复变函数与积分变换试题1
- 格式:doc
- 大小:349.50 KB
- 文档页数:6
复变函数复习卷及参考答案一、填空题1、复数1z i =+的三角表示式=2(cossin )44i pp+;复指数表示式=42ie p 。
2、复数()13z i =+的z =2;23Argz k pp =+;arg 3z p=;13z i =-。
3、62111i i i -æö==-ç÷+èø。
10125212131i i i i i +-=+-=-。
4、()()31123513253x y i x i y i x y +=ì++-=-Þí-=-î,求解方程组可得,45,1111x y -==。
5、()()231,f z z z =-+则()61f i i ¢-=--。
6、()n3L i -ln 226i k i pp =-+;ln()ie 12i p=+。
7、()(2)1321,(13)2ik i iiee i p p p -++==+。
8、32282(cossin)33k k i p pp p++-=+;0,1,2k =。
1224(4)2i i -==±。
9、1sin 2e e i i --=;221cos ()22i e e pp p -=+;10 、21024z dzz z ==++ò ;1212z dz i z p ==-ò 。
11、设31cos ()zf z z -=,则0z =是(一级极点);31cos 1Re [,0]2z s z -=。
1()s i n f z z=,0z =是本性奇点。
二、判断下列函数在何处可导?何处解析?在可导处求出导数。
(1)()22f z x iy=+;解:22,,2,0,0,2u u v v u x v y x y xyxy¶¶¶¶======¶¶¶¶,一阶偏导连续,因此当,x y y x u v u v ==-时,即x y =时可导,在z 平面处处不解析。
复变函数与积分变换试题(一)一、填空(3分×10)1.得模ﻩﻩ、幅角ﻩ。
2.-8i得三个单根分别为:、、。
3.Lnz在得区域内连续。
4.得解极域为:ﻩﻩﻩﻩﻩ。
5.得导数ﻩﻩﻩﻩﻩ。
6. ﻩﻩ。
7.指数函数得映照特点就是:ﻩﻩﻩﻩﻩﻩﻩﻩﻩ。
8.幂函数得映照特点就是: ﻩﻩﻩﻩﻩﻩﻩ。
9.若=F [f(t)]、则= F ﻩﻩﻩﻩ。
10.若f(t)满足拉氏积分存在条件、则L [f(t)]= ﻩﻩﻩ。
二、(10分)已知、求函数使函数为解析函数、且f(0)=0。
三、(10分)应用留数得相关定理计算四、计算积分(5分×2)1.2.C:绕点i一周正向任意简单闭曲线。
五、(10分)求函数在以下各圆环内得罗朗展式。
1.2.六、证明以下命题:(5分×2)(1)与构成一对傅氏变换对。
(2)七、(10分)应用拉氏变换求方程组满足x (0)=y (0)=z (0)=0得解y (t )。
八、(10分)就书中内容、函数在某区域内解析得具体判别方法有哪几种。
复变函数与积分变换试题答案(一)一、1.ﻩﻩ、ﻩ ﻩ2、ﻩ-i ﻩﻩ2iﻩ-i ﻩ3、ﻩZ 不取原点与负实轴 4、 空集5、ﻩ2z ﻩ6.0 7、将常形域映为角形域ﻩ8、 角形域映为角形域 9、ﻩ ﻩ10、 二、解:∵ﻩ ∴ ﻩ(5分)∵f (0)=0ﻩﻩﻩﻩc =0(3分)∴ﻩﻩ(2分)三、解:原式=(2分)ﻩ(2分)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅--=⎥⎦⎤⎢⎣⎡∞--0,1)31)(11(11Re 2,)3)(1(1Re 266z z z z s z z z s 分)(=0∴原式=(2分) =四、1.解:原式ﻩ(3分) z 1=0 ﻩz2=1ﻩ=0ﻩﻩ(2分)2.解:原式=五、1.解:nn i i z i i z ii z ii z i i z i z z f ∑∞=⎪⎭⎫⎝⎛--⋅-=-+⋅⋅-=+-⋅-=0111111)(111)(11)(分)(分)(分)( ﻩﻩ(2分) ﻩ2.解: (1分)ﻩ(2分)六、1.解:∵ﻩ(3分)ﻩ∴结论成立 (2)解:∵ﻩ(2分)ﻩ ∴与1构成傅氏对∴(2分)七、解:∵ﻩﻩ(3分)S (2)-(1):∴ (3分)∴八、解:①定义;②C-R 充要条件Th ; ③v 为u 得共扼函数ﻩ10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导就是f(z)在D 内解析得(ﻩ ﻩ)条件。
复变函数与积分变换试题(一)一、填空(3分×10)1.的模 ,幅角 。
)31ln(i --2.-8i 的三个单根分别为: ,,。
3.Ln z 在 的区域内连续。
4.的解极域为:。
z z f =)(5.的导数。
xyi y x z f 2)(22+-==')(z f 6.。
=⎥⎦⎤⎢⎣⎡0,sin Re 3z z s 7.指数函数的映照特点是:。
8.幂函数的映照特点是:。
9.若=F [f (t )],则= F 。
)(ωF )(t f )][(1ω-f 10.若f (t )满足拉氏积分存在条件,则L [f (t )]=。
二、(10分)已知,求函数使函数为解析函222121),(y x y x v +-=),(y x u ),(),()(y x iv y x u z f +=数,且f (0)=0。
三、(10分)应用留数的相关定理计算⎰=--2||6)3)(1(z z z z dz四、计算积分(5分×2)1.⎰=-2||)1(z z z dz2. C :绕点i 一周正向任意简单闭曲线。
⎰-c i z z3)(cos 五、(10分)求函数在以下各圆环内的罗朗展式。
)(1)(i z z z f -=1.1||0<-<i z 2.+∞<-<||1i z 六、证明以下命题:(5分×2)(1)与构成一对傅氏变换对。
)(0t t -δo iwt e -(2))(2ωπδ=⎰∞+∞-ω-dt e t i 七、(10分)应用拉氏变换求方程组满足x (0)=y (0)=z (0)=0的解y (t )。
⎪⎩⎪⎨⎧='+=+'+='++'0401z y z y x z y x 八、(10分)就书中内容,函数在某区域内解析的具体判别方法有哪几种。
复变函数与积分变换试题答案(一)一、1., 2.-i 2i -i22942ln π+ππk arctg 22ln 32+-333.Z 不取原点和负实轴 4. 空集5.2z 6.07.将常形域映为角形域8.角形域映为角形域9.10.⎰∞+∞-ωωπωωd e F i )(21⎰∞+-0)(dte tf st 二、解:∵∴(5分)yu x x v ∂∂-=-=∂∂xuy y v ∂∂==∂∂c xy u +=cxy y x i z f ++⎪⎭⎫ ⎝⎛+-=222121)(∵f (0)=0c =0(3分)∴(2分)222222)2(2)(2)(z ixyi y x i y x i xy z f -=+--=--=三、解:原式=(2分)⎥⎦⎤⎢⎣⎡--∑=k k z z z z s i ,)3)(1(1Re 2621π01=z 12=z (2分)⎥⎦⎤⎢⎣⎡---=∑=k k z z z z s i ,)3)(1(1Re 2643π33=z ∞=4z 2312(3,)3)(1(1Re 66⨯=⎥⎦⎤⎢⎣⎡--分)z z z s =0⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅--=⎥⎦⎤⎢⎣⎡∞--0,1)31)(11(11Re 2,)3)(1(1Re 266z z z z s z z z s 分)(∴原式=(2分) =23126⨯⨯i πi 63π-四、1.解:原式(3分)z 1=0z 2=1⎥⎦⎤⎢⎣⎡-π=∑=k k z z z s i ,)1(1Re 221=0(2分)]11[2+-=i π2.解:原式=iz z i=''=s co !22πi z z i =-π=)(cos i i cos π-=1ich π-五、1.解:ni z z f ∑∞⎪⎫⎛--⋅=⋅⋅=⋅=1111111111)(分)(分)(分)((2分)11)(--∞=-=∑n n n i z in nn i z i )(1-=∑∞-=2.解:⎪⎭⎫⎝⎛-+⋅-=-+⋅-=i z i i z i z i i z z f 11)(11)(1)(11)(2分)(分)((1分)(2分)nn i z i i z ∑∞=⎪⎭⎫ ⎝⎛---=02)(120)(11+∞=-=∑n n n i z i 20)(--∞=-=∑n n n i z i 六、1.解:∵(3分)∴结论成立0)(0t i e t t ti t i e dt e t t ωωωδ-==--∞+∞-=-⎰(2)解:∵(2分)1)(2210==ωπδπ=ωω-ω-∞+∞-⎰t i t i e dw e ∴与1构成傅氏对)(2w πδ∴(2分))(2ωπδω=-∞+∞-⎰dt e t i 七、解:∵(3分)⎪⎪⎩⎪⎪⎨⎧=+=++=++)3(0)(4)()2(0)()()()1(1)()()(s sZ s Y s Z s sY s X S s sZ s Y s sX S (2)-(1):∴(3分)⎪⎭⎫ ⎝⎛-⋅-=s s s Y 111)(2⎪⎭⎫ ⎝⎛++--=--=1111211112s s s s s s ∴cht e e t Y t t -=--=-121211)(八、解:①定义;②C-R 充要条件Th ;③v 为u 的共扼函数10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导是f (z )在D 内解析的()条件。
复变函数与积分变换试卷一、填空题(每空3分,共30分)1. 设z = x+iy,则| z|=_√(x^2)+y^{2}。
2. 复数z = 3 - 4i的共轭复数¯z=_3 + 4i。
3. 函数f(z)=(1)/(z)在z = 1处的泰勒展开式为∑_n = 0^∞(- 1)^n(z - 1)^n,收敛半径R=_1。
4. 设C为正向圆周| z|=2,则∫_C(dz)/(z - 1)=_2π i。
5. 拉普拉斯变换L[sin at]=_(a)/(s^2)+a^{2}(s>0)。
6. 已知F(s)=(1)/(s(s + 1)),其拉普拉斯逆变换f(t)=_1 - e^-t(t≥slant0)。
7. 设f(z)=u(x,y)+iv(x,y)在区域D内解析,则u与v满足柯西 - 黎曼方程(∂ u)/(∂ x)=_(∂ v)/(∂ y),(∂ u)/(∂ y)=-_(∂ v)/(∂ x)。
二、选择题(每题4分,共20分)1. 下列复数中,位于第三象限的是()A. - 1 + iB. 1 - iC. -1 - iD. 1 + i2. 函数f(z)=(1)/(z^2)+1的奇点是()A. z = i和z=-iB. z = 0C. z = 1和z=-1D. 无奇点。
3. 设C是从z_1=0到z_2=1 + i的直线段,则∫_C(x - iy)dz=()A. (1)/(2)(1 + i)B. (1)/(2)(1 - i)C. (1 + i)D. (1 - i)4. 拉普拉斯变换L[t^n]=()(n为正整数,s>0)A. (n!)/(s^n)B. (n)/(s^n)C. (n!)/(s^n+1)D. (n)/(s^n+1)5. 若F(s)是f(t)的拉普拉斯变换,则L[f'(t)]=()(s满足一定条件)A. sF(s)B. F(s)-f(0)C. sF(s)-f(0)D. F(s)三、计算题(每题10分,共30分)1. 求函数f(z)=(z)/((z - 1)(z - 2))在1<| z|<2内的洛朗级数展开式。
答案:一、填空题(本大题共5小题,每小题4分,总计20分)1sin )44--+i ππ2、1,1-+--i i3、2104+-=v u4、4+k e ππ5、12+i二、计算与解答题(本大题共8小题,每小题9分,总计72分)1.223e ()d ()==-⎰f z z ξξξξξ, 当(1)||3,>z 22023e e ()()d =2[]'|()==-=-⎰z f z i z ξξξξξξπξξ 220222e ()e 212|2()=----==-z z i i z z ξξξξππξ (2)0||3,<<z 122222e e ()()d d -=+-⎰⎰C C z f z z ξξξξξξξξ2222221e e 21222----=+=z z z z i i i z z z πππ(3)0=z ,22033e 2()d (e )''|42!=====⎰i f z i ξξξξπξπξ 2、2()()(,)=++f z x y iv x y φ,由于2(,)()=+u x y x y φ为调和函数,故=-xx yy u u ,即''()2=-y φ,212()=-++y y C y C φ.由C-R 方程,12=,2==-+=-x y y x u x v u y C v 从而得到 132=++v xy C x C . 由于(0)'(0)0==f f ,得1230===C C C . 因此2222()(,)2,()2=-==-+=,y y v x y xy f z x y xyi z φ. 3、将函数21()-=z f z z在将01=z 处展开成泰勒级数,并指出收敛半径. 收敛半径1=R ,即|1|1-<z2101111()(1)()'(1)()'11(1)((1)(1))'(1)(1)∞∞+==-==--=--+-=----=--∑∑n n n nn n z f z z z z z z z z n z4、333241111()cos (1)2!4!2!4!==-+-=-+-z f z z z z z z z z11Re [(),0]4!24==s f z5、扩充复平面内函数3e ()(1e )=-zz f z z 的奇点为,0∞和使10,1,12,0,1,2,-=====±±z z e e z Ln i k k π当220,11(1)(1)2!2!2!=-=-+++=---=---z z z z k e z z z故0=z 是()f z 的四级极点.设()1,(2)0,'(2)0=-=≠z g z e g k i g k i ππ2,1,2,==±±z i k k π是一级极点.又lim 2→∞=∞k k i π,故∞不是孤立奇点.6、841d (2)(5)=--⎰z z z z812Re [(),]2(Re [(),5]Re [(),])===-+∞∑k k i s f z z i s f z s f z ππ851Re [(),5]lim(5)(),Re [(052→=-=∞-),]=z s f z z f z s f z 所以,原式8152-=-2iπ7、ℱ0000[()cos ]()cos ()2-+∞+∞---∞-∞+=⋅=⋅⎰⎰i t i t iwtiwte ef t t f t t edt f t e dt ωωωω00()()0011()()[()()]22+∞---+-∞=⋅+⋅=-++⎰i t i tf t e f t e dt F F ωωωωωωωωℱ0000[()cos ]()cos cos |1+∞--=-∞===⎰i t i t t f t t t te dt te ωωωδωω8、两边Laplace 变换得 2()(4)(1)=++sY s s s求逆变换得 4441()c o s s in 171717-=-++t y t e t t 三1、由卷积定理L a t t af t =⎥⎦⎤⎢⎣⎡⎰0d )(L ss aF t f 1)(]1*)([⋅=3、由C-R 方程 得 '()0=+=-=x x y y f z u iv v iu ,得0====x x y y u v v u ,从而12,==u c v c ,故()f z 在D 内恒为常数.。
复变函数与积分变换(专升本)阶段性作业1总分:100分得分:0分一、填空题1. |z-i|=|z-1|的图形是___(1)___ .(6分)(1). 参考答案: 线段i到1的垂直平分线二、判断题1. 若存在,则在处解析。
(6分)正确错误参考答案:错误解题思路:2. 解析函数的虚部是实部的共轭调和函数。
(6分)正确错误参考答案:正确解题思路:3. 若和的偏导数连续,则可导。
(6分)正确错误参考答案:错误解题思路:4. 若是的奇点,则在处不可导。
(6分)正确错误参考答案:错误解题思路:三、单选题1. (cos+isin)3= 。
(5分)(A) cos(3)+isin(3)(B) cos(C) cos(3)+3isin(3)(D) cos参考答案:A2. 设z=x+iy,则下列函数为解析函数的是。
(6分)(A) f(z)=x2-y2+i2xy(B) f(z)=x-iy(C) f(z)=x+i2y(D) f(z)=2x+iy参考答案:A3. 在复平面上方程|z-1|+|z+1|=4表示。
(5分)(A) 直线(B) 圆周(C) 椭圆周(D) 抛物线参考答案:C4. 设,则的零点个数为。
(5分)(A) 0(B) 1(C) 2(D) 3参考答案:C5. 关于函数,以下哪个说法是错误的。
(5分)(A) 它是有界函数(B) 它是周期函数(C) 它仅有实零点(D) 它是解析函数参考答案:A6. 。
(6分)(A)(B)(C)(D)参考答案:C7. arg。
(5分)(A) -(B) -+2,(k=0,±1,±2)(C)(D) +2,(k=0,±1,±2)参考答案:C8. ln(-4-3i)= 。
(6分)(A) ln5+i(-π+arctg)(B) ln5+i(π+arctg)(C) ln5+i(-π+arctg)(D) ln5+i(π+arctg)参考答案:A9. 2sini= 。
[试题分类]:复变函数与积分变换[题型]:单选[分数]:2分1.复数 3 – 2i的虚部为()。
A. 3B.– 2iC.– 2D.–i[答案]:C2.算式(3 – 2i) – (–1 + i) 的值等于()。
A. 4 –iB. 4 – 3iC. 2 –iD. 2 – 3i[答案]:B3.算式(–1 + i)2的值等于()。
A. –2iB. 2 – 2iC. 2D. 2i[答案]:A4.算式的值等于()A.B.C.D.[答案]:D5.已知z1和z2 是两个复数,以下关于共轭复数运算的式子()是正确的。
A.B.C.D.[答案]:A6.方程组的解为()。
A.B.C.D.[答案]:B7. 复数的三角表示式为()。
A.B.C.D.[答案]:D8.复数z的主辐角在()上不连续。
A. 负实轴B. 正实轴C. 原点及负实轴D. 原点及正实轴[答案]:C9. 复数的三角表示式为()。
A.B.C.D.[答案]:D10. 的值等于()。
A.8iB.–8iC. 8D.–8[答案]:B11. 圆周方程的复数形式为()。
A.B.C.D.[答案]:A12.复数的模等于()。
A.13B.49C.7D.[答案]:C13.复数6 – 8i的模等于()。
A. 10B.–10C.D. 100[答案]:A14.复数2 + 3i的主辐角()。
A.B.C.D.[答案]:B15.复数–4 + 6i的主辐角()。
A.B.C.D.[答案]:D16.复数–1 – 2i的主辐角()。
A.B.C.D.[答案]:B17.复数 1 – 2i的主辐角()。
A.B.C.D.[答案]:C18.以下式子中,不正确的是()。
(注:Re表示实部,Im表示虚部)A.2i > 0B.| 2i | > 1C.Re (2i) = 0D.Re (2i) < Im (2i)[答案]:A19.以下()不是方程的根。
A.B.C. 2D. –2[答案]:C20. 以下复数中只有()是方程的根。
复变函数与积分变换试题本试题分两部分,第一部分为选择题,1页至3页,第二部分为非选择题,4页至8页,共8页;选择题40分,非选择题60分,满分100分,考试时间150分钟。
第一部分 选择题一、单项选择题(本大题共20小题,每小题2分,共40分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。
1. 复数i 258-2516z =的辐角为( )A . arctan 21 B .-arctan 21 C .π-arctan 21 D .π+arctan 212.方程1Rez 2=所表示的平面曲线为( )A . 圆B .直线C .椭圆D .双曲线 3.复数)5,-isin 5-3(cos z ππ=的三角表示式为( )A .)54isin ,543(cos -ππ+B .)54isin ,543(cos ππ-C .)54isin ,543(cos ππ+D .)54isin ,543(cos -ππ-4.设z=cosi ,则( )A .Imz=0B .Rez=πC .|z|=0D .argz=π 5.复数i3e+对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 6.设w=Ln(1-I),则Imw 等于( )A .4π-B . 1,0,k ,42k ±=ππ- C .4πD . 1,0,k ,42k ±=+ππ7.函数2z w =把Z 平面上的扇形区域:2||,03argz 0<<<z π<映射成W 平面上的区域( ) A .4||,032argz 0<<<w π< B .4||,03argz 0<<<w π<C . 2||,032argz 0<<<w π<D .2||,03argz 0<<<w π<8.若函数f(z)在正向简单闭曲线C 所包围的区域D 内解析,在C 上连续,且z=a 为D 内任一点,n 为正整数,则积分⎰+-c n a z z f 1)()(等于( )A .)()!1(2)1(a f n in ++π B .)(!2a f n i π C .)(2)(a if n π D .)(!2)(a f n in π9.设C 为正向圆周|z+1|=2,n 为正整数,则积分⎰+-c n i z dz1)(等于( )A . 1B .2πiC .0D .iπ21 10.设C 为正向圆周|z|=1,则积分⎰c z dz||等于( )A .0B .2πiC .2πD .-2π 11.设函数f(z)=⎰zd e 0ζζζ,则f (z )等于( )A .1++zze ze B .1-+zze ze C .1-+-zze ze D .1+-zze ze 12.设积分路线C 是帖为z=-1到z=1的上半单位圆周,则⎰+c 2dz z 1z 等于( )A .i 2π+B .i -2πC .i -2-πD .i 2-π+13.幂级数∑∞=1n 1-n n!z 的收敛区域为( )A .+∞<<|z |0B .+∞<|z |C .-1|z |0<<D .1|z |<14.3z π=是函数f(z)=ππ-3z )3-sin(z 的( )A . 一阶极点B .可去奇点C .一阶零点D .本性奇点 15.z=-1是函数41)(z zcot +π的( ) A . 3阶极点 B .4阶极点 C .5阶极点 D .6阶极点 16.幂极数∑∞=+1n nz (2n)!1)!n (的收敛半径为( ) A . 0 B .1 C .2 D .+∞ 17.设Q (z )在点z=0处解析,1)-z(z Q(z)f(z)=,则Res[f(z),0]等于( )A . Q (0)B .-Q (0)C .Q ′(0)D .-Q ′(0) 18.下列积分中,积分值不为零的是( )A .2|1-z C 3)dz,2z (z c3=++⎰为正向圆周|其中B .5|zC dz,e cz =⎰为正向圆周|其中C .1|z C dz,sinz zc =⎰为正向圆周|其中 D .2|z C dz,1-z cosz c =⎰为正向圆周|其中19.映射2z z w 2+=下列区域中每一点的伸缩率都大于1的是( )A .21|1z |>+B .21|1z |<+C .21|z |>D .21|z |<20.下列映射中,把角形域4argz 0π<<保角映射成单位圆内部|w|<1的为( )A .1-z 1z w 44+=B .1z 1z w 44+-=C .i z i z w 44+-=D .i-z iz w 44+=第二部分 非选择题(共60分)二、填空题(本大题共10空,每空2分,共30分)不写解答过程,将正确的答案写在每小题的空格内。
错填或不填均无分。
21.复数484z +=i 的模|z|=_____________________。
22.设100i)(1z +=,则Imz =______________________。
23.设z=i2e+,则argz =____________________________。
24.f (z )的可导处为_______________________________。
25.方程Inz=i 3π的解为_________________________。
26.设C 为正向圆周|z|=1,则⎰+c )dz z z1(=___________________________。
27.设C 为正向圆周|z -i|=21,则积分⎰c 2zdz i)-z(z e π=___________________。
28.设C 为正向圆周|ζ |=2,⎰=c d z -3sinf(z)ζζπ,其中|z|<2,则f ′(1)=___________________。
29.幂极数∑∞=1n nnz nn!的收敛半径为________________________。
30.函数f(z)=]1)(z 11z 1[1z15+++++在点z=0处的留数为__________________。
三、计算题(本大题共4小题,每小题5分,共20分)31.求22y -2x y x u +=的共轭调和函数v(x,y),并使v(0,0)=1。
32.计算积分⎰+=c dz |z |zz I 的值,其中C 为正向圆周|z|=2。
33.试求函数f(z)=ζζd e z-2⎰在点z=0处的泰勒级数,并指出其收敛区域。
34.计算积分⎰+=c 22zdz 3i)(z i)-(z e I π的值,其中C 为正向圆周|z-1|=3。
四、综合题(下列3个题中,35题必做,36、37题中只选做一题,需考《积分变换》者做37题,其他考生做36题,两题都做者按37题给分。
每题10分,共20分) 35.利用留数求积分dx 910x x cosxI 240++⎰∞+=的值。
36.设Z 平面上的区域为2|i -z |,2|i z |D <>+:,试求下列保角映射(1)(z)f w 11=把D 映射成W 1平面上的角形域ππ43argw 4D 11<<:; (2))(w f w 121=把D 1映射成W2平面上的第一象限2argw 0D 22π<<:;(3)w=f 3(w 2)把D 2映射成W 平面的上半平面:Imw>0; (4)w=f(z)把D 映射成G 。
37.积分变换(1)设=)F(ω,a 是一个实数,证明(2)利用拉氏变换解常微分方程初值问题:{1,y '-2y;y'-1.(0)y'0,y(0)=+==复变函数与积分变换试题参考答案及评分标准一、单项选择题(本大题共20小题,每小题2分,共40分)1.B 2.D 3.C 4.A 5.A 6.B 7.A 8.D 9.C 10.A 11.D 12.C 13.B 14.B 15.C 16.D 17.B 18.D 19.A 20.C 二、填空题(本大题共10空,每空2分,共20分)21.8 22.0 23.1 24.z=0 25.),3i (121z +=或3ie π26.4πi 27.-2π(π+i) 28.i,33π或3cos3i 2πππ⋅29.E 30.6三、计算题(本大题共4小题,每小题5分,共20分)31.解1:2y -2x yu2y 2x x u =∂∂+=∂∂, ,由C -R 条件,有yu-x v ,x x y v ∂∂=∂∂∂∂=∂∂, ⎰⎰++=+=∂∂=∴(x)y 2xy 2y)dy (2x dy xvv 2ϕ。
(2分) 再由yu-2y -2x (x )'2y x u ∂∂=+=+=∂∂ϕ, 得-2x (x)'=ϕ,于是C -x (x )2+=ϕ,C x -y 2x y v 22++=∴。
(4分)由1,v(0,0)=得1C =。
故1x -y 2x y v 22++= (5分) 解2: C dy yvdx x v y)v(x y )(x,(0,0) +∂∂+∂∂=⎰⎰+++=y)(x,(0,0)C2y)dy (2x 2x)dx -(2y(2分)C y 2x y -x 22+++= (4分)以下同解1。
32.解1:⎰⎰⎰+⋅==+c- c )d isin 2i(cos 2cos 2Rezdz 21dz |z |z z ππθθθθ (3分)i 4)d cos2(14i 0πθθπ=+=⎰。
(5分)解2:⎰⎰⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫ ⎝⎛+c 20 i i -i d 2ie 22e 22e dz |z |z |z |z πθθθθ (3分)i 40)2i(2ππ=+=。
(5分)33.解:因为∑∑∞=∞=+∞<===0n 2nn 0n n 2z -)z (| z n!(-1)n!)(-z e(z)' f 2|,(2分)所以由幂级数在收敛圆内逐项求积性质,得∑⎰∞=++∞<+==0n 12n n z)z (| 12n z n!(-1))d (' f (z) f |ζζ (5分)34.解:因在C 内22z3i)(z i)-(z e f(z)+=π有二阶级点z=I ,所以 ⎰⎥⎦⎤⎢⎣⎡=→c2i z f(z)i)-(z dz d lim 1!i 2f(z)dz π (2分) i)2(-116ππ+=。
(5分)四、综合题(下列3个题中,35题必做,36、37题中只选做一题,需考《积分变换》者做37题,其他考生做36题,两题都做者按37题给分。