C.3个D.4个【答案】B【解析】①角的大小与角两边的长短无关,正确;②过两点有且只有一条直线,正确;③若线段AP=BP,则P一定是AB中点;错误,点P可能不在AB上;④A与B两点间的距离是指连接A、B两点间的线段;错误,因为A与B两点间的距离是指连接A、B两点间的线段的长度.故选B.【总结升华】本题考查直线、线段、射线的基本定义与几何图形的简单性质.举一反三:【变式】下列语句:①两条直线相交,若其中一个交角是直角,那么这两条直线垂直.②一条直线的垂线有无数条.③空间内过一点有且只有一条直线与已知直线垂直.④两条直线相交成四个角,如果有两个角相等,那么这两条直线垂直.⑤过一点有且只有一条直线与已知直线平行.其中正确的是 .【答案】①②类型二、角的度量2. 如图所示,时钟的时针由3点整的位置(顺时针方向)转过多少度时,与分针第一次重合.【答案与解析】解:设时针转过的度数为x°时,与分针第一次重合,依题意有:12x=90+x解得9011 x=答:时针转过9011⎛⎫⎪⎝⎭°时,与分针第一次重合.【总结升华】在相同时间里,分针转过的度数是时针的12倍,此外此问题可以转化为追及问题来解决.举一反三:【变式】125°÷4=°=°′【答案】31.25,31、15类型三、利用数学思想方法解决有关线段或角的计算1.方程的思想方法3.(2016春•南充校级期中)如图:若∠AOB与∠BOC是一对邻补角,OD平分∠AOB,OE在∠BOC内部,并且∠BOE=∠COE,∠DOE=72°.则∠COE的度数是.【思路点拨】设∠EOB=x度,∠EOC=2x度,把角用未知数表示出来,建立x的方程,用代数方法解几何问题是一种常用的方法.【答案】72°.【解析】解:设∠EOB=x,则∠EOC=2x,则∠BOD=(180°﹣3x),则∠BOE+∠BOD=∠DOE,即x+(180°﹣3x)=72°,解得x=36°,故∠EOC=2x=72°.故答案为:72°.【总结升华】本题考查了对顶角、邻补角,设未知数,把角用未知数表示出来,列方程组,求解.角平分线的运用,为解此题起了一个过渡的作用.2.分类的思想方法4. 同一直线上有A、B、C、D四点,已知AD=59DB,AC=95CB,且CD=4cm,求AB的长.【思路点拨】先根据题意画出图形,再从图上直观的看出各线段的关系及大小.【答案与解析】解:利用条件中的AD=59DB,AC=95CB,设DB=9x,CB=5y,则AD=5x,AC=9y,分类讨论:(1)当点D,C均在线段AB上时,如图所示:∵ AB=AD+DB=14x,AB=AC+CB=14y,∴ x=y∵ CD=AC-AD=9y-5x=4x=4,∴ x=1,∴ AB=14x=14(cm).(2)当点D,C均不在线段AB上时,如图所示:方法同上,解得87AB (cm).(3)如图所示,当点D在线段AB上而点C不在线段AB上时,方法同上,解得11253AB=(cm).(4)如图所示,当点C在线段AB上而点D不在线段AB上时,方法同上,解得11253AB=(cm).综上可得:AB的长为14cm,87cm,11253cm.【总结升华】解决没有图形的题目时,一要注意满足条件下的图形的多样性;二要注意解决的方法,注意方程法在解决图形问题中的应用. 在正确答案中,(3)与(4)的答案虽然相同,但作为图形上的差别应了解.举一反三:【变式】已知∠AOB=60°, ∠BOC=40°,则∠AOC 的度数.【答案】20°或100°.类型四、平行与垂直5.用三角尺、量角器或直尺画图,不要求写画法.(1)过点P画OA的平行线,交射线OB于点M;(2)过点P画OB的垂线,垂足为N;(3)比较下列线段的长短:PM____PN(用“>”、“=”或“<”填写).【思路点拨】(1)利用平行线的画法过P画PM∥AO即可;(2)里用直角三角板,一条直角边与OB重合,沿BO移动三角板使另一条直角边过点P画直线即可;(3)根据垂线段最短可直接得到答案.【答案与解析】解:(1)(2)如图所示:(3)根据垂线段最短可得PM>PN.【总结升华】此题主要考查了复杂作图,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.6.直线AB、CD相交于点O,OE⊥AB于点O,∠COE=40°,求∠BOD的度数.【答案与解析】解:分两种情况:第一种:如图1,直线AB,CD相交后,∠BOD是锐角,∵OE⊥AB, ∴∠AOE=90°,即∠AOC+∠COE=90°.∵∠COE=40°, ∴∠AOC=50°.∵∠BOD=∠AOC ∴∠BOD=50°第二种:如图2,直线AB、CD相交后,∠BOD是钝角,∵OE⊥AB, ∴∠AOE=90°.∵∠COE=40°,∴∠AOC=90°+40°=130°,∴∠BOD=∠AOC=130°.【总结升华】本题属于无图题,首先应根据题意,画出图形,画图时要考虑两种情况:一种情况为∠BOD是锐角,第二种情况是∠BOD是钝角.此外关于两条直线相交,应想到邻补角、对顶角的定义及性质.举一反三:【变式】(2014•陆川县校级模拟)在同一平面内,若∠AOB=90°,∠BOC=40°,则∠AOB的平分线与∠BOC的平分线的夹角等于.【答案】25°或65°.解:本题分两种情况讨论:(1)当OC在三角形内部时,如图1,∵∠AOB=90°,∠BOC=40°,OD,OE是∠AOB的与∠BOC的平分线,∴∠AOD=∠DOB=∠AOB=×90°=45°,∠BOE=∠EOC=∠BOC=×40°=20°,∴∠DOE=∠DOB﹣∠EOB=45°﹣20°=25°;(2)当OC在三角形外部时,如图2,∵∠AOB=90°,∠BOC=40°,OD,OE是∠AOB的与∠BOC的平分线,∴∠AOD=∠DOB=∠AOB=×90°=45°,∠BOE=∠EOC=∠BOC=×40°=20°,∴∠DOE=∠DOB+∠EOB=45°+20°=65°,故答案为:25°或65°.。
苏科版七年级上册数学第6章平面图形的认识(一)含答案一、单选题(共15题,共计45分)1、如图所示,若AO⊥OC,BO⊥DO,那么()A.∠1=∠3B.∠1=∠2C.∠2=∠3D.∠1=∠3=45°2、如图,在三角形中,若,于点,则下列线段的长度可以表示为点到直线距离的是()A. B. C. D.3、根据下图,下列说法中不正确的是()A.图①中直线经过点B.图②中直线,相交于点C.图③中点在线段上D.图④中射线与线段有公共点4、下列命题中,是真命题的是( )A.内错角相等B.对顶角相等C.若x 2=4,则 x=2D.若 a b,则 a 2 b 25、下列说法:①相等的角是对顶角;②同位角相等;③过一点有且只有一条直线与已知直线平行;④直线外一点到这条直线的垂线段的长度,叫做点到直线的距离;其中正确的有()个.A.0B.1C.2D.36、下列说法错误的是()A.过一点有且只有一条直线与已知直线平行B.两条平行线的所有公垂线段都相等C.平行于同一条直线的两条直线平行D.垂线段最短7、如图,建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,其运用到的数学原理是()A.两点之间,线段最短B.两点确定一条直线C.垂线段最短D.过一点有且只有一条直线和已知直线平行8、如图,在△ABC中,AB=15,AC=12,BC=9,经过点C且与边AB相切的动圆与CB、CA分别相交于点E、F,则线段EF长度的最小值是()A. B. C. D.89、如图:AB∥CD,直线MN与AB交于E,过点E作直线HE⊥MN,∠1=130°,则∠2等于()A.50°B.40°C.30°D.60°10、如图,点O在直线AB上,且OC⊥OD,若∠COA=36°,则∠DOB的大小为()A.36°B.54°C.64°D.72°11、如图,点C、O、B在同一条直线上,∠AOB=90°,∠AOE=∠DOB,则下列结论:①∠EOD=90°;②∠COE=∠AOD;③∠COE=∠DOB;④∠COE+∠BOD=90°.其中正确的个数是()A.1B.2C.3D.412、以下五个条件中,能得到互相垂直关系的有()①对顶角的平分线;②邻补角的平分线;③平行线截得的一组同位角的平分线;④平行线截得的一组内错角的平分线;⑤平行线截得的一组同旁内角的平分线.A.1个B.2个C.3个D.4个13、如图,A是直线l外一点,点B,E,D,C在直线l上,且,D为垂足,如果量得,,,,则点A 到直线l的距离为()A.11 cmB.7 cmC.6 cmD.5 cm14、下列说法正确的是()A.有公共顶点且相等的两个角是对顶角B.已知线段AB=BC,则点B是线段AC的中点C.经过一点有且只有一条直线与已知直线平行D.在同一平面内,经过一点有且只有一条直线与已知直线垂直15、已知∠α=70°,则∠α的补角为()A.120°B.110°C.70°D.20°二、填空题(共10题,共计30分)16、若,则与的关系是________ ,理由是________17、如图,∠AOB=90°,OD平分∠BOC,∠DOE=45°,则∠AOE________∠COE(填“<”“>”或“=”号)18、如图,在△ABC中,AB=AC,∠BAC=90°,AE是经过A点的一条直线,且B,C在AE的两侧,BD⊥AE于D,CE⊥AE于E,CE=2,BD=6,则DE的长为________.19、如图所示,直线,相交于点O,于点O,若,则的度数是________.20、一个角的余角是这个角的补角的三分之一,则这个角的度数是________ .21、如图,已知点C为两条相互平行的直线AB,ED之间一点,∠ABC和∠CDE 的角平分线相交于F,若∠BCD=∠BFD+60°,则∠BCD的度数为________.22、如图,甲船从A点出发向北偏东72°25′方向航行50km至点B,则钝角∠BAC的度数为________.23、如图,直线AB、CD相交于点O,∠DOF=90°,OF平分∠AOE,若∠BOD=28°,则∠EOF的度数为________.24、如图,已知点C在线段AB上,AC=6,线段BC的长是线段AC长的两倍,点D是线段AB的中点,则线段CD的长是________.25、如图,已知ON⊥l,OM⊥l,所以OM与ON重合,其理由是________.三、解答题(共5题,共计25分)26、如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.27、如图,在中,是的角平分线,,交于点,,,求的度数28、如图,直线AB、CD相交于点O,OE平分∠BOD,OF⊥CD,若∠BOC比∠DOE大75o.求∠AOD和∠EOF的度数.29、如图,∠ABD和∠BDC的平分线相交于点E,BE交CD于点F,∠1+∠2=90°.试问直线AB,CD在位置上有什么关系?∠2与∠3在数量上有什么关系?并证明你的猜想.30、如图,已知,,且,求∠AOB的度数.参考答案一、单选题(共15题,共计45分)1、A2、A3、C4、B6、A7、B8、B9、B10、B11、C12、B13、D14、D15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、28、30、。
苏科版七年级上册数学第6章平面图形的认识(一)含答案一、单选题(共15题,共计45分)1、如图所示,∠α的度数是()A.10°B.20°C.30°D.40°2、下列说法正确的是()A.相等的两个角是对顶角B.同位角相等C.图形平移后的大小可以发生改变 D.两条直线相交所成的四个角都相等,则这两条直线互相垂直3、如图,∠AOC 和∠BOD都是直角,如果∠AOB=140◦则∠DOC的度数是( )A.30 ◦B.40 ◦C.50 ◦D. 60 ◦4、某街道分布示意图如图所示,一个居民从A处前往B处,若规定只能走从左到右或从上到下的方向,这样该居民共有可选择的不同路线条数是()A.5B.6C.7D.85、下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是()A.把弯曲的公路改直,就能缩短路程B.用两个钉子就可以把木条固定在墙上C.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线 D.利用圆规可以比较两条线段的大小关系6、下列哪种情况下,直线a与b不一定是平行线()A.a与b是不相交的两条直线B.a与b被直线c所截,且内错角互补 C.a与b都平行于直线c D.a与b被直线c所截,且同位角相等7、如果从甲船看乙船,乙船在甲船的南偏东40°方向,那么从乙船看甲船,甲船在乙船的()A.北偏东50°B.北偏西50C.北偏东40°D.北偏西40°8、下列定理中没有逆定理的是()A.内错角相等,两直线平行B.直角三角形中,两锐角互余C.等腰三角形两底角相等D.相反数的绝对值相等9、下列说法中,正确的是( )A.两条不相交的直线叫平行线B.一条直线的平行线有且只有一条C.若直线a∥b,a∥c,则b∥cD.两条直线不相交就平行10、如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.点动成线;B.两点确定一条直线;C.垂线段最短;D.两点之间,线段最短;11、如图,直线l与直线a、b相交,且a b,∠1=80°,则∠2的度数是()A.60°B.80°C.100°D.120°12、下列说法正确是()A.相等的两个角是对顶角;B.过一点有且只有一条直线与已知直线平行; C.直线外一点与直线上各点连接的所有线中,垂线最短; D.平面内,过一点有且只有一条直线与已知直线垂直13、若数轴上点A表示的数是,则与它相距2个单位的点B表示的数是()A.±5B.-7或-3C.7D.-8或314、下列说法中正确的是A.过一点有且仅有一条直线与已知直线平行B.若,则点C是线段AB的中点C.两点之间的所有连线中,线段最短D.相等的角是对顶角15、下面4个图形中,∠1与∠2是对顶角的是( )A. B. C. D.二、填空题(共10题,共计30分)16、己知在纸面上有一数轴(如图所示)一般地,数轴上表示数m和数n的两点间距离可用|m﹣n|表示,|x﹣4|+|x﹣5|的最小值是________17、如图,∠AOD=135°,∠AOC=75°,∠DOB=105°,则∠BOC=________.18、已知∠A=55°,则∠A的余角等于________度.19、如图,OA是北偏东30°方向的一条射线,若射线OB与射线OA垂直,则OB的方位角是________.20、如图,已知平分平分,,则________°.21、探究:如图①,,试说明.下面给出了这道题的解题过程,请在下列解答中,填上适当的理由.解: ∵ .(已知)∴ .(________)同理可证,.∵ ,∴ .(________)应用:如图②,,点F在之间,与交于点M,与交于点N.若,,则的大小为________度.拓展:如图③,直线在直线之间,且,点分别在直线上,点Q是直线上的一个动点,且不在直线上,连结.若,则=________度.22、如图,直线a、b相交于点O,将量角器的中心与点O重合,发现表示60°的点在直线a上,表示138°的点在直线b上,则∠1=________°.23、已知一个角的余角为28°40′,则这个角的度数为________.24、直角三角形的一锐角为60°,则另一锐角为________25、如果一个角的补角是150°,那么这个角的余角的度数是________三、解答题(共5题,共计25分)26、一个角的余角比它的补角还多1°,求这个角.27、如图,AB、CD交于点O,∠1=∠2,∠3:∠1=8:1,求∠4的度数.28、如图,AB交CD于O,OE⊥AB.(1)若∠EOD=20°,求∠AOC的度数;(2)若∠AOC:∠BOC=1:2,求∠EOD的度数.29、如图,是平角,,,,分别是,的平分线,求的度数.30、下面是小马虎解的一道题题目:在同一平面上,若∠BOA=70°,∠BOC=15°求∠AOC的度数.解:根据题意可画出图,∵∠AOC=∠BOA-∠BOC=70°-15°=55°,∴∠AOC=55°.若你是老师,会判小马虎满分吗?若会,说明理由.若不会,请将小马虎的的不符合题意指出,并给出你认为正确的解法.参考答案一、单选题(共15题,共计45分)1、A2、D3、B4、D6、B7、D8、D9、C10、B11、B12、D13、B14、C15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、27、29、30、。
苏科版七年级上册数学第6章平面图形的认识(一)含答案一、单选题(共15题,共计45分)1、如图,已知∠BAC=90°,AD⊥BC于D,则图中互余的角有()对.A.4对B.5对C.6对D.7对2、下列说法:①对顶角相等;②同位角相等;③必然事件发生的概率为;④等腰三角形的对称轴就是其底边上的高所在的直线,其中正确的有( )A.1个B.2个C.3个D.4个3、如图所示,AD⊥BC于D,DG∥AB,那么∠B和∠ADG的关系是()A.互余B.互补C.相等D.以上都不对4、如图所示,点O在直线AB上,射线OD平分∠AOC,若∠AOD=55°,则∠BOC 等于()A.85°B.80°C.70°D.65°5、由郑州到北京的某一班次列车,运行途中停靠的车站依次是:新乡—鹤壁—安阳—邯郸—邢台—石家庄—保定—北京,那么要为这次列车制作的火车票()A.9 种B.18 种C.36 种D.72 种6、下列命题中是真命题的是()A.相等的两个角是对顶角B.两条直线被第三条直线所截,同位角相等 C.在同一平面内,如a∥b,b∥c,则a∥c D.若a>b,则﹣a>﹣b7、有两个角,它们的比为7:3,它们的差为72°,则这两个角的关系是()A.互为余角B.互为补角C.相等D.以上答案都不对8、如图,OD⊥AB,垂足为点O,OE平分∠AOC,∠DOE=40°,则∠COD的度数是()A.10°B.20°C.40°D.80°9、若直线a与直线b都和直线c平行,那么直线a和直线b的位置关系是()A.平行B.相交C.平行或相交D.无法确定10、如图,下列说法中错误的是()A.∠3和∠5是同位角B.∠4和∠5是同旁内角C.∠2和∠4是对顶角D.∠1和∠4是内错角11、下列说法中正确的个数是()(1)在同一平面内,a、b、c是直线,a∥b,b∥c,则a∥c (2)在同一平面内,a、b、c是直线,a⊥b,b ⊥c,则a⊥c(3)在同一平面内,a、b、c是直线,a∥b,a⊥c,则b⊥c (4)在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a∥c.A.1B.2C.3D.412、下列命题的逆命题是真命题的是( )A.面积相等的两个三角形是全等三角形B.对顶角相等C.互为邻补角的两个角和为180°D.两个正数的和为正数13、如图,某测绘装置上一枚指针原来指向南偏西50°,把这枚指针按逆时针方向旋转周,则结果指针的指向是()A.南偏东50ºB.北偏西40ºC.南偏东40ºD.东南方向14、下列图中,能用∠1,∠AOB,∠O三种方法表示同一个角的是()A. B. C.D.15、如图,将一副三角板按不同位置摆放,其中∠1与∠2互余的是( )A. B. C.D.二、填空题(共10题,共计30分)16、下列三个判断:①两点之间,线段最短。
苏科版七年级上册数学第6章平面图形的认识(一)含答案一、单选题(共15题,共计45分)1、图中∠1、∠2、∠3都是平行线a、b被直线c所截得到的角,其中相等的两个角有几对()A.1B.2C.3D.42、下列命题的逆命题不正确的是()A.平行四边形的对角线互相平分B.两直线平行,内错角相等C.等腰三角形的两个底角相等D.对顶角相等3、已知点M(9,-5)、N(-3,-5),则直线MN与x轴、y轴的位置关系分别为( )A.相交、相交B.平行、平行C.垂直相交、平行D.平行、垂直相交4、平面内有三条直线,那么它们的交点个数有()A.0个或1个B.0个或2个C.0个或1个或2个D.0个或1个或2个或3个5、下列说法中,正确的是()A.在同一平面内,两条直线的位置关系只有相交,平行两种B.在同一平面内,不相交的两条线段互相平行C.在同一平面内,不相交的两条直线互相平行D.在同一平面内,不相交的两条射线互相平行6、若数轴上点A表示的数是 -3, 则与点A相距6个单位长度的点表示的数是()A.±6B.±3C.-9或3D.-3或97、两个锐角的和().A.必定是锐角;B.必定是钝角;C.必定是直角;D.可能是锐角,可能是直角,也可能是钝角8、如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条这样的墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.垂线段最短C.在同一平面内,过一点有且只有一条直线与已知直线垂直D.两点之间,线段最短9、下列命题: (1)两直线平行,同旁内角互补(2) 同角的补角相等. (3) 直角三角形的两个锐角互余. (4) 同位角相等。
其中真命题的个数()A.1个B.2个C.3个D.4个10、如图,按照上北下南,左西右东的规定画出东南西北的十字线,其中点A 位于点O的( )A.北偏西65°方向B.北偏东65°方向C.南偏东35°方向D.南偏西65°方向11、下列命题是真命题的个数为()①两条直线被第三条直线所截,内错角相等.②三角形的内角和是180°.③在同一平面内平行于同一条直线的两条直线平行.④相等的角是对顶角.⑤两点之间,线段最短.A.2B.3C.4D.512、已知,为的余角,则()A. B. C. D.13、如图,直线a∥b,直线c与a、b分别交于A、B两点,若∠1=46°,则∠2=()A.44°B.46°C.134°D.54°14、如图所示,,,平分,则图中与相等的角有()个.A. B. C. D.15、如果一个角的度数为28°14′,那么它的余角的度数为()A. B. C. D.二、填空题(共10题,共计30分)16、68°30′的补角为________.17、如图,直线、交于点,于点,,则的度数为________.18、如图,直线AB,CD相交于点O,射线OE⊥CD,给出下列结论:①∠2和∠4互为对顶角;②∠3+∠2=180°;③∠5与∠4互补;④∠5=∠3-∠1;其中正确的是________。
2019备战中考数学(苏科版)巩固复习-第六章平面图形的认识(一)(含解析)一、单选题1.同一平面内的三条直线满足a⊥b,b⊥c,则下列式子成立的是()A. a∥cB. b⊥aC. a⊥cD. b∥c2.如图,AOE是一条直线,图中小于平角的角共有()A. 4个B. 8个C. 9个D. 10个3.木匠在木料上画线,先确定两个点的位置,就能把线画得很准确,其依据是()A. 两点确定一条直线B. 两点确定一条线段C. 过一点有一条直线D. 过一点有无数条直线4.如图,如果在阳光下你的身影的方向北偏东60°方向,那么太阳相对于你的方向是()A. 南偏西60°B. 南偏西30°C. 北偏东60°D. 北偏东30°5.下列说法正确的是()A. 线段AB和线段BA表示的不是同一条线段B. 射线AB和射线BA表示的是同一条射线C. 若点P是线段AB的中点,则PA=ABD. 线段AB叫做A、B两点间的距离6.用一副三角尺,你能画出下面那个度数的角()A. 65度B. 105度C. 85度D. 95度7.过一点画已知直线的平行线,则( )A. 有且只有一条B. 有两条C. 不存在D. 不存在或只有一条8.如图,射线OB、OC将∠AOD分成三部分,下列判断错误的是()A. 如果∠AOB=∠COD,那么∠AOC=∠BODB. 如果∠AOB>∠COD,那么∠AOC>∠BODC. 如果∠AOB<∠COD,那么∠AOC<∠BODD. 如果∠AOB=∠BOC,那么∠AOC=∠BOD9.下列说法中是真命题的有()①一条直线的平行线只有一条;②过一点与已知直线平行的直线只有一条;③因为a∥b,c∥b,所以a∥c;④经过直线外一点有且只有一条直线与已知直线平行。
A. 1个B. 2个C. 3个D. 4个10.已知∠1=37°36′,∠2=37.36°,则∠1与∠2的大小关系为()A. ∠1<∠2B. ∠1=∠2C. ∠1>∠2D. 无法比较二、填空题11.34.37°=34°________′________″.12.已知∠α=53°27′,则它的余角等于________.13.如图,将一副三角板的直角顶点重合,摆放在桌面上,若∠BOC=63°,则∠AOD=________.14.下午2点30分时,时钟的分针与时针夹角的度数为________。
15.某校的早读时间是7:30﹣7:50,在这个时间中,分针旋转的角度为________ 度.16.两直线l1与l2平行可表示为________.17.一个角度数是18°15′等于________ 度.18.在同一平面内的两条直线ab,分别根据下列的条件,写出a,b的位置关系.(1)如果它们没有公共点,则________ .(2)如果它们都平行于第三条直线,则________ .(3)如果它们有且只有一个公共点,则________ .(4)过平面内的同一点画它们的平行线,能画出两条,则________ .(5)过平面内的不在a,b上的一点画它们的平行线,只画出一条,则________ .19.如图所示:直线AB与CD相交于O,已知∠1=30°,OE是∠BOC的平分线,则∠2=________°,∠3=________°.三、计算题20.若一个角比它的补角大20°,求这个角的度数.21.一个角的余角的3倍比这个角的补角少24°,那么这个角是多少度?四、综合题22.如图,点C在线段AB上,AC=6cm,MB=10cm,点M,N分别为AC,BC的中点.(1)求线段BC,MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=acm,M,N分别是线段AC,BC的中点,请画出图形,并用a的式子表示MN的长度.23.如图1,直线AB上有一点P,点M、N分别为线段PA、PB的中点,AB=14.(1)若点P在线段AB上,且AP=8,求线段MN的长度;(2)若点P在直线AB上运动,设AP=x,BP=y,请分别计算下面情况时MN的长度:①当P在AB之间(含A或B);②当P在A左边;③当P在B右边;你发现了什么规律?(3)如图2,若点C为线段AB的中点,点P在线段AB的延长线上,下列结论:①的值不变;② 的值不变,请选择一个正确的结论并求其值.24.设a,b,c为平面内三条不同直线:(1)若a∥b,c⊥a,则b与c的位置关系是________;(2)若a∥b,b∥c,则a与c的位置关系是________.答案解析部分一、单选题1.【答案】A【考点】平行公理及推论【解析】【分析】根据垂直的定义求出∠1=∠2=90°,根据平行线的判定求出即可.【解答】∵a⊥b,b⊥c,∴∠1=∠2=90°,∴a∥c,故选A.【点评】本题主要考查对平行公理及推论,平行线的判定,垂线等知识点的理解和掌握,能熟练地运用性质进行推论是解此题的关键2.【答案】C【考点】角的计算【解析】【解答】解:图中小于平角的角共有:∠AOB,∠AOC,∠AOD,∠BOC,∠BOD,∠BOE,∠COD,∠DOE,∠COE,共9个.故选:C.【分析】根据角的定义分别表示出各角即可.3.【答案】A【考点】直线的性质:两点确定一条直线【解析】【解答】解:木匠在木料上画线,先确定两个点的位置,就能把线画得很准确,其依据是两点确定一条直线,故选:A.【分析】根据直线的性质:两点确定一条直线进行解答.4.【答案】A【考点】钟面角、方位角【解析】【分析】根据方向角的定义进行解答即可.【解答】由于人相对于太阳与太阳相对于人的方位正好相反,∵在阳光下你的身影的方向北偏东60°方向,∴太阳相对于你的方向是南偏西60°.故选A.【点评】本题考查的是方向角的概念,熟知方向角的概念是解答此题的关键.5.【答案】C【考点】直线、射线、线段【解析】【解答】解:A、线段AB和线段BA表示的是同一条线段,故A错误;B、射线AB和射线BA表示的不是同一条射线,故错误;C、由线段中点的定义可知C正确.D、线段AB的长度叫做A、B两点间的距离,故D错误.故选:C.【分析】根据线段、射线的特点以及线段的中点和两点间的距离的定义回答即可.6.【答案】B【考点】角的计算【解析】【解答】解:用一幅三角尺可以直接画出的角的度数有:30°、45°、60°、90°.A:65度的角不能用一副三角尺画出.B:因为105度=45度+60度,所以105度的角能用一副三角尺画出.C:85度的角不能用一副三角尺画出.D:95度的角不能用一副三角尺画出.故选:B.【分析】首先判断出一副三角尺的各个角的度数分别为多少,然后将各个角相加或相减,逐一判断出用一副三角尺能画出的角是多少度即可.7.【答案】D【考点】平行公理及推论【解析】【解答】这一点与直线的位置关系不明确,因此可能在直线上或在直线外,故答案为:D。
【分析】平行公理的条件要记牢:过直线外一点。
当这一点在直线上时,不能做平行线。
8.【答案】D【考点】角的计算【解析】【解答】解:A、如果∠AOB=∠COD,那么∠AOC=∠BOD,本选项正确;B、如果∠AOB>∠COD,那么∠AOC>∠BOD,本选项正确;C、如果∠AOB<∠COD,那么∠AOC<∠BOC,本选项正确;D、如果∠AOB=∠BOC,那么∠AOC=∠BOD,本选项错误.故选:D.【分析】利用图中角与角的关系选择即可得出D为错误选项.9.【答案】B【考点】平行公理及推论【解析】【分析】①一条直线的平行线只有一条是错误的;②经过一点有且只有一条直线与已知直线平行,应强调在经过直线外一点,故是错误的。
③因为a∥b,a∥c,所以b∥c,正确。
④满足平行公理的推论,正确。
故选B.10.【答案】C【考点】度分秒的换算【解析】【解答】解:∵37°36′=37.6°,37.6°>37.36°,∴∠1>∠2.故选:C.【分析】根据1°等于60′,把分化成度,比较大小可得答案.二、填空题11.【答案】22;12【考点】度分秒的换算【解析】【解答】∵0.37°=0.37×60′=22.2′,0.2′=0.2×60″=12″,∴34.37°=34°22′12″。
故答案为:22,12.【分析】这是度分秒的换算问题,一般大单位化为小单位,只需要乘以进率60 即可,首先用0.37°=0.37×60′=22.2′ ,再用0.2′=0.2×60″=12″,从而就可以得出答案。
12.【答案】36°33′【考点】余角、补角及其性质【解析】【解答】解:根据定义∠α的余角度数是90°﹣53°27′=36°33′.故答案为:36°33′.【分析】根据余角的定义可求解。
13.【答案】117°【考点】角的计算,余角和补角【解析】【解答】解:∵将一副三角板的直角顶点重合,∴∠AOB=∠COD=90°,∵∠BOC=63°,∴∠AOC=27°,∴∠AOD=117°.故答案为:117°.【分析】根据题意∠AOB=∠COD=90°,又∠AOC=∠AOB-∠BOC,∠AOD=∠COD+∠AOC,从而得出结论。
14.【答案】105°【考点】钟面角、方位角【解析】【解答】∵时针在钟面上每分钟转0.5°,分针每分钟转6°,∴钟表上下午2点30分时,时针与分针的夹角可以看成时针转过2时0.5°×30=15°,分针在数字6上.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴下午2点30分时分针与时针的夹角4×30°-15°=105°.【分析】首先画出钟面示意图,标出下午2点30分时,时钟的分针与时针的位置,由于时针在钟面上每分钟转0.5°,分针每分钟转6°钟表上下午2点30分时,时针与分针的夹角可以看成时针转过2时0.5°×30=15°,分针在数字6上.钟表12个数字,每相邻两个数字之间的夹角为30°,从而就可以根据4×30°-15°算出时钟的分针与时针夹角的度数15.【答案】120【考点】钟面角、方位角【解析】【解答】由分针60分钟旋转360°,得分针1分钟旋转360°÷60=6°,分针旋转了50﹣30=20分钟,则分针旋转的角度为6°×20=120°,故答案为:120【分析】根据分针60分钟旋转360°,可得分针旋转的速度,根据分针旋转的速度乘以分针旋转的时间,可得答案.16.【答案】l1∥l2【考点】平行公理及推论【解析】【解答】解:“∥”,是表示两直线平行的符号,所以l1与l2平行可表示为:l1∥l2.【分析】用∥来表示两直线平行.17.【答案】18.25【考点】度分秒的换算【解析】【解答】解:15′=0.25度,即18°15′=18.25度,故答案为:18.25.【分析】先把15′化成度,即可得出答案.18.【答案】a∥b;a∥b;a和b相交;a和b相交;a∥b【考点】平行公理及推论【解析】【解答】(1)同一平面内的两条直线ab,如果它们没有公共点,则a∥b;(2)同一平面内的两条直线ab,如果它们都平行于第三条直线,则a∥b;(3)同一平面内的两条直线ab,如果它们有且只有一个公共点,则a和b相交;(4)过平面内的同一点画它们的平行线,能画出两条,则a和b相交;(5)过平面内的不在a,b上的一点画它们的平行线,只画出一条,则a∥b.【分析】(1)由平行线的定义求解;(2)根据平行线公理,如果两条直线都与第三条直线平行,那么这两条直线也相互平行;(3)根据相交线的定义求解;(4)根据相交线的定义求解;(5)根据平行线公理,经过直线外一点,有且只有一条直线与这条直线平行.19.【答案】30;75【考点】角平分线的定义,对顶角、邻补角【解析】【解答】解:∵∠1=30°,∴∠2=∠1=30°,∠BOC=180°﹣∠1=150°,∵OE是∠BOC的平分线,∴∠3= ∠BOC=75°,故答案为:30,75.【分析】根据对顶角相等求出∠2,根据邻补角求出∠BOC,根据角平分线定义求出∠3即可.三、计算题20.【答案】解:设这个角为x,则这个角的补角为(180﹣x),那么180°﹣x=x﹣20°,解得x=100°【考点】余角和补角【解析】【分析】首先根据补角的定义,设这个角为x,则它的补角为(180﹣x),再根据题中给出的等量关系列方程即可求解.21.【答案】解:设这个角为x,由题意得,180°﹣x﹣24°=3(90°﹣x),解得x=57°【考点】余角和补角【解析】【分析】设这个角为x,根据余角和补角的概念列出方程,解方程即可.四、综合题22.【答案】(1)解:∵M是AC的中点,∴MC= AC=3cm,∴BC=MB﹣MC=7cm,又N为BC的中点,∴CN= BC=3.5cm,∴MN=MC+NC=6.5cm(2)解:如图:∵M是AC的中点,∴CM= AC,∵N是BC的中点,∴CN= BC,∴MN=CM﹣CN= AC﹣BC= (AC﹣BC)= acm【考点】两点间的距离【解析】【分析】(1)根据“点M、N分别是AC、BC的中点”,先求出MC、CN的长度,再利用BC=MB﹣MC,MN=CM+CN即可求出线段BC,MN的长度即可.(2)先画图,再根据线段中点的定义得MC= AC,NC= BC,然后利用MN=MC﹣NC得到MN= acm.23.【答案】(1)解:∵AP=8,点M是AP中点,∴MP= AP=4,∴BP=AB﹣AP=6,又∵点N是PB中点,∴PN= PB=3,∴MN=MP+PN=7(2)解:①点P在AB之间,MN= AB=7;②点P在AB的延长线上,MN= AB=7;③点P在BA的延长线上,MN= AB=7(3)解:选择②.设AC=BC=x,PB=y,②= = (在变化);② = =2(定值)【考点】两点间的距离【解析】【分析】(1)根据线段中点的性质,可得MP,NP,根据线段的和差,可得答案;(2)根据线段中点的性质,可得MP,NP,根据线段的和差,可得答案;(3)根据线段的和差,可得(PA+PB),(PA﹣PC),根据分式的性质,可得答案.24.【答案】(1)c⊥b(2)a∥c【考点】平行公理及推论【解析】【解答】(1)∵a∥b,c⊥a,∴c⊥b;(2) ∵a∥b,b∥c,∴a∥c。