相交线与平行线-单元备课
- 格式:doc
- 大小:34.00 KB
- 文档页数:1
七年级下册《相交线与平行线》教案优秀范文五篇令公桃李满天下,何用堂前更种花。
今天小编为大家带来的是七年级下册《相交线与平行线》教案优秀范文,供大家阅读参考。
七年级下册《相交线与平行线》教案优秀范文一1两条直线的位置关系(第1课时)课时安排说明:《两条直线的位置关系》共分两课时,第一课时,主要内容是探索两条直线的位置关系,了解对顶角、余角、补角的定义及其性质;第二课时,主要内容是垂直的定义、表示方法、性质及其简单应用.一、学生起点分析学生的知识技能基础:学生在小学已经认识了平行线、相交线、角;在七年级上册中,已经对角及其分类有了一定的认识。
这些知识储备为本节课的学习奠定了良好的基础,使学生具备了掌握本节知识的基本技能。
学生活动经验基础:在前面知识的学习过程中,教师为学生提供了广阔的可供探讨和交流的空间,学生已经经历了一些动手操作,探索发现的数学活动,积累了初步的数学活动经验,具备了一定的图形认识能力和借助图形分析问题解决问题的能力;能够将直观与简单推理相结合;在合作探究的过程中,学生在以前的数学学习中学生已经经历了小组合作的学习过程,积累了大量的方法和经验,具备了一定的合作与交流能力。
二、教学任务分析针对七年级学生的学情,本节从学生熟悉的、感兴趣的情境出发,引导学生自主提炼归纳出同一平面内两直线的位置关系,了解补角、余角、对顶角的概念及其性质并能够进行简单的应用;通过“让学生经历观察、操作、推理、想象等探索过程” ,发展学生的空间观念及推理能力;能从实际情境中抽象出数学模型,为后续学习“空间与图形”这一数学领域而打下坚实的基础;激发学生从数学的角度认识现实,能够敏锐的发现问题、提出问题,并运用所掌握的数学知识初步解决问题;引导学生在思考、交流、表达的基础上逐步达成有关情感与态度目标. 本节内容在教材中处于非常重要的地位,起着承前启后的作用。
因此,本节课的目标是:1.知识与技能:在具体情境中了解相交线、平行线、补角、余角、对顶角的定义,知道同角或等角的余角相等、同角或等角的补角相等、对顶角相等,并能解决一些实际问题。
《平行线与相交线》单元备课一。
教材地位分析平行线、相交线在现实生活中随处可见,同时,它们又构成平面内两条直线的基本位置关系。
学习平行、垂直的有关内容,不仅是“空间与图形”内容的基础和必经途径,而且是积累学生空间与图形的活动经验、掌握平面图形的基础知识、学习简单而初步的说理、推理等内容所必需的。
二。
学生学习基础分析学生在七年级(上)中已经学习了有关直线、线段、角、平行与垂直的简单内容,积累了初步的观察、操作等活动经验,在此基础上,本章将进一步直观探究平行、垂直的有关内容,并在其中学习简单的说理;在八年级下册“证明(I)”中,学生还将继续学习平行问题,但却是从论证的角度。
三。
教材内容分析在本套教材中,作为“平行与垂直”的第二次“螺旋式上升",本章的主要内容在于,进一步探索平行线、相交线的有关几何事实,并以直观认识为基础进行简单的说理和初步的推理,同时,借助平行的有关结论解决一些简单的实际问题。
1。
教材的知识呈现方式分析本章首先通过台球桌面上的角,创设有利于学习补角、余角、对顶角等的问题情景,展开相交线的有关几何事实,使学生在直观的、现实的情景中,认识相交线所成的角及其基本结论;然后,通过设置一些探索性活动,按照“先探索直线平行的条件,再探索平行线的特征”的顺序呈现有关内容,并试图在探索活动和解决问题中,加深对平行的理解,进一步发展学生的空间观念。
与老人教版的教材处理方式相比,本章教材在呈现具体内容时,教材为学生提供了生动有趣的现实情景,并穿插安排了观察、操作、交流等活动;在探索直线平行条件之前自然引入了“三线八角" ,而不是孤立地处理有关内容。
这种编排方式,一是为了发展学生的合情推理能力,二是在直观的基础上进行简单的说理和初步的推理,充分体现直观与简单推理(仅限一步推理)相结合。
这种设计意图,旨在进一步深化学生对角、相交线、平行线及其一些简单特性的理解,以及对识图和简单画图技能的掌握,同时进一步丰富学生的数学活动经验和体验,并在学习中有意识地培养学生积极的情感、态度,促进良好数学观的养成。
相交线平行线教案教案标题:相交线与平行线教学目标:1. 理解相交线和平行线的概念。
2. 能够通过观察和推理判断两条线是否相交或平行。
3. 能够运用相交线和平行线的性质解决相关问题。
教学重点:1. 相交线和平行线的定义和性质。
2. 通过观察和推理判断两条线是否相交或平行。
3. 运用相交线和平行线的性质解决相关问题。
教学准备:1. 教师准备:白板、黑板笔、教学投影仪等。
2. 学生准备:课本、笔记本等。
教学过程:一、导入(5分钟)1. 教师通过举例子或者展示图片引入相交线和平行线的概念,激发学生对这一主题的兴趣。
2. 引导学生思考:你们在生活中遇到过哪些相交线和平行线的例子?二、知识讲解(15分钟)1. 教师简要介绍相交线和平行线的定义,并通过示意图进行解释。
2. 教师讲解相交线和平行线的性质,如相交线的垂直性、平行线的对应角相等等。
三、示例分析(15分钟)1. 教师给出一些示例,让学生观察并判断两条线是否相交或平行。
2. 引导学生通过观察和推理,解释自己的判断依据,并与同桌讨论。
3. 教师随机选择几组学生进行讨论和展示,引导学生共同探讨相交线和平行线的性质。
四、练习与巩固(20分钟)1. 学生个人或小组完成课本上的练习题,运用所学知识判断两条线是否相交或平行。
2. 教师巡回指导,及时纠正学生的错误,解答疑惑。
3. 教师选取几道题目进行讲解,让学生理解解题思路和方法。
五、拓展应用(10分钟)1. 教师提出一些拓展问题,让学生运用所学知识解决更复杂的问题。
2. 学生个人或小组完成拓展问题,并进行讨论和展示。
六、总结与反思(5分钟)1. 教师总结本节课的重点内容,强调相交线和平行线的定义和性质。
2. 学生回顾课堂内容,思考自己对相交线和平行线的理解程度,并提出问题或疑惑。
教学延伸:1. 学生可以通过实际测量角度来验证相交线的性质,如垂直角、对顶角等。
2. 学生可以通过绘制图形来探索平行线的性质,如平行线之间的夹角等。
2.1—1 2.1—2 结论:1.一般地,在同一平面内,两条直线的位置关系有两种: 2.定义分别为: 。
m nab.的位置有什么关系?大小有何关系?为什么?小组合作交流,尝试用自己的语言描述对顶角的定义。
:一般地,如果两个角的和是1800,那么称这两个角互为补角supplementary angle ) 注意:互余与互补是指两个角之间的数量关系,与它们的位置无关。
2.1—5 12 3 42.1—6 1.请画出两个角,使他们的和为直角。
2.请画出两个角,使它们的和为平角。
3.小组交流画法,相互点评。
4.用自己的语言描述补角余角的定义。
2.1—7中有什么关系?为什么?同角或者等角的余角相等。
同角或者等角的补角相等。
abc两条直线相交成四个角,如果有一个角是直角,那么称这两条直线互perpendicular),其中的一条直线叫做另一条直线的垂足。
通常用“⊥”表示两直线垂直。
2.1—1 2.1—2归纳结论:1.点A 和直线m 的位置关系有两种:点A 可能在直线m 上,也可能在直线m 外。
2.平面内,过一点有且只有....一条直线与已知直线垂直。
直线外一点与直线上各点连接的所有线段中,垂线段最短。
第三环节 学以致用,步步为营 请动手画一画四如图:一辆汽车在直线形的公路上由两侧的两所学校。
动手画一画3:请画出直线l 和l 外一点P 做PO ⊥l ,O 是垂足,在直线l 上取点A,B,C, 比较线段PO 、PA 、PB 、PC 的长短,你发现了什么?综合应用,开阔视野体育课上老师是怎样测量跳远成绩的?能说说说其中的道理吗?问题2:如图2.1-5已知∠=3cm,AB=5cm,线BC的距离等于E第2题图,那么哪两条直线平行?为什么?APQ=∠CFE=46°,可得到哪些平行线?为什么?与∠DCG 的两边相交于A ,B 两点,∠C 的同位角是 的同位角是 ,∠EBG 的同位角是 . 第3题第1题第4题(内错角相等,两直线平行)什么关系?图中还有其他同位角吗?它们的大小有什么关系?)图中有几对内错角?它们的大小有什么关系?为什么?)图中有几对同旁内角?它们的大小有什么关系?为什么?一谈今天学习的平行线的性质和上一节判定直线平行的条件有什么不同归纳:条件:角的关系性质:线的关系也平行吗?师生交流,共同总结本节课所学的知识,并有针对性的布置作,可以判定哪两条直线平行?根据是什么? ,可以判定哪两条直线平行?根据是什么? ,可以判定哪两条直线平行?根据是 什么? 1 =∠2,那么 EF 与 AB 平行,直线 . 1 = 2.3—22.3—3 2.3—42.3—52.3—62.3—72.3—8在应用它们时,你认为应该注意哪些问题?因为和所以分别表达的意义是什么?根据(1)请过C点画出与AB平行的另一边。
第五章相交线与平行线相交线(1)学习内容:相交线.学习目标:1.经历探究对顶角.邻补角的位置关系的过程;2.了解对顶角.邻补角的概念;3.知道“对顶角相等”并会运用它进行简单的说理.重点、难点:对顶角、邻补角的概念和“对顶角相等”是重点;正确区别互为邻补角与互为补角和运用“对顶角相等”说理是难点.教学资源的使用:课件.导学流程:一、情景导入(投影1)下图是一段铁路桥梁的侧面图,找出图中的相交线、平行线.“米”字形中的线段都相交,“米”字形中间的线段都平行,等等.相交线和平行线都有许多重要性质,并且在生产和生活中有广泛应用.我们将在前一章的基础上,进一步研究直线间的位置关系,同时还要介绍一些有关推理证明的常识,为后面的学习做些准备.二、呈现目标、任务导学(一)呈现目标学习对顶角和邻补角的性质.(二)互动探究(投影2)面是一把剪刀,你能联想到什么几何图形?两条直线相交,如图.1B 23B4OBB ACBDB上图中两条相交直线形成的四个角中,两两相配共能组成六对角,即:∠1和∠2、∠1和∠3、∠1和∠4、∠2和∠3、∠2和∠4、∠3和∠4.量一量各个角的度数,你能将上面的六对角分类吗?可分为两类:∠1和∠2、1和∠4、∠2和∠3、∠3和∠4为一类,它们的和是180º;∠1和∠3、∠2和∠4为二类,它们相等.第一类角有什么共同的特征?一条边公共,另一条边互为反向延长线.具有这种关系的两个角,互为邻补角.讨论:邻补角与补角有什么关系?邻补角是补角的一种特殊情况,数量上互补,位置上有一条公共边,而互补的角与位置无关.第二类角有什么共同的特征?有公共的顶点,两边互为反向延长线.具有这种位置关系的角,互为对顶角.思考:〔投影3〕下列图形中有对顶角的是()〕注意:对顶角形成的前提条件是两条直线相交,而邻补角不一定是两条直线相交形成的;每个角的对顶角只有一个,而每个角的邻补角有两个.在用剪刀剪布片的过程中,随着两个把手之间的角逐渐变小,剪刀刃之间的角也相应变小,直到剪开布片.在这过程中,两个把手之间的角与剪刀刃之间的角有什么关系?为了回答这个问题,我们先来研究下面的问题.如图,直线AB和直线CD相交于点O,∠1和∠3有什么关系?为什么?∠1和∠3相等.∵∠1+∠2=180º,∠2+∠3=180º .∴∠1=∠3(同角的补角相等)同理∠2和∠4相等.这就是说:对顶角相等.你能利用这个性质回答上面的问题吗?因为剪刀的构造可以看成两条相交的直线,所以两个把手之间的角与剪刀刃之间的角互为对顶角,由于对顶角相等,因此,两个把手之间的角与剪刀刃之间的角始终相等.(三)应用示例(投影4)如图,直线a、b相交,∠1=400,求∠2、∠3、∠4的度数.解:∵∠1+∠2=180º,∴∠2=180º—∠1=180º—40º=140º.1234OBACD1B 23B4OBACD∠3=∠1=40º,∠4=∠2=140º. 三、强化训练.当堂达标 课本5面练习.四、设计问题.布置预习完成习题5.1中2题,预习“垂线”一节. 课后反思:相 交 线(2)学习内容: 垂线.学习目标:1.了解垂线的概念.2.理解垂线的性质1.3.会用三角尺或量角器过一点画一条直线垂直于已知直线. 重点.难点:垂线的概念、性质1和画法是重点;画线段和射线的垂线是难点. 教学资源的使用: 投影仪. 导学流程: 一、情景导入(投影1)如图,取两根木条a 、b ,将它们钉在一起,固定木条a ,转动木条b.当b 的位置变化时,a 、b 所成的角α是也会发生变化,当α=90º时;垂直.二、呈现目标、任务导学(一)自主学习显然,垂直是相交的一种特殊情形,即两条直线相交成90º的情况.两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足.如图,直线AB 垂直于直线CD ,记作AB ⊥CD ,垂足为O.在生产和日常生活中,两条直线互相垂直的情形是很常见的,如:〔投影2〕aOBAC D十字路口的两条道路方格本的横线和竖线铅(二)交流展示你能再举一些其它的例子吗?思考:(投影3)下面所叙述的两条直线是否垂直?①两条直线相交所成的四个角相等.②两条直线相交,有一组邻补角相等.③两条直线相交,对顶角互补.①②③都是垂直的.(三)互动探究探究(投影4):学生用三角尺或量角器画已知直线l的垂线.(1)画已知直线l的垂线,这样的垂线能画出几条?(2)经过直线l上的一点A画l的垂线,这样的垂线能画几条?(3)经过直线l外的一点B画l的垂线,这样的垂线能画几条?由画图可知:(1)可以画无数条; (2)可以画一条; (3)可以画一条.这就是说,经过直线上或直线外一点,可以画一条垂线,并且只能画一条垂线,即:性质1 过一点有且只有一条直线与已知直线垂直.(四)解决疑难、适度拓展①“有”指存在,“只有”指唯一;②“过一点”中的“点”在直线上或在直线外. (五)总结梳理1.垂线的概念,垂直的表示;2.垂直的性质1;三、强化训练、当堂达标课本5面练习1、2题.3.垂线的画法.四、设计问题、布置预习完成课本8面3、4、5题,预习下一节.课后反思:相交线(3)学习内容:垂线段.学习目标:1.了解垂线段的概念.2.理解“垂线段最短”的性质.3.体会点到直线的距离的意义,并会度量点到直线的距离.重点、难点:“垂线段最短”的性质,点到直线的距离的概念及其简单应用是重点;理解点到直线的距离的概念是难点.教学资源的利用: 投影仪. 导学流程: 一、情景导入(投影1)如图(课本图5.1-8),在灌溉时,要把河中的水引到农田P 处, 如何挖渠能使渠道最短?说到最短,上学期我们曾经学过什么最短的知识,还记得吗?两点之间,线段最短. 如果把渠道看成是线段,它的一个端点自然是点P ,那么另一个端点的位置在什么地方呢?把江河看成直线l ,那么原问题就是这样的数学问题:在连接直线l 外一点P 与直线l 上各点的线段中,哪一条最短? 二、呈现目标、任务导学 (一)呈现目标 垂线段最短的性质. (二)互动探究演示:在黑板上固定木条l , l 外一点P ,木条a 一端固定在点P ,使之与l 相交于点A.左右摆动木条a , l 与a 的交点A 随之变动,线段PA 的长度也随之变化,a 与l 的位置关系怎样时,PA 最短? a 与l 垂直时,PA 最短.这时的线段PA 叫做垂线段. (投影2)画出PA 在摆动过程中的几个位置,如图,点A 1、A 2、A 3……在l 上,连接PA 1、PA 2、PA 3……,P O ⊥ l ,垂足为O ,用叠合法或度量法比较PO 、PA 1、PA 2、PA 3……的长短,可知垂线段PO 最短.连接直线外一点与直线上各点的所有线段中,垂线段最短,简单说成: 垂线段最短.(二)自主学习我们知道,连接两点的线段的长度叫做两点间的距离,这里我们把直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.如上图,P O 就是点P 到直线l 的距离.(三)解决疑难、适度拓展点到直线的距离和两点间的距离一样是一个正值,是一个数量,所以不能画距离,只能量距离.(四)总结梳理1.垂线段.点到直线的距离概念.2.垂线的性质2及应用. 三、强化训练、当堂达标(投影3)1.判断正确与错误,如果正确,请说明理由;若错误,请更正.lPaAbaCBA EDBAl PO A 2 A 1 … A 3(1)直线外一点与直线上的一点间的线段的长度是这一点到这条直线的距离.(2)线段AE是点A到直线BC的距离.(3)线段CD的长是点C到直线AB的距离.2.(投影4)已知直线a、b,过点a上一点A作AB⊥a,交b于点B,过B作BC⊥b 交a 上于点C.请说出线段AE的长是哪一点到哪一条直线的距离?CD的长是哪一点到哪一条直线的距离?3.课本中水渠该怎么挖?在图上画出来.如果图中比例尺为1:100000,水渠大约要挖多长?四:设计问题.布置预习完成课本8面6题,预习习题5.1中7—11题.课后反思:练习课学习内容:习题5.1中7—13题学习目标1.进一步学习平行线垂线的概念.2.会用平行线.垂线解决问题.重点难点:重点是做练习,难点是平行线.垂线的应用.教学资源的使用:投影仪.导学流程:一.复习引入1.对顶角和邻补角:有并且两边的两个角是对顶角;有并且的两个角是邻补角.2.对顶角的性质:对顶角 .(1)下列说法正确的是()A.相等的角是对顶角B.一个角的邻补角只有一个C.补角即为邻补角D.对顶角的平分线在一条直线上3.垂直和垂线:当两条直线相交所成的四个角中时,这两条直线互相垂直,其中的叫做的垂线.〔2〕题 [3]题 〔4〕题(2)(投影)如图,AB ⊥CD ,垂足为O ,EF 经过点O ,且∠3=260,则∠1= . 4.垂直的性质:(1)经过一点有且只有 与 垂直;(2)垂线段 .〔注〕性质(1)说明垂线的存在性和唯一性,是垂线作图的依据;性质(2)是定义点到直线距离的依据.(3)如图,三角形ABC 是直角三角形,∠C =900,其中最长的线段 是 .5.点到直线的距离:直线外一点到这条直线的 ,叫做点到直线的距离. 〔4〕如图,线段 的长度表示点D 到直线BC 的距离,线段 的长度表示点B 到直线CD 的距离,线段 的长度表示点A 、B 之间的距离.二.呈现目标.任务导学 (一)呈现目标 这一节做一些练习. (二).应用示例例1如图,一辆汽车在笔直的公路AB 上由A 向B 行驶,MN 分别是位于公路AB 两侧的村庄.(1)设汽车行驶到公路AB 上点P 位置时,距离村庄M 最近,行驶到点Q 位置时,距离村庄N 最近,请在图中的AB 上分别画出点P.Q 的位置;(2)当汽车从A 出发向B 行驶时,在哪一个位置到村庄M.N 的路程之和最短?请在图中标出这个位置.例2 如图,直线AB.CD 相交于点0,OD 平分∠BOF ,EO ⊥CD 于O ,∠EOF=1180,求∠COA 的度数.(三)互动探究讨论习题5.1中7—13题. 三、强化训练.当堂达标1.点P 为直线m 外一点,点A ,B ,C 为直线m 上三点,PA=4cm ,PB=5cm ,PC=2cm ,则点P 到 直线m 的距离为〔 〕A.4cmB.2cm;C.小于2cmD.不大于2cm2.如图所示,AD ⊥BD ,BC ⊥CD ,AB=a , BC=b ,则BD 的范围是〔 〕 A.大于a B.小于bC.大于a 或小于bD.大于b 且小于a 四、设计问题、布置预习1、完成习题5.1中10、11题.·M ·NBAA BC DEF 112131O ABCDEFO2、预习“平行线”.课后反思:平行线及其判定(1)学习内容:平行线和平行公理.学习目标:1.了解平行线的概念,理解同一平面内两条直线间的位置关系;2.掌握平行公理及平行线的画法.3.平行公理的存在性和唯一性.重点.难点:平行线的概念.画法及平行公理是重点;理解平行线的概念和根据几何语言画出图形是难点.教学资源的利用:投影仪.导学流程:一、情景导入(投影1)我们知道两条直线相交只有一个交点,除相交外,两条直线还存在其它的位置关系吗?看下面的图片:双杆上面的两根横杆,支撑横杆的直干它们所在的直线相交吗?游泳池中分隔泳道的线它们所在的直线相交吗?屏风的折处和边所在的直线相交吗?今天我们就来讨论这样的问题.二、呈现目标.任务导学(一)呈现目标:1.平行线.2.平行公理.(二)互动探究:1.平行线分别将木条a、b与木条c钉在一起,,并把它们想象成三条直线.转动a,直线a从在c的左侧与直线b 相交逐步变为在右侧与b 相交.想象一下,在这个过程中,有没有直线a 与直线b 不相交的位置呢?有,这时直线a 与直线b 左右两旁都没有交点. 同一平面内,不相交的两条直线叫做平行线. 直线AB 与直线CD 平行,记作“AB ∥CD ”.注意:①“同一平面内”是前提,以后我们会知道,在空间即使不相交,可能也不平行;②平行线是“两条直线”的位置关系,两条线段或两条射线平行,就是指它们所在的直线平行;③“不相交”就是说两条直线没有公共点.归纳一下,在同一平面内,两条直线有几种位置关系?动手画一画. 相交和平行两种.注意:这里所指的两条直线是指不重合的直线. 2.平行公理再来看上面的实验,想象一下,在转动木条a 的过程中,有几个位置能使a 与b 平行? 有且只有一个位置使a 与b 平行. 如图,过点B 画直线a 的平行线,能画几条?试试看. 只能画一条.从实验和作图,我们可以得到怎样的事实? 经过直线外一点,有且只有一条直线与这条直线平行.这一基本事实是人们在长期的实践中总结出来的结论,我们称它为公理,这个结论叫做平行公理.在上图中,过点C 画直线a 的平行线,它与过点B 画的的平行线平行吗?试试看.过点C 画的直线a 的平行线与过点B 画的直线a 的平行线相互平行. 这说是说,如果两条直线都与第三条直线平行,那么这条直线也互相平行.符号语言:∵b ∥a ,c ∥a ∴b ∥c.如果b 与c 不平行,那么经过直线外一点就有两条直线与已知直线平行,所以上面的结论是平行公理的推论.(三)总结梳理1.什么是平行线?“平行”用什么表示?2.平面内两条直线的位置关系有哪些?3.平行公理及推论是什么? 三、强化训练、当堂达标1.(投影2)判断下列说法是否正确?(1)在同一平面内,两条线段不相交就平行.(2)在同一平面内,平行于直线AB 的直线只有一条.(3)如果几条直线都和同一条直线平行,那么这几条直线都互相平行. 2.课本13面练习.a四、设计问题、布置预习 1.课本16面2题.2.预习“平行线的判定”. 课后反思:平行线及其判定(2)学习内容: 平行线的判定. 学习目标:1.学习判定定理:同位角相等,两直线平行.2.会用判定定理解决问题.3.经历探索两直线平行条件的过程,理解两直线平行的条件. 重点、难点:探索两直线平行的条件是重点,理解“同位角相等,两条直线平行”是难点. 教学资源的利用: 投影仪.导学流程: 一、情景导入(投影1)如图1,装修工人正在向墙上钉木条,如果木条b 与墙壁边缘垂直,那么木条a 与墙壁边缘所夹角为多少度时,才能使木条a 与木条b 平行?图1 图2 要解决这个问题,就要弄清楚平行的判定.二、呈现目标、任务导学 (一)呈现目标 学习平行线的判定. (二)互动探究以前我们学过用直尺和三角尺画平行线,如图(课本13面图5.2-5)在三角板移动的过程中,什么没有变?3 2bac41cba 43215 6 87三角板经过点P 的边与靠在直尺上的边所成的角没有变.如图,∠1与∠2是三角板经过点P 的边与靠在直尺上的边所成的角移动前后的位置,显然∠1与∠2是同位角并且它们相等,由此我们可以知道什么?两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单地说:同位角相等,两条直线平行.符号语言:∵∠1=∠2 ∴AB ∥CD.如图(课本14面5.2-7),你能说出木工用图中这种叫做角尺的工具画平行线的道理吗?用角尺画平行线,实际上是画出了两个直角,根据“同位角相等,两条直线平行,可知这样画出的就是平行线.(投影2)如图2,(1)如果∠2=∠3,能得出a ∥b 吗?(2)如果∠2+∠4=180°,能得出a ∥b 吗?(1)∵∠2=∠3(已知)∠3=∠1(对顶角相等) ∴∠1=∠2 (等量代换) ∴a ∥b (同位角相等,两条直线平行) 你能用文字语言概括上面的结论吗?两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行. 简单地说:内错角相等,两直线平行. 符号语言:(1)∵∠2=∠3 ∴a ∥b. (2)∵ ∠4+∠2=180°,∠4+∠1=180° (已知)∴∠2=∠1 (同角的补角相等) ∴a ∥b. (同位角相等,条直线平行) 你能用文字语言概括上面的结论吗?两条直线被第三条直线所截,如果同旁内角互补,那么两条直线平行. 简单地说:同旁内角互补,两直线平行. 符号语言: ∵∠4+∠2=180° ∴ a ∥b.三.强化训练.当堂达标1.完成课本15面练习1,补充(3)由∠A+∠ABC =1800可以判断哪两条直线平行?依据是什么?2.课本16面2题.四.设计问题.布置预习 1.作业16面1、2题.2.预习平行线的判定的应用. 课后反思:DC B A平行线及其判定(3)学习内容:平行线的判定的应用. 学习目标:1.掌握直线平行的条件,并能解决一些简单的问题;2.初步了解推理论证的方法,会正确的书写简单的推理过程.3.初识符号语言的运用. 重点.难点:直线平行的条件及运用是重点;会正确的书写简单的推理过程是难点. 教学资源的利用: 投影仪. 导学流程:一、复习引入:我们学习过哪些判断两直线平行的方法? (投影1)(1)平行线的定义:在同一平面内不相交的两条直线平行.(2)平行公理的推论:如果两条直线都平行于第三条直线,那么这两条直线也互相平行.(3)两直线平行的条件:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行. 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行. 二、呈现目标、任务导学 (一)呈现目标平行线的判定的应用. (二)例题导引(投影2)在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么?答:这两条直线平行. ∵b ⊥a c ⊥a (已知) ∴∠1=∠2=90°(垂直的定义) ∴b ∥c (同位角相等,两直线平行)你还能用其它方法说明b ∥c 吗? 方法一: 如图(1),利用“内错角相等,两直线平行”说明;方法二:如图(2),利用“同旁内角相等,两直线平行”说明.(1) (2)cba21cba21cba21注意:本例也是一个有用的结论.(投影3)如图,点B 在DC 上,BE 平分∠ABD ,∠DBE=∠A ,则B E ∥AC ,请说明理由. 分析:由BE 平分∠ABD 我们可以知道什么?联系∠DBE=∠A ,我们又可以知道什么?由此能得出B E ∥AC 吗?为什么?解:∵BE 平分∠ABD ∴∠ABE=∠DBE (角平分线的定义)又∠DBE=∠A ∴∠ABE=∠A (等量代换)∴B E ∥AC(内错角相等,两直线平行)注意:用符号语言书写证明过程时,要步步有据. 三、强化训练、当堂达标1.(投影2)如图,∠1=∠2=55°,试说明直线AB ,CD 平行?.1题 2题2.如图所示,已知直线a ,b ,c ,d ,e ,且∠1=∠2,∠3+∠4=180°,则a 与c 平行吗?•为什么?四、设计问题、布置预习 1.完成课本17面7.2.预习习题5.2中剩余题目. 课后反思:练 习 课学习内容:复习平行线的判定. 学习目标:1.复习平行线的判定.2.会运用平行线的判定解决问题.3.开拓知识视野,训练思维能力. 重点、难点:重点是做一些练习,难点是练习时符号语言的运用.ABCD E3 A BCDEF21d ecb a3412A.1个B.2个C.3个D.4个导学流程: 一、复习引入1.平行线:在同一平面内, 的两条直线叫做平行线.2.两条直线的位置关系: .3.平行公理:经过直线 有且只有 与这条直线平行. 推论:如果两条直线都和 平行,那么这两条直线 .4.同位角.内错角和同旁内角两条直线被第三条直线所截,在截线的 ,被截直线的 的两个角叫做同位角;在截线的 ,被截直线 的两个角叫做内错角;在截线的 ,被截直线 的两个角叫做同旁内角.5.平行线的判定(1) ,两直线平行. (2) ,两直线平行. (3) ,两直线平行. 二、呈现目标、任务导学 (一)呈现目标这一节做一些练习,复习平行线的性质. (二)例题导引例 如图,下列推理中正确的有( ) ①因为∠1=∠2,所以BC ∥AD ; ②因为∠2=∠3,所以AB ∥CD ; ③因为∠BCD+∠ADC=180°,所以BC ∥AD ; ④因为∠BCD+∠ADC=180°,所以BC ∥AD.三、强化训练、当堂达标 1.下列说法正确的有〔 〕①不相交的两条直线是平行线;②在同一平面内,不相交的两条线段平行;③过一点有且只有一条直线与已知直线平行;④若a ∥b ,b ∥c ,则a 与c 不相交. A.1个 B.2个 C.3个 D.4个2.在同一平面内,两条不重合直线的位置关系可能是〔 〕A.平行或相交B.垂直或相交C.垂直或平行D.平行.垂直或相交3.如图,点E 在CD 上,点F 在BA 上,G 是AD 延长线上一点. (1)若∠A=∠1,则可判断_______∥_______,因为________. (2)若∠1=∠_________,则可判断AG ∥BC ,因为_________. (3)若∠2+∠________=180°,则可判断CD ∥AB ,因为____________.4.如图,一个合格的变形管道ABCD 需要AB 边与CD 边平行,若一个拐角∠ABC=72°,则另一个拐角∠BCD=_______时,这个管道符合要求. 5.不相邻的两个直角,如果它们有一边在同一直线上,那么另一边相互〔 〕A.平行B.垂直C.平行或垂直D.平行或垂直或相交ABCD4 132 GE21D C B A6.如图,AB ∥EF ,∠ECD=∠E ,则CD ∥AB.说理如下:∵∠ECD=∠E ( ) ∴CD ∥EF ( ) 又AB ∥EF ( ) ∴CD ∥AB ( ). 四、设计问题、布置预习: 预习下一节.平行线的性质(1)学习内容: 平行线的性质. 学习目标:1.学习平行线的性质.2.会用平行线的性质解决问题.3.经历探索直线平行的性质的过程. 重点、难点:直线平行的性质是重点;区别平行线的性质和判定,综合运用平行线的性质和判定是难点.教学资源的利用: 投影仪. 导学流程: 一、复习导入怎样判定两条直线平行?这就是说,利用同位角.内错角和同旁内角可以判定两条直线平行,反过来,两条直线平行,同位角.内错角和同旁内角各有什么关系呢?二、呈现目标、任务导学 (一)呈现目标 1.平行线的性质.2.用平行线的性质解决问题.3.继续学习符号语言.(二)互动探究 利用练习本上的横线画两条平行线a ∥b ,然后画一条直线c 与这两条直线相交,标出所形成的八个角,如图. 度量这些角的度数,把结果填入表内:哪些角是同位角?它们具有怎样的数量关系? 哪些角是内错角?它们具有怎样的数量关系?哪些角是同旁内角?它们具有怎样的数量关系?再任意画一条截线d ,同样度量并计算各个角度数,这种数量关系还成立吗?cb a 43215 7 86 FEDCB A那么由此你得到怎样的事实:1.平行线被第三条直线所截,同位角相等,简单说成:两直线平行,同位角相等.2.平行线被第三条直线所截,内错角相等,简单说成:两直线平行,内错相等.3.平行线被第三条线所截,同旁内角互补,简单说成:两直线平行,同旁内角互补.思考:平行线的性质与平行线的判定有什么关系?由角的数量关系得出两条直线平行是“判定”,由两条直线平行得出角的数量关系是“性质”,因此,两者的条件和结论正好互换.你能根据性质1,推出性质2吗?如上图,∵a∥b ∴∠1=∠2(两直线平行,同位角相等)又∠3=∠1(对顶角相等) ∴∠2=∠3.对于性质3,你能写出类似的推理过程吗?(三)总结梳理这节课我们学习了什么?你能画图说明吗?三、强化训练、当堂达标独立完成课本21面练习1题.四、设计问题、布置预习1.完成习题5.3中草药2.3题.2.预习下节例题.课后反思:平行线的性质(2)学习内容:平行线的性质.学习目标:1.学习平行线的性质的应用.2.会用平行线的性质解决问题.3.经历平行线的性质的应用过程,掌握学习技能.重点.难点:平行线的性质是重点;综合运用平行线的性质和判定是难点.教学资源的利用:投影仪.导学流程:一、复习引入1.平行线有哪些性质?2.你能画图说明吗?二、呈现目标、任务导学(一)呈现目标平行线性质的应用研究. (二)例题导引 如图是一块梯形铁片的线全部分,量得∠D=100°,∠C=115°, 梯形另外两个角分别是多少度? 分析:梯形有什么特征?∠A 与∠D 、∠B 与∠C 有什么关系? 解:∵AB ∥CD ∴∠A+∠D=180°,∠B +∠C=180°∴∠A=180°-∠D=180°-100°=80° ∠B=180°-∠C=180°-115°=65°所以,梯形的另外两个角分别是80°,65°. (三)自主学习独立完成课本21面练习2题. (四)总结梳理这节课我们学习了平行线的性质,要注意平行线的性质与平行线的判定的区别与联系,以便我们能准确地运用.三、强化训练、当堂达标分组讨论习题5.3中6、7题. 四、设计问题、布置预习1.完成课本22面4、5题2.预习“命题、定理”. 课后反思:平行线的性质(3)学习内容: 命题与定理. 学习目标:1.了解命题.定理.的含义.2.会区分命题的题设和结论.3.会判断一个命题的真假性. 重点.难点:命题及组成是重点;区分命题的题设和结论是难点. 教学资源的利用: 多媒体. 导学流程: 一、情景导入我们平常说的话细究起来是有区别的,例如,“你吃饭了吗?”与“今天天气不好”就有区别,前一句表示疑问,没有作出判断,后一句作出了判断.数学中象这类对某件事情作D C BA出判断的语句还很多,值得我们研究.二、呈现目标、任务导学(一)呈现目标命题、命题的组成、定理.(二)互动探究再来看几个句子(投影):①如果两条直线都与第三条直线平行,那么这两条直线也互相平行;②等式两边都加同一个数,结果仍是等式;③相等的角是对顶角;④如果两条直线不平行,那么内错角不相等;⑤同位角相等.这些语句都对某一件事情作出了“是”或“不是”的判断,象这样判断一件事情的语句,叫做命题.思考:(投影)下列语句是命题吗?为什么?①蓝蓝的天空白云飘;②这不是坑人吗?③画AB∥CD.不是命题.因为它们只是对某件事情进行了陈述,表达了疑问,并没有作出判断.(三)自主学习1.命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.命题常可以写成“如果……那么……”的形式,这时“如果”后面的部分是题设,“那么”后面的部分是结论.例如,上面命题①中,“两条直线都与第三条直线平行”是已知事项,是题设,“这两条直线也互相平行”是由已知事项推出的事项,是结论.有些命题的题设和结论不明显,怎样才能找出题设和结论呢?我们可以将它们改写成“如果……那么……”的形式.例如,上面命题⑤可改写成:如果两个角是同位角,那么这两个角相等.2.上面的命题中有正确的,也有错误的,正确的命题叫做真命题,错误的命题叫做假命题,如果是真命题,题设成立,那么结论一定成立,如果是假命题,题设成立,不一定能保证结论成立.要确定一个命题是真命题,必须通过推理证实,推理的过程叫做证明,通过证明是真的命题叫做定理,定理是推理的依据;要确定一个命题是假命题,只需举一个反例即可.(四)合作求解1.请你把上面的命题②.③改写成“如果……那么……”的形式,并指出它的题设和结论.2.探究:(投影3)下面的命题是真命题,还是假命题?(1)锐角小于它的余角;(2)若a2>b2则,a>b.(3)如图,如果∠1=∠2,C E∥BF,那么AB∥CD;(1)是假命题,如65º角的余角是350,而65º大于35º.(2)是假命题,如当a=-3,b=-2时a2>b2,而a<b.(3)是真命题.说明:∵C E∥BF∴∠C=∠2(两直线平行,同位角相等)又∠1=∠2(已知)∴∠C=∠1(等量代换)A BC DEF12。
相交线与平行线全章教案第一章:相交线与平行线的概念介绍教学目标:1. 了解相交线与平行线的定义及特点。
2. 能够识别和判断直线之间的相交与平行关系。
3. 掌握平行线的性质及推论。
教学内容:1. 相交线的定义及特点。
2. 平行线的定义及特点。
3. 平行线的性质及推论。
教学活动:1. 通过图片和生活实例引导学生认识相交线与平行线。
2. 利用几何工具(直尺、三角板)进行实际操作,让学生观察和体验相交线与平行线的关系。
3. 引导学生通过观察和思考,总结出平行线的性质及推论。
作业布置:1. 请学生运用几何工具,画出两条相交线和两条平行线。
2. 请学生总结平行线的性质及推论,并加以证明。
第二章:相交线的性质与判定教学目标:1. 掌握相交线的性质及判定方法。
2. 能够运用相交线的性质解决实际问题。
教学内容:1. 相交线的性质。
2. 相交线的判定方法。
教学活动:1. 通过几何图形的观察和分析,引导学生掌握相交线的性质。
2. 利用几何工具进行实际操作,让学生体验相交线的判定方法。
作业布置:1. 请学生运用相交线的性质,解决一些实际问题。
2. 请学生总结相交线的判定方法,并加以证明。
第三章:平行线的性质与判定教学目标:1. 掌握平行线的性质及判定方法。
2. 能够运用平行线的性质解决实际问题。
教学内容:1. 平行线的性质。
2. 平行线的判定方法。
教学活动:1. 通过几何图形的观察和分析,引导学生掌握平行线的性质。
2. 利用几何工具进行实际操作,让学生体验平行线的判定方法。
作业布置:1. 请学生运用平行线的性质,解决一些实际问题。
2. 请学生总结平行线的判定方法,并加以证明。
第四章:平行线的应用教学目标:1. 掌握平行线的应用方法。
2. 能够运用平行线的性质解决实际问题。
教学内容:1. 平行线的应用方法。
2. 实际问题解决。
教学活动:1. 通过几何图形的观察和分析,引导学生掌握平行线的应用方法。
2. 提供一些实际问题,让学生运用平行线的性质解决。
相交线与平行线教案一、教学目标1. 让学生理解相交线与平行线的概念。
2. 让学生掌握相交线与平行线的性质和判定方法。
3. 培养学生运用几何知识解决实际问题的能力。
二、教学内容1. 相交线与平行线的定义。
2. 相交线与平行线的性质。
3. 相交线与平行线的判定方法。
4. 实际问题中的应用。
三、教学重点与难点1. 教学重点:相交线与平行线的概念、性质和判定方法。
2. 教学难点:相交线与平行线的判定方法及实际问题中的应用。
四、教学方法1. 采用直观演示法,让学生通过观察、操作、思考,自主探索相交线与平行线的性质和判定方法。
2. 运用案例分析法,引导学生将几何知识应用于实际问题,提高解决问题的能力。
3. 采用小组合作学习法,培养学生的团队协作能力和沟通能力。
五、教学过程1. 导入新课:通过展示生活中的相交线与平行线现象,引导学生关注几何知识在生活中的应用。
2. 自主学习:让学生通过观察、操作、思考,自主探索相交线与平行线的性质和判定方法。
3. 案例分析:选取实际问题,引导学生运用几何知识解决问题,巩固所学知识。
4. 课堂练习:设计具有针对性的练习题,检验学生对相交线与平行线的掌握程度。
5. 总结提升:对本节课的内容进行归纳总结,强调相交线与平行线在生活中的应用。
6. 布置作业:设计课后作业,让学生进一步巩固所学知识。
六、教学评价1. 评价目标:检查学生对相交线与平行线的理解程度,以及能否运用所学知识解决实际问题。
2. 评价方法:通过课堂练习、课后作业和小组讨论等方式进行评价。
3. 评价内容:相交线与平行线的概念、性质、判定方法的掌握程度,以及实际问题解决能力。
七、教学拓展1. 相交线与平行线的应用领域:例如,交通规划、建筑设计、工业制造等领域。
2. 相关数学知识:例如,相似三角形、勾股定理等。
3. 实地考察:组织学生观察身边的相交线与平行线现象,加深对知识的理解。
八、教学资源1. 教材:相交线与平行线的相关教材。
《第五章相交线与平行线》单元备课银丰学校:李小娜一、章节主题初中数学的四大领域为:数与代数、图形与几何、统计与概率、综合与实践。
其中“图形与几何”领域又包含三方面:图形的性质、图形的变化、图形与坐标。
第五章相交线与平行线研究的主要内容属于“图形的性质”。
在整个初中数学课程结构中“图形的性质”主要研究:1.点、线、面、角;2.相交线与平行线;3.三角形;4.四边形;5.圆;6.尺规作图;7.定义、命题、定理.由此可以看出:“相交线与平行线”一章是学生在第四章学习了有关直线、线段、角的简单内容,积累了初步的观察、操作等活动经验的基础上,继续探究相交、平行的有关内容,并进一步熟悉推理。
它是后续学习三角形、四边形、圆的基础,为后续学习提供基础的几何研究的方法。
《课程标准》中对“图形与几何”领域的四维目标是:1.知识与技能:经历图形的抽象、分类、性质探讨、运动、位置确定等过程,掌握图形与几何的基础知识和基本技能。
2.数学思考:建立空间观念,初步形成几何直观能力,发GAGGAGAGGAFFFFAFAF展形象思维与抽象思维。
3.解决问题:获得分析问题和解决问题的一些基本方法,体验解决问题方法的多样性,发展创新意识。
4.情感与态度:体会数学的特点,了解数学的价值。
数学课程内容的结果目标包括:了解、理解、掌握、灵活运用四大层次。
在这一大目标之下具体的对这一章节的要求是:5.1相交线理解:理解对顶角、余角、补角等概念;理解垂线、垂线段等概念;理解点到直线距离的意义。
掌握:探索并掌握对顶角相等的性质;掌握基本事实:过一点有且仅有一条直线与已知直线垂直。
综合运用:能用三角尺或量角器过一点画一条直线的垂线;能度量点到直线的距离。
5.2-5.3平行线及其判定、性质了解:了解平行于同一条直线的两条直线平行;了解命题、定理的意义。
理解:理解平行线的概念。
GAGGAGAGGAFFFFAFAF掌握:掌握基本事实“两条直线被第三条直线所截,如果同位角相等,那么两直线平行。
相交线与平行线(复习课)教案教学目标1 .梳理本章的知识结构.复习巩固相交线与平行线的有关概念和性质,使学生会用这些概念和 性质进行简单的推理或计算;能用直尺、三角板、量角器画垂线和平行线:经历对本章所学 知识回顾与思考的过程,将本章内容条理化,系统化,2 .通过对知识的疏理,进一步加深对所学概念的理解,经历把文字语言、符号语言和图形语言的相互转化过程.进一步熟悉和掌握几何语言,能用语言说明几何图形.3 .感受数学来源于生活又服务于生活,激发学习数学的乐趣.体验用运动变换的观点来揭示知识间内在联系.提高学生分析问题、解决问题的能力。
重点、难点重点:两条直线的相交和平行的位置关系,以及相交线、平行线的综合应用. 难点:垂直、平行线的性质和判定的综合应用.教学过程一、展示设计作品课前布置要求以小组为单位每组设计知识结构图作成手抄报形式,要求有创意体现本组特 色和风格教师给出评价二、回顾与思考出示幻灯片按知识网展开复习.L 对顶角、邻补角。
动动手 任意画两条相交直线,在形成的四个角(如图)中,两两相配共组成几对角?各对角 存在怎样的位置关系?(1)出示幻灯片 两条直线相交、构成哪两种特殊位置关系的角? 学生回答.练习一1 .如图1,直线AB 、CD 、EF 相交于0, NA0E 的对顶角是,邻补角是, NCOF 的对顶角是, 邻补角是2如图,直线a 、b 相交,Nl=40° ,求N2、N3、Z 4的度数。
结合练习教师强调:对顶角、邻补角是由两条相交面而成的具有特殊位置关系的角,要抓住对 顶角的特征,有公共顶角,角的两边互为反向延长线;邻补角的特征:有公共顶有一条公共 边,另一边互为反向延长线。
线相交 两条直邻补角,对顶角 垂线及其性质对顶角相等| 点到直线的距离线的位置关系 平面内两条直三条直 两条直线所截 线被第 同位角,内错角,同旁内角平行公理性质 平移判定(3)对顶角有什么性质?(对顶角相等)如果两个对顶角互补或邻补角相等,你得到什么结论?2.垂线及其性质.(1)垂线的定义及推理格式定义可以作垂线的制定方法用,也可以作垂线性质用.(2)如图所示,0为直线AB上一点,ZAOC=1 ZBOC, 0C是NAOD的平分线.3(1)求Z COD的度数;(2)判断0D与AB的位置关系,并说明理由.鼓励学生用不同方法求解变式训练渗透设未知数列方程的方法(3)垂线性质1和性质2.①请回忆一下后体育课测跳远成绩时,教师是怎样测量的?②垂线段最短。
相交线与平行线(复习课)教案一、教学目标1. 知识与技能:(1)能够识别和理解相交线与平行线的概念;(2)能够运用相交线与平行线的性质和判定定理解决实际问题。
2. 过程与方法:(1)通过观察、实践、探索等活动,加深对相交线与平行线性质的理解;(2)培养学生的空间想象能力、逻辑思维能力和解决问题的能力。
3. 情感态度与价值观:(2)培养学生团队协作、积极参与的精神风貌。
二、教学内容1. 相交线的概念及性质2. 平行线的概念及性质3. 相交线与平行线的判定定理4. 相交线与平行线在实际问题中的应用三、教学重点与难点1. 教学重点:(1)相交线与平行线的概念及性质;(2)相交线与平行线的判定定理及应用。
2. 教学难点:(1)相交线与平行线的判定定理的灵活运用;(2)解决实际问题中相交线与平行线的应用。
四、教学方法1. 采用问题驱动法,引导学生主动探究相交线与平行线的性质;2. 利用多媒体课件辅助教学,直观展示相交线与平行线的关系;3. 创设实践环节,让学生亲自动手操作,加深对知识的理解;4. 采用小组讨论法,培养学生的团队协作能力和解决问题的能力。
五、教学过程1. 导入新课:通过复习相关定义,引导学生回顾相交线与平行线的概念。
2. 知识讲解:(1)讲解相交线的性质,如相交线的夹角、对顶角等;(2)讲解平行线的性质,如平行线的距离、同位角等;(3)讲解相交线与平行线的判定定理,如同位角相等、内错角相等等。
3. 案例分析:展示实际问题,让学生运用所学的相交线与平行线的性质和判定定理解决问题。
4. 课堂练习:设计相关练习题,让学生巩固所学知识,并及时给予解答和反馈。
5. 总结提升:对本节课的主要内容进行总结,强调相交线与平行线在实际问题中的应用。
6. 作业布置:布置适量作业,让学生进一步巩固所学知识。
六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况,以及小组讨论中的表现,评价学生的积极性、合作能力和问题解决能力。
《平行线与相交线》单元备课一.教材地位分析平行线、相交线在现实生活中随处可见,同时,它们又构成平面内两条直线得基本位置关系。
学习平行、垂直得有关内容,不仅就是“空间与图形"内容得基础与必经途径,而且就是积累学生空间与图形得活动经验、掌握平面图形得基础知识、学习简单而初步得说理、推理等内容所必需得。
二。
学生学习基础分析学生在七年级(上)中已经学习了有关直线、线段、角、平行与垂直得简单内容,积累了初步得观察、操作等活动经验,在此基础上,本章将进一步直观探究平行、垂直得有关内容,并在其中学习简单得说理;在八年级下册“证明(I)”中,学生还将继续学习平行问题,但却就是从论证得角度。
三。
教材内容分析在本套教材中,作为“平行与垂直"得第二次“螺旋式上升",本章得主要内容在于,进一步探索平行线、相交线得有关几何事实,并以直观认识为基础进行简单得说理与初步得推理,同时,借助平行得有关结论解决一些简单得实际问题。
1.教材得知识呈现方式分析本章首先通过台球桌面上得角,创设有利于学习补角、余角、对顶角等得问题情景,展开相交线得有关几何事实,使学生在直观得、现实得情景中,认识相交线所成得角及其基本结论;然后,通过设置一些探索性活动,按照“先探索直线平行得条件,再探索平行线得特征”得顺序呈现有关内容,并试图在探索活动与解决问题中,加深对平行得理解,进一步发展学生得空间观念。
与老人教版得教材处理方式相比,本章教材在呈现具体内容时,教材为学生提供了生动有趣得现实情景,并穿插安排了观察、操作、交流等活动;在探索直线平行条件之前自然引入了“三线八角",而不就是孤立地处理有关内容、这种编排方式,一就是为了发展学生得合情推理能力,二就是在直观得基础上进行简单得说理与初步得推理,充分体现直观与简单推理(仅限一步推理)相结合。
这种设计意图,旨在进一步深化学生对角、相交线、平行线及其一些简单特性得理解,以及对识图与简单画图技能得掌握,同时进一步丰富学生得数学活动经验与体验,并在学习中有意识地培养学生积极得情感、态度,促进良好数学观得养成、2、教学目标1。
最新人教版七年级数学初一下册第五章相交线与平行线单元教案设计第五章相交线与平行线5.1相交线教学任务分析教学目标知识技能数学思考1.了解对顶角与邻补角的概念,能从图中辨认对顶角与邻补角.2.知道“对顶角相等”.3.了解“对顶角相等”的说理过程.1.经历探究对顶角、邻补角的位置关系的过程,建立空间观念.2.通过分析具体图形得到对顶角、邻补角的概念,发展学生的抽象概括能力.通过小组学习等活动经历得出对顶角相等的过程,进一步提高学生应用已有知识解决数学问题的能力.1.通过对对顶角的探究,使学生初步认识数学与现实生活的密切联系.2.通过师生的共同活动,促使学生在学习活动中培养良好的情感、合作交流、主动参与的意识,在独立思考的同时能够认同他人.解决问题情感态度重点难点对顶角的概念,“对顶角相等”的性质.“对顶角相等”的探究过程.教学流程安排活动流程图活动内容和目的活动1找出图形中的相交线活动2认识邻补角和对顶角活动3探究对顶角相等活动4巩固练习活动5课堂小结布置作业教具教师用三角板活动1观察图片,找出相交线,引入课题.活动2通过探究相交线中相交线角与角的位置关系,得出邻补角和对顶角的概念.并能找出图中的对顶角、邻补角.活动3通过探究发现“对顶角相等”的结论,进而通过说理证实这一结论,初步发展简单说理.活动4通过解决具体问题加深对对顶角、邻补角的理解.活动5通过学生习题,总结回顾本节知识点,以便培养学生的概括表达能力,并巩固知识、灵活应用.课前准备学具量角器,三角板补充材料教学过程设计问题与情境师生行为设计意图让学生借助已有的几何知识从现实生活中发现数学问题,能由实物的形状想象出相交线、平行线的几何图形.使新知识建立在对周围环境的直接感知的基础上.让学生增强对生活中的相交线、平行线的认识.建立直观的,形象化的数学模型.活动1问题找出图中的相交线、平行线.教师出示一组图片.学生观察图片,找相交线、平行线,引出本节课题.在本次活动中,教师应重点关注:(1)学生从简单的具体实物抽象出相交线、平行线的能力.(2)学生认识到相交线、平行线在日常生活中有着广泛的应用.(3)学生学习数学的兴趣.活动2问题(1)看见一把张开的剪刀,你能联想出什么样的几何图形?(2)观察这些角有什么位置关系.教师出示剪刀图片,提出问题.学生独立思考,画出相应的几何图形,并用几何语言描述.教师深入学生中,指导得出几何图形,并在黑板上画出标准图形.教师提出问题.学生分组讨论,在具体图形中得出两条相交线构成四个角,根据图形描述邻补角与对顶角的特征.学生可结合概念特征找到图中的两对邻补角与两对对顶角.在本次活动中,教师应关注:(1)学生画出两条相交线的几何图形,用语言准确描述.(2)学生能否从角的位置关系上对角进行分类.(3)学生是否能够正确区分邻补角、对顶角.(4)学生参与数学学习活动的主动性,敢于发表个人观点.通过生活中的情景抽象出几何图形,发现对顶角、邻补角,培养空间观念,发展几何直觉.通过对图形中角与角位置关系的研究分析,学生描述邻补角、对顶角概念,从角的位置关系上来研究这些角的相互关系.让学生经历从图形到文字到符号的转换过程,使学生加深对对顶角、邻补角概念的理解,积累一些图形研究的经验和方法.活动3问题(1)对顶角有什么大小关系呢?课件运用:此时可以在学生思考的基础上利用课件“对顶角”进行动画演示.(2)你能举出生活中应用对顶角相等的例子吗?教师提出问题.学生以组为单位,在观察的基础上研究解决问题的方法,鼓励学生从经验(用量角器,邻补角和为180度)出发,试从不同角度寻求解决问题的方法,得出对顶角相等的结论,口述过程,教师给予明晰,并板书说理过程.教师提出问题.学生回答.在本次活动中,教师应关注:(1)学生能否借助邻补角互补推导出对顶角相等的性质.(2)学生能否进行简单说理.(3)学生是否能运用对顶角相等准确地找到生活中的实际例子.活动2已从位置上对角进行了研究,现在从角的大小对对顶角进行研究,培养说理习惯.学生在探索的过程中会遇到困难,出现问题,通过合作学习加以解决.通过举出生活中应用对顶角相等的例子,使学生进一步理解对顶角的性质,体会对顶角在生活中的应用.活动4问题教师出示问题.(1)直线a、b相交,学生独立思考、独立解题.∠1=40°,求∠2、∠3、∠4教师具体指导并根据学生情况板书规的度数.范的简单说理过程.本次活动中,教师应关注:(1)学生对对顶角相等的掌握情况.(2)学生进行简单说理的准确性、规范性.(3)学生能否在独立思考的基础上,积极参与数学问题的讨论.(4)是否能用几何符号语言来表达自己的解题过程.(2)∠1等于90°时,∠2、∠3、∠4等于多少度?(3)如图是一个对顶角量角教师提出问题,并用课件“对顶角量角器.你能说明它度量角度的原器”演示度量过程.理吗?学生在观察的基础上进行讨论,最后学生独立解释其度量的原理.在本次活动中,教师应关注:(1)学生能否根据课件演示进行独立思考.(2)学生在思考后能否形成自己的看法并表达出来.通过具体问题,再次强化对顶角的概念及性质,并培养学生的说理习惯,发展符号感,逐步培养学生用几何语言交流的能力.问题(2)教师可根据学生的情况添加,为下一节学习两直线垂直作铺垫.。
第八单元单元备课一、教学内容:平行与相交二、单元教学目标1、通过具体的操作活动,认识直线、线段、与射线。
2、通过动手操作的活动,认识平面上的平行线和垂线,能用三角尺画垂线;通过探索活动,体会两点间所有连线中线段最短,知道两点间的距离。
三、单元教学中注意的问题:1. 在操作活动中,认识较抽象的平面图形的概念直线、线段、射线与平行线、垂线都是一些比较抽象的数学概念,学生在感受方面也是比较薄弱的。
对此,教材安排了大量的学生操作活动,目的是增强学生感受的力度,帮助学生积累一些经验,同时,也便于学生直观地认识这些概念。
所以,在教学中,需要精心设计学生的操作活动,每一个活动都能帮助学生理解相关的概念。
2. 在实际情境中,提高数学应用的意识在学生生活的环境中,存在着大量的数学问题,这些问题是学生学习数学与应用数学的很好题材,所以,在教学的过程中,多让学生从身边的、常见的、能感受的现象中学习概念,是学习理解概念、应用概念的有效途径。
3. 在自主探索中,培养发现数学的规律虽然,本单元的内容基本上是一些比较抽象的概念,学生在理解有一些困难。
但为了提供学生自主探索的机会,教材仍安排了较多的自主探索的题材,通过学生独立、或相互交流的方式,发现一些简单的数学规律,从而提高他们探索的能力。
四、教学重难点:直线、射线、线段、垂线、平行线、点到直线的距离等概念的教学是重点,垂线和平行线的画法是难点。
五、课时安排:3课时。
第一课时教学内容:课本115页信息窗1。
课型:新授教学目标:1、借助实际情景和操作活动,认识直线、线段与射线。
2、会数简单图形中的线段教具准备:3张长方形的纸,一把直尺教学难点:直线、线段与射线是一组比较抽象的图形,学生直接感知有一定的困难。
教学方法:引导法、小组交流讨论法、自主探究法教学过程:一、启发谈话,引出线。
在我们日常生活中经常可以看到各种各样的线,请看。
( 引导学生看信息窗1) ,师:爸爸在设计大桥的时候画了很多直线,这些直线有什么特点?板书:直线直线可以向两端无限延长,那么它有没有端点?板书:没有端点直线没有头无法量,我们就说直线是无限长。