相交线与平行线教案-10
- 格式:doc
- 大小:80.50 KB
- 文档页数:4
初中五年级数学教案学习平行线与相交线一、教案概述本节课主要介绍初中五年级数学教案学习平行线与相交线的内容。
通过本节课的教学,旨在使学生掌握平行线与相交线的定义、性质以及应用,并培养学生的逻辑思维和解决问题的能力。
二、教学目标1. 知识目标:了解平行线与相交线的概念和基本性质,掌握相关术语和符号的使用。
2. 能力目标:能够判断两条线是否平行,分析平行线与相交线之间的关系,并能灵活运用所学知识解决问题。
3. 情感目标:培养学生的数学兴趣,激发学生对数学问题的好奇心和求知欲。
三、教学重难点1. 重点:平行线与相交线的定义、基本性质以及应用。
2. 难点:灵活运用所学知识解决问题。
四、教学准备1. 教学工具:黑板、白板、投影仪等。
2. 教学材料:教科书、练习册等。
五、教学过程【导入】1. 利用教学中的图片、实物或者生活中的例子,激发学生对平行线与相交线的兴趣,并引入本节课的学习内容。
【讲解与示范】2. 对平行线进行定义说明,给出两条平行线的判定方法,并通过几个具体的例子进行解释和示范。
3. 讲解相交线的概念,介绍相交线的性质,包括交点、内错角、互补角等,并通过图示进行示范和说明。
4. 解释平行线与相交线之间的关系,包括同位角、对顶角等概念,并通过练习题让学生进行巩固和理解。
【合作探究】5. 分组活动:将学生分成若干小组,每组给出一组平行线或相交线的图形,让学生利用所学知识进行分析,并找出其中的特点和规律。
6. 小组汇报:让每个小组派代表上台汇报他们的分析和发现,通过交流让其他组加深对平行线和相交线的理解。
【拓展应用】7. 提出应用问题:通过提出一系列实际生活中的问题,引导学生将所学的知识应用到实际问题中解决。
8. 学生讨论:组织学生进行小组讨论,尝试解决应用问题,并就解决方法和答案进行交流和分享。
【归纳总结】9. 整理知识:在黑板上归纳总结本节课所学的知识,重点强调平行线与相交线的定义、判定方法、性质以及应用。
七年级下册《相交线与平行线》教案优秀范文五篇令公桃李满天下,何用堂前更种花。
今天小编为大家带来的是七年级下册《相交线与平行线》教案优秀范文,供大家阅读参考。
七年级下册《相交线与平行线》教案优秀范文一1两条直线的位置关系(第1课时)课时安排说明:《两条直线的位置关系》共分两课时,第一课时,主要内容是探索两条直线的位置关系,了解对顶角、余角、补角的定义及其性质;第二课时,主要内容是垂直的定义、表示方法、性质及其简单应用.一、学生起点分析学生的知识技能基础:学生在小学已经认识了平行线、相交线、角;在七年级上册中,已经对角及其分类有了一定的认识。
这些知识储备为本节课的学习奠定了良好的基础,使学生具备了掌握本节知识的基本技能。
学生活动经验基础:在前面知识的学习过程中,教师为学生提供了广阔的可供探讨和交流的空间,学生已经经历了一些动手操作,探索发现的数学活动,积累了初步的数学活动经验,具备了一定的图形认识能力和借助图形分析问题解决问题的能力;能够将直观与简单推理相结合;在合作探究的过程中,学生在以前的数学学习中学生已经经历了小组合作的学习过程,积累了大量的方法和经验,具备了一定的合作与交流能力。
二、教学任务分析针对七年级学生的学情,本节从学生熟悉的、感兴趣的情境出发,引导学生自主提炼归纳出同一平面内两直线的位置关系,了解补角、余角、对顶角的概念及其性质并能够进行简单的应用;通过“让学生经历观察、操作、推理、想象等探索过程” ,发展学生的空间观念及推理能力;能从实际情境中抽象出数学模型,为后续学习“空间与图形”这一数学领域而打下坚实的基础;激发学生从数学的角度认识现实,能够敏锐的发现问题、提出问题,并运用所掌握的数学知识初步解决问题;引导学生在思考、交流、表达的基础上逐步达成有关情感与态度目标. 本节内容在教材中处于非常重要的地位,起着承前启后的作用。
因此,本节课的目标是:1.知识与技能:在具体情境中了解相交线、平行线、补角、余角、对顶角的定义,知道同角或等角的余角相等、同角或等角的补角相等、对顶角相等,并能解决一些实际问题。
相交线平行线教案教案标题:相交线与平行线教学目标:1. 理解相交线和平行线的概念。
2. 能够通过观察和推理判断两条线是否相交或平行。
3. 能够运用相交线和平行线的性质解决相关问题。
教学重点:1. 相交线和平行线的定义和性质。
2. 通过观察和推理判断两条线是否相交或平行。
3. 运用相交线和平行线的性质解决相关问题。
教学准备:1. 教师准备:白板、黑板笔、教学投影仪等。
2. 学生准备:课本、笔记本等。
教学过程:一、导入(5分钟)1. 教师通过举例子或者展示图片引入相交线和平行线的概念,激发学生对这一主题的兴趣。
2. 引导学生思考:你们在生活中遇到过哪些相交线和平行线的例子?二、知识讲解(15分钟)1. 教师简要介绍相交线和平行线的定义,并通过示意图进行解释。
2. 教师讲解相交线和平行线的性质,如相交线的垂直性、平行线的对应角相等等。
三、示例分析(15分钟)1. 教师给出一些示例,让学生观察并判断两条线是否相交或平行。
2. 引导学生通过观察和推理,解释自己的判断依据,并与同桌讨论。
3. 教师随机选择几组学生进行讨论和展示,引导学生共同探讨相交线和平行线的性质。
四、练习与巩固(20分钟)1. 学生个人或小组完成课本上的练习题,运用所学知识判断两条线是否相交或平行。
2. 教师巡回指导,及时纠正学生的错误,解答疑惑。
3. 教师选取几道题目进行讲解,让学生理解解题思路和方法。
五、拓展应用(10分钟)1. 教师提出一些拓展问题,让学生运用所学知识解决更复杂的问题。
2. 学生个人或小组完成拓展问题,并进行讨论和展示。
六、总结与反思(5分钟)1. 教师总结本节课的重点内容,强调相交线和平行线的定义和性质。
2. 学生回顾课堂内容,思考自己对相交线和平行线的理解程度,并提出问题或疑惑。
教学延伸:1. 学生可以通过实际测量角度来验证相交线的性质,如垂直角、对顶角等。
2. 学生可以通过绘制图形来探索平行线的性质,如平行线之间的夹角等。
相交线与平行线全章教案第一章:相交线与平行线的概念介绍教学目标:1. 了解相交线与平行线的定义及特点。
2. 能够识别和判断直线之间的相交与平行关系。
3. 掌握平行线的性质及推论。
教学内容:1. 相交线的定义及特点。
2. 平行线的定义及特点。
3. 平行线的性质及推论。
教学活动:1. 通过图片和生活实例引导学生认识相交线与平行线。
2. 利用几何工具(直尺、三角板)进行实际操作,让学生观察和体验相交线与平行线的关系。
3. 引导学生通过观察和思考,总结出平行线的性质及推论。
作业布置:1. 请学生运用几何工具,画出两条相交线和两条平行线。
2. 请学生总结平行线的性质及推论,并加以证明。
第二章:相交线的性质与判定教学目标:1. 掌握相交线的性质及判定方法。
2. 能够运用相交线的性质解决实际问题。
教学内容:1. 相交线的性质。
2. 相交线的判定方法。
教学活动:1. 通过几何图形的观察和分析,引导学生掌握相交线的性质。
2. 利用几何工具进行实际操作,让学生体验相交线的判定方法。
作业布置:1. 请学生运用相交线的性质,解决一些实际问题。
2. 请学生总结相交线的判定方法,并加以证明。
第三章:平行线的性质与判定教学目标:1. 掌握平行线的性质及判定方法。
2. 能够运用平行线的性质解决实际问题。
教学内容:1. 平行线的性质。
2. 平行线的判定方法。
教学活动:1. 通过几何图形的观察和分析,引导学生掌握平行线的性质。
2. 利用几何工具进行实际操作,让学生体验平行线的判定方法。
作业布置:1. 请学生运用平行线的性质,解决一些实际问题。
2. 请学生总结平行线的判定方法,并加以证明。
第四章:平行线的应用教学目标:1. 掌握平行线的应用方法。
2. 能够运用平行线的性质解决实际问题。
教学内容:1. 平行线的应用方法。
2. 实际问题解决。
教学活动:1. 通过几何图形的观察和分析,引导学生掌握平行线的应用方法。
2. 提供一些实际问题,让学生运用平行线的性质解决。
平行线与相交线教案【平行线与相交线教案】一、教学目标:1. 理解平行线和相交线的概念。
2. 掌握判断平行线和相交线的条件。
3. 能够运用平行线和相交线的性质解决相关问题。
二、教学重点:1. 平行线的定义、判定条件及性质。
2. 相交线的定义、判定条件及性质。
3. 平行线和相交线的应用。
三、教学步骤:导入:(约5分钟)教师可以通过提问的方式激发学生对平行线和相交线的认知,例如:“你们知道平行线和相交线是什么吗?能否举例说明?”引导学生思考。
第一部分:平行线的性质(约20分钟)1. 讲解平行线的定义并给出示意图,引导学生理解定义。
2. 介绍判断平行线的条件(同位角相等、内错角相等、同旁内角相等)并举例说明。
3. 引导学生通过绘制图形,体验同位角、内错角和同旁内角的性质。
4. 给出练习题,让学生巩固判断平行线的条件和性质。
第二部分:相交线的性质(约20分钟)1. 讲解相交线的定义并给出示意图,引导学生理解定义。
2. 介绍判断相交线的条件(同位角相等、对顶角相等)并举例说明。
3. 引导学生通过绘制图形,体验同位角和对顶角的性质,并与平行线作对比。
4. 给出练习题,让学生巩固判断相交线的条件和性质。
第三部分:平行线与相交线的应用(约40分钟)1. 引导学生思考平行线和相交线在现实生活和几何图形中的应用。
2. 通过示例问题,引导学生运用平行线和相交线的性质解决实际问题,如求解未知角度、证明线段平行等。
3. 提供练习题,让学生灵活应用所学知识解决问题。
四、教学延伸:教师可以引导学生进一步探究平行线和相交线的性质,例如:梯形中对角线的性质、平行四边形的性质等。
同时,可以扩展到其他图形的性质,如三角形、正方形等,引发学生对几何学更深入的思考。
五、教学总结:教师对本节课的重点知识进行总结,并强调平行线和相交线的重要性和应用。
鼓励学生运用所学知识解决更多的几何问题。
六、作业布置:布置相关的练习题或思考题,巩固学生对平行线和相交线的理解和运用能力。
数学教案-相交线、平行线一、教学目标1.了解相交线和平行线的概念;2.能够识别和区分相交线和平行线;3.能够根据已知条件判断两条线是否相交或平行;4.能够应用相交线和平行线的性质解决实际问题。
二、教学内容1.相交线的定义和性质;2.平行线的定义和性质;3.如何判断两条线是否相交或平行;4.相交线和平行线在几何问题中的应用。
三、教学步骤步骤一:引入概念1.讲解相交线的概念:相交线是指两条线在同一平面上相交的线段;2.讲解平行线的概念:平行线是指在同一平面上没有交点的两条线;3.引导学生观察和发现相交线和平行线的特点。
步骤二:相交线和平行线的性质1.讲解相交线的性质:–相交线的交点只有一个;–相交线分割平行线上的线段成比例;–相交线的交点是两条线的垂直平分线;–相交线的交点将两条线分成四个相等的角;2.讲解平行线的性质:–平行线上的任意两个点到另一条平行线的距离相等;–平行线上的对应角相等;–平行线与一个截线之间的内角互补,与外角对等;–平行线与另一条平行线被截线所夹的对应角相等。
步骤三:判断相交线和平行线1.教授判断两条线是否相交的方法:–通过观察两条线的图形关系,判断是否有交点;–判断两条线的斜率是否相等,若相等则平行,否则相交;–利用两条线的方程,解方程组判断是否有解。
2.教授判断两条线是否平行的方法:–通过观察两条线的图形关系,判断是否平行;–判断两条线的斜率是否相等,若相等则平行,否则不平行;–利用两条线的方程,解方程组判断是否平行。
步骤四:应用相交线和平行线解决问题1.提供一些实际问题,要求学生利用相交线和平行线的性质解决问题;2.引导学生分析问题,确定解题思路;3.学生分组讨论并解答问题,老师带领讨论答案并给出评价。
四、教学资源1.相交线和平行线的定义和性质的讲义或教材;2.相交线和平行线的例题及解答;3.相交线和平行线的实际问题。
五、教学评估1.随堂小测:出示几个图形,让学生判断两条线是否相交或平行;2.讨论问题时观察学生的解题思路和表达能力;3.结合平时作业和课堂表现评定学生的学习成绩。
相交线与平行线教案一、教学目标1. 让学生理解相交线与平行线的概念。
2. 让学生掌握相交线与平行线的性质和判定方法。
3. 培养学生运用几何知识解决实际问题的能力。
二、教学内容1. 相交线与平行线的定义。
2. 相交线与平行线的性质。
3. 相交线与平行线的判定方法。
4. 实际问题中的应用。
三、教学重点与难点1. 教学重点:相交线与平行线的概念、性质和判定方法。
2. 教学难点:相交线与平行线的判定方法及实际问题中的应用。
四、教学方法1. 采用直观演示法,让学生通过观察、操作、思考,自主探索相交线与平行线的性质和判定方法。
2. 运用案例分析法,引导学生将几何知识应用于实际问题,提高解决问题的能力。
3. 采用小组合作学习法,培养学生的团队协作能力和沟通能力。
五、教学过程1. 导入新课:通过展示生活中的相交线与平行线现象,引导学生关注几何知识在生活中的应用。
2. 自主学习:让学生通过观察、操作、思考,自主探索相交线与平行线的性质和判定方法。
3. 案例分析:选取实际问题,引导学生运用几何知识解决问题,巩固所学知识。
4. 课堂练习:设计具有针对性的练习题,检验学生对相交线与平行线的掌握程度。
5. 总结提升:对本节课的内容进行归纳总结,强调相交线与平行线在生活中的应用。
6. 布置作业:设计课后作业,让学生进一步巩固所学知识。
六、教学评价1. 评价目标:检查学生对相交线与平行线的理解程度,以及能否运用所学知识解决实际问题。
2. 评价方法:通过课堂练习、课后作业和小组讨论等方式进行评价。
3. 评价内容:相交线与平行线的概念、性质、判定方法的掌握程度,以及实际问题解决能力。
七、教学拓展1. 相交线与平行线的应用领域:例如,交通规划、建筑设计、工业制造等领域。
2. 相关数学知识:例如,相似三角形、勾股定理等。
3. 实地考察:组织学生观察身边的相交线与平行线现象,加深对知识的理解。
八、教学资源1. 教材:相交线与平行线的相关教材。
相交线与平行线教案人教版(优秀教案)一、教学目标:知识与技能:1. 理解相交线与平行线的概念,掌握它们的性质和特征。
2. 学会使用画图工具和几何语言描述相交线与平行线。
过程与方法:1. 通过观察、操作、思考、交流等活动,培养学生的空间观念和逻辑思维能力。
2. 学会用画图软件(如几何画板)绘制相交线与平行线,提高运用信息技术的能力。
情感态度价值观:2. 感受数学与实际生活的联系,学会运用数学知识解决生活中的问题。
二、教学重点与难点:重点:1. 掌握相交线与平行线的概念及性质。
2. 学会用画图工具和几何语言描述相交线与平行线。
难点:1. 理解平行线的判定与性质。
2. 运用相交线与平行线的知识解决实际问题。
三、教学方法与手段:采用问题驱动法、案例分析法、合作学习法等多种教学方法,结合多媒体课件、几何画板等教学手段,引导学生观察、操作、思考、交流,从而达到教学目标。
四、教学过程:1. 导入新课:通过展示实际生活中的相交线与平行线图片,引导学生关注数学与生活的联系,激发学习兴趣。
2. 自主探究:让学生利用几何画板或其他画图工具,绘制相交线与平行线,观察它们的特征,总结性质。
3. 课堂讲解:讲解相交线与平行线的概念、性质和判定方法,引导学生理解并掌握知识。
4. 巩固练习:设计相关练习题,让学生运用所学知识解决问题,巩固所学内容。
5. 课堂小结:总结本节课的主要内容和收获,引导学生思考数学的实际应用。
五、课后作业:1. 完成练习册的相关题目。
2. 收集生活中的相交线与平行线图片,下节课分享。
教学反思:本节课通过问题驱动、案例分析等教学方法,引导学生观察、操作、思考、交流,有效地完成了教学目标。
在教学过程中,注意关注学生的学习情况,针对性地进行讲解和辅导,提高了学生的学习兴趣和数学素养。
结合几何画板等教学手段,使学生更好地理解和掌握相交线与平行线的知识。
但在课堂时间的安排上,可以更加合理,以确保学生有足够的时间进行自主探究和巩固练习。
相交线与平行线教案一、教学目标知识与技能:1. 理解相交线与平行线的定义及特点;2. 学会运用图形软件或手工绘制相交线与平行线;3. 能够解决与相交线与平行线相关的实际问题。
过程与方法:1. 通过观察、分析、归纳相交线与平行线的特点;2. 培养学生的空间想象能力、逻辑思维能力和创新能力;3. 学会运用数形结合的方法解决几何问题。
情感态度价值观:1. 培养学生的团队合作精神、自主学习能力;2. 激发学生对数学的兴趣,培养学生的审美情趣;3. 渗透“在生活中发现数学,在数学中品味生活”的理念。
二、教学内容第一节:相交线1. 相交线的定义及特点;2. 相交线在实际中的应用。
第二节:平行线1. 平行线的定义及特点;2. 平行线的判定与性质;3. 平行线在实际中的应用。
三、教学重点与难点重点:1. 相交线与平行线的定义及特点;2. 相交线与平行线在实际中的应用。
难点:1. 相交线与平行线的判定与性质;2. 运用数形结合的方法解决相关问题。
四、教学方法与手段1. 采用问题驱动法,引导学生观察、分析、归纳相交线与平行线的特点;2. 利用多媒体课件、实物模型等辅助教学,提高学生的空间想象能力;3. 结合例题讲解,让学生学会运用相交线与平行线的性质解决实际问题。
五、教学过程第一节:相交线1. 导入新课:通过展示生活中的相交线现象,引导学生关注相交线;2. 讲解相交线的定义及特点,引导学生观察、分析、归纳;3. 利用多媒体课件演示相交线的形成过程,增强学生的空间想象能力;4. 结合例题,讲解相交线在实际中的应用;5. 课堂练习:学生自主完成相交线的相关练习题。
第二节:平行线1. 导入新课:通过展示生活中的平行线现象,引导学生关注平行线;2. 讲解平行线的定义及特点,引导学生观察、分析、归纳;3. 利用多媒体课件演示平行线的形成过程,增强学生的空间想象能力;4. 讲解平行线的判定与性质,结合例题进行讲解;5. 课堂练习:学生自主完成平行线的相关练习题。
第五章相交线与平行线(2)——垂线
一.教学目标:
1.在了解垂线、垂线段等概念的基础上掌握垂线的两个性质及其应用。
2.会过一点画已知直线的垂线。
3.理解点到直线的距离的意义并会度量点到直线的距离。
二.教学过程:
1.引入情境:
(1)如图所示:指出∠1的邻补角和对顶角。
(2)如图当∠1变化为直角时,其它角如何变化?
2.垂线的概念:
(1)定义——两条直线相交所构成的四个角中有一个角时直角时,我们就说这两
条直互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
(2)垂直的表示及几何语言(略)
3.垂线的两个性质:
(1)垂线的画法:①任意画一条直线垂直于已知直线;
②探索:过平面内一点画一条直线垂直于已知直线;
(2)垂线的性质1——在同一平面内,经过一点有且只有一条直线与已知直线垂直。
(3)垂线段的概念及画法:①探索:过已知直线外一点,任做直线与已知直线相交;
②度量直线外一点与交点的所有线段;
垂线段的概念:
经过直线外一点做已知直线的垂线,这一点和垂足之间的线段叫做这条直线的垂线段。
(4)垂线的性质2——连接直线外一点与直线上各点的所有线段中,垂线段最短。
4.点到直线的距离——直线外一点到这条直线的垂线段的长度叫做点到直线距离。
三.应用举例及练习:
1.直线AB、BC、AC及点P如图所示:
(1)过点P分别做直线AB、BC、AC的垂线,垂足分别为D、E、F;
(2)用刻度尺量出三条垂线段的长度;
2.如图:已知线段AB和一点P。
(1)作一条直线PQ,使PQ⊥AB,且垂足为点Q;
(2)用刻度尺量出点P到AB的距离;
3.如图已知:AO⊥CO于点O,过点O做直线BD,且∠AOB=110°,
求:∠COD的度数。
四.作业布置:
1.完成教材中的习题;
2.见课后作业试卷。
第五章相交线与平行线——垂线作业
一.填空与选择题:
1.如图(1)CD⊥AB,垂足为D,则∠ADC=∠CDB=________。
2.如图(2)AO⊥OB,CO⊥OD,且∠AOD=138°,∠则BOC的度数是()
A.42°B.64°C.48°D.24°
3.如图(3)已知OA⊥OB、OC⊥OD,且∠AOC∶∠BOD=1∶2,则∠BOD的度数是_______。
4.如图(4)直线AB、CD相交于点O,OE⊥AB,且∠1=25°,则∠AOD的度数是_______,∠COE的度数是_______。
5.如图(5)点P是线段AB外一点,过点P做线段AB的垂线,可以做()
A.0条B.1条C.2条D.3条
6.OA是一条射线,点P为射线外一点,过点P向OA做垂线,垂足在()
A.射线OA上B.射线OA的端点O上
C.射线OA的反向延长线上D.射线OA所在的直线上
7.如图(6),已知直线l和l外一点O,则点O到直线l的距离是()
A.线段OA的长度B.线段OB的长度
C.线段OC的长度D.线段OD的长度
8.如图(7),AC⊥BC于C,AD⊥CD于D,且AB=2cm,CD=1cm,
则线段AC的长度的取值范围是____________ 。
二.画图题:
1.已知△ABC,分别画出点A到BC,点B到AC,
点C到AB的垂线段,并量出垂线段的长度。
2.已知∠AOB,射线OC是∠AOB的平分线,点M、N是OC上的任意两点。
(1)分别画出点M、N到角的两边的垂线段;
(2)测量垂线段的长度,由此你能得到怎样的结论。
—1—
三.解答题:
1.如图所示,直线AB、CD相交于点O,OD平分∠AOF,OE⊥CD于点O,∠1=50°,求:∠COB、∠EOB、∠BOF的度数。
2.如图所示,直线AB、CD相交于点O,EO⊥AB于点O,且∠COE=3∠EOD,
求:∠COB的度数。
3.如图所示,修一条路将村庄A、B与公路MN连接起来,怎样修才能使所修的公路最短?画出线路图,并说明理由。
—2—。