2018-2019菏泽市中考必备数学考前押题密卷模拟试卷1-4(共4套)附详细试题答案
- 格式:pdf
- 大小:891.59 KB
- 文档页数:36
2019年山东省荷泽市牡丹区中考数学模拟试卷含答案解析一、选择题(本大题共8个小题,每小题3分,共24分)1. I - : I 的倒数是( )A. -1B. 3C. -D. -32. 下列计算正确的是()A. a+a=aB. a 64-a 3=a 2C. 4x 3 - 3x^=1 d . ( - 2xy ) 3= - 8x 6y 33. 在一个仓库里堆放有若干个相同的正方体货箱,这堆货箱的三视图如图所示,则这堆货箱共有( )主赠A. 4 个 4.解3£赠ZES1S 俯岬4个B. 5个C. 6个D. 7个为了某班学生每天使用零花钱的情况,小明随机查了 15名同学,结果如下表:每天使用零花钱(单位:元)人数44关于这15名同学每天使用的零花钱,下列说法正确的是( )A.众数是5元B.极差是4元C.中位数3元 D,平均数是2. 5元5.将一张正方形纸片,按如图步骤①,②,沿虚线对折两次,然后沿③中的虚线剪去一个角,展开铺平后的图形是( )A.C.O6.如图,是抛物线y=ax 2+bx+c (a^O )图象的一部分.已知抛物线的对称轴为x=2,与x 轴的一个交点是(-1,0).有下列结论:①abc>0;②4a-2b+c<0;③4a+b=0;④抛物线与x 轴的另一个交点是(5, 0);⑤点(-3, yD, (6, y 2)都在抛物线上,则有yi<y 2.其中正确的是()O >2 XA.①②③B.②④⑤C.①③④D.③④⑤7.如图,在ZkABC 中,CA=CB, ZACB=90° , AB=2,点D 为AB 的中点,以点D 为圆心作圆心角为90°的扇形DEF,点C 恰在弧EF 上,则图中阴影部分的面积为()c.D兀-1u.-------42n的值是()二、填空题(本大题共有6个小题,每小题3分,共18分)9.PM 2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为10.已知是二元一次方程组.y=i mx+ny=7nx-my=l的解,则m+3n的立方根为一11.关于x的一元二次方程(a-1)x2-2x+3=0有实数根,则整数a的最大值是12.对于任何实数,我们规定符号,[的意义是:|a[=ad・bc,按照这个规定计算:当必-3x+l=0时,x+13xx-2x-1的值为13.如图,Z\ABC中,AD是中线,AE是角平分线,CF1AE于F,AB=10,AC=6,则DF的长为14.如图,点A在双曲线y=2上,点B在双曲线y—(k^O)_t,AB〃x轴,过点A作AD±x轴于D,连接OB,x x与AD相交于点C,若AC=2CD,则k的值为.三、解答题(本题共78分)15.计算:22J(-2)2+6sin45°-./1g.’2x+5〈3(x+2)16.解不等式组:<2x-些_<1'并写出它的非负整数解・x+2x~1x-417.先化简,再求值:(—o-—5);------,其中x=tan60°+2.x-2x x-4x+4x18.如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.(1)求证:ADCE丝Z\BFE;19.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25% (不考虑其他因素),那么每件衬衫的标价至少是多少元?20.如图,已知反比例函数v一"1的图象与一次函数y=k2x+b的图象交于A,B两点,A(1,n),B(-:-2).2x2(1)求反比例函数和一次函数的解析式;(2)在x轴上是否存在点P,使AAOP为等腰三角形?若存在,请你直接写出P点的坐标;若不存在,请说明21.某电视台为了解本地区电视节目的收视率情况,对部分观众开展了“你最喜爱的电视节目”的问卷调查(每人只填写一项),根据收集的数据绘制了下面两副不完整的统计图,根据要求回答下列问题:(1)本次问卷调查共调查了多少名观众?请补全条形统计图并在图中标明相应数据;(2)请分别求出图2中收看“综艺节目"的人数占调查中人数的百分比,“科普节目”在扇形图中所对应的圆心角的度数;(3)现有喜欢“新闻节目”(记为A),“体育节目”(记为B),“综艺节目”(记为C),“科普节目”(记为D)的观众各一名,电视台要从四人中随机抽取两人参加联谊活动,请用“列表法”或“画树形图"的方法求出恰好抽到喜欢“新闻节目”和“体育节目”的两位观众的概率.图122.如图,四边形ABCD内接于。
2019年山东省菏泽市郓城县中考数学模拟试卷(6月份)一、选择题:本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项A、B、C、D中,只有一项是正确的,请把正确的选项填选出来1.(3分)据亚洲开发银行统计数据,2010年至2020年,亚洲各经济体的基础设施如果要达到世界平均水平,至少需要8000000000000美元基建投资.将8000000000000用科学记数法表示应为()A.0.8×1013B.8×1012C.8×1013D.80×10112.(3分)如图,下列关于数m、n的说法正确的是()A.m>n B.m=n C.m>﹣n D.m=﹣n3.(3分)如图,直线a,b被直线c所截,a∥b,∠2=∠3,若∠1=80°,则∠4等于()A.20°B.40°C.60°D.80°4.(3分)下列计算正确的是()A.2a+3a=6a B.a2+a3=a5C.a8÷a2=a6D.(a3)4=a7 5.(3分)下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.6.(3分)为筹备班级联欢会,班干部对全班同学最爱吃的水果进行了统计,最终决定买哪种水果时,班干部最关心的统计量是()A.平均数B.中位数C.众数D.方差7.(3分)如图,为了估计河的宽度,在河的对岸选定一个目标点P,在近岸取点Q和S,使点P,Q,S在一条直线上,且直线PS与河垂直,在过点S且与PS垂直的直线a上选择适当的点T,PT与过点Q且与PS垂直的直线b的交点为R.如果QS=60m,ST=120m,QR=80m,则河的宽度PQ为()A.40m B.60m C.120m D.180m8.(3分)甲、乙两人在一条长400米的直线跑道上同起点、同终点、同方向匀速跑步,先到终点的人原地休息.已知甲先出发3秒,在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,则下列结论正确的是()A.乙的速度是4米/秒B.离开起点后,甲、乙两人第一次相遇时,距离起点12米C.甲从起点到终点共用时83秒D.乙到达终点时,甲、乙两人相距68米二、填空题(本大题共6个小题,每小题3分,共18分,只要求把最后结果填写在答题卡的相应区域内)9.(3分)若分式有意义,则x的取值范围为.10.(3分)分解因式:3m2﹣6mn+3n2=.11.(3分)如图,⊙O的直径CD垂直于弦AB,∠AOC=40°,则∠CDB的度数为.12.(3分)请写出一个图象从左向右上升且经过点(﹣1,2)的函数,所写的函数表达式是.13.(3分)为了缓解城市拥堵,某市对非居民区的公共停车场制定了不同的收费标准(见下表).如果小王某次停车3小时,缴费24元,请你判断小王该次停车所在地区的类别是(填“一类、二类、三类”中的一个).14.(3分)一组按规律排列的式子:,,,,,…,其中第7个式子是,第n个式子是(用含的n式子表示,n为正整数).三、解答题(本大题共78分)15.已知:如图,E是BC上一点,AB=EC,AB∥CD,BC=CD.求证:AC=ED.16.计算:|﹣|+(﹣)﹣1﹣2sin45°+(π﹣2015)0.17.解不等式组:.18.已知x2+x﹣5=0,求代数式(x﹣1)2﹣x(x﹣3)+(x+2)(x﹣2)的值.19.已知关于x的一元二次方程x2﹣6x+k+3=0(1)求k的取值范围;(2)若k为大于3的整数,且该方程的根都是整数,求k的值.20.列方程或方程组解应用题:为了迎接北京和张家口共同申办及举办2020年冬奥会,全长174千米的京张高铁于2014年底开工.按照设计,京张高铁列车从张家口到北京最快用时比最慢用时少18分钟,最快列车时速是最慢列车时速的倍,求京张高铁最慢列车的速度是多少?21.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且DE=AC,连接CE、OE,连接AE交OD于点F.(1)求证:OE=CD;(2)若菱形ABCD的边长为2,∠ABC=60°,求AE的长.22.如图,△ABC内接于⊙O,AB为直径,点D在⊙O上,过点D作⊙O切线与AC的延长线交于点E,ED∥BC,连接AD交BC于点F.(1)求证:∠BAD=∠DAE;(2)若AB=6,AD=5,求DF的长.23.如图,将抛物线M1:y=ax2+4x向右平移3个单位,再向上平移3个单位,得到抛物线M2,直线y=x与M1的一个交点记为A,与M2的一个交点记为B,点A的横坐标是﹣3.(1)求a的值及M2的表达式;(2)点C是线段AB上的一个动点,过点C作x轴的垂线,垂足为D,在CD的右侧作正方形CDEF.①当点C的横坐标为2时,直线y=x+n恰好经过正方形CDEF的顶点F,求此时n的值;②在点C的运动过程中,若直线y=x+n与正方形CDEF始终没有公共点,求n的取值范围(直接写出结果).24.在△ABC中,∠C=90°,AC=BC,点D在射线BC上(不与点B、C重合),连接AD,将AD绕点D顺时针旋转90°得到DE,连接BE.(1)如图1,点D在BC边上.①依题意补全图1;②作DF⊥BC交AB于点F,若AC=8,DF=3,求BE的长;(2)如图2,点D在BC边的延长线上,用等式表示线段AB、BD、BE之间的数量关系(直接写出结论).2019年山东省菏泽市郓城县中考数学模拟试卷(6月份)参考答案与试题解析一、选择题:本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项A、B、C、D中,只有一项是正确的,请把正确的选项填选出来1.【解答】解:8000000000000=8×1012,故选:B.2.【解答】解:由图可知:点m表示的数是﹣2,点n表示的数是2,2与﹣2互为相反数,∴m=﹣n,故选:D.3.【解答】解:∵a∥b,∠1=80°,∴∠2+∠3=80°,∠3=∠4.∵∠2=∠3,∴∠3=40°,∴∠4=40°.故选:B.4.【解答】解:A、合并同类项系数相加字母部分不变,故A错误;B、不是同底数幂的乘法指数不能相加,故B错误;C、同底数幂的除法底数不变指数相减,故C正确;D、幂的乘方底数不变指数相乘,故D错误;故选:C.5.【解答】解:A、不是轴对称图形,也不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、不是轴对称图形,也不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.6.【解答】解:吃哪种水果的人最多,就决定最终买哪种水果,而一组数据中出现次数最多的一个数是这组数据的众数.故选:C.7.【解答】解:∵RQ⊥PS,TS⊥PS,∴RQ∥TS,∴△PQR∽△PST,∴=,即=,∴PQ=120(m).故选:C.8.【解答】解:由函数图象,得:甲的速度为12÷3=4米/秒,乙的速度为400÷80=5米/秒,故A错误;设乙离开起点x秒后,甲、乙两人第一次相遇,根据题意得:5x=12+4x,解得:x=12,∴离开起点后,甲、乙两人第一次相遇时,距离起点为:12×5=60(米),故B错误;甲从起点到终点共用时为:400÷4=100(秒),故C错误;∵乙到达终点时,所用时间为80秒,甲先出发3秒,∴此时甲行走的时间为83秒,∴甲走的路程为:83×4=332(米),∴乙到达终点时,甲、乙两人相距:400﹣332=68(米),故D正确;故选:D.二、填空题(本大题共6个小题,每小题3分,共18分,只要求把最后结果填写在答题卡的相应区域内)9.【解答】解:由题意,得x﹣2≠0.解得x≠2,故答案为:x≠2.10.【解答】解:3m2﹣6mn+3n2=3(m2﹣2mn+n2)=3(m﹣n)2.故答案为:3(m﹣n)2.11.【解答】解:连接OB,∵⊙O的直径CD垂直于AB,∴=,∴∠BOC=∠AOC=40°,∴∠BDC=∠AOC=×40°=20°.故答案为:20°.12.【解答】解:写出的函数只要是函数值y随x的增大而增大即可,∴y=x+3(答案不唯一).故答案为:y=x+3.13.【解答】解:如果停车所在地区的类别是一类,应该收费:2.5×4+3.75×8=40(元),如果停车所在地区的类别是二类,应该收费:1.5×4+2.25×8=24(元),如果停车所在地区的类别是三类,应该收费:0.5×4+0.75×8=8(元),故答案为二类.14.【解答】解:∵=(﹣1)2•,=(﹣1)3•,=(﹣1)4•,…∴第7个式子是,第n个式子为:.故答案是:,.三、解答题(本大题共78分)15.【解答】证明:∵AB∥CD,∴∠B=∠DCE.在△ABC和△ECD中,∴△ABC≌△ECD(SAS).∴AC=ED.16.【解答】解:原式=﹣3﹣2×+1=﹣2.17.【解答】解:解不等式①,得x>﹣2,解不等式②,得x<1,∴不等式组的解集是﹣2<x<1.18.【解答】解:(x﹣1)2﹣x(x﹣3)+(x+2)(x﹣2)=x2﹣2x+1﹣x2+3x+x2﹣4=x2+x﹣3,∵x2+x﹣5=0,∴x2+x=5,∴原式=5﹣3=2.19.【解答】解:(1)△=(﹣6)2﹣4(k+3)=36﹣4k﹣12=﹣4k+24,∵原方程有两个不相等的实数根,∴﹣4k+24>0.解得k<6;(2)∵k<6且k为大于3的整数,∴k=4或5.①当k=4时,方程x2﹣6x+7=0的根不是整数.∴k=4不符合题意;②当k=5时,方程x2﹣6x+8=0根为x1=2,x2=4均为整数.∴k=5符合题意.综上所述,k的值是5.20.【解答】解:设京张高铁最慢列车的速度是x千米/时.由题意,得,解得x=180.经检验,x=180是原方程的解,且符合题意.答:京张高铁最慢列车的速度是180千米/时.21.【解答】(1)证明:在菱形ABCD中,OC=AC.∴DE=OC.∵DE∥AC,∴四边形OCED是平行四边形.∵AC⊥BD,∴平行四边形OCED是矩形.∴OE=CD.(2)在菱形ABCD中,∠ABC=60°,∴AC=AB=2.∴在矩形OCED中,CE=OD=.在Rt△ACE中,AE=.22.【解答】解:(1)连接OD,∵ED为⊙O的切线,∴OD⊥ED,∵AB为⊙O的直径,∴∠ACB=90°,∵BC∥ED,∴∠ACB=∠E=∠EDO,∴AE∥OD,∴∠DAE=∠ADO,∵OA=OD,∴∠BAD=∠ADO,∴∠BAD=∠DAE;(2)连接BD,∴∠ADB=90°,∵AB=6,AD=5,∴BD=,∵∠BAD=∠DAE=∠CBD,∴tan∠CBD=tan∠BAD=,在Rt△BDF中,∴DF=BD•tan∠CBD=.23.【解答】解:(1)∵点A在直线y=x,且点A的横坐标是﹣3,∴A(﹣3,﹣3),把A(﹣3,﹣3)代入y=ax2+4x,解得a=1.∴M1:y=x2+4x,顶点为(﹣2,﹣4).∴M2的顶点为(1,﹣1).∴M2的表达式为y=x2﹣2x.(2)①由题意,C(2,2),∴F(4,2).∵直线y=x+n经过点F,∴2=4+n.解得n=﹣2.②由题意得:n的取值范围是n>3,n<﹣6.24.【解答】解:(1)①补全图形,如图1所示.②如图1②,由题意可知AD=DE,∠ADE=90°.∵DF⊥BC,∴∠FDB=90°.∴∠ADF=∠EDB.∵∠C=90°,AC=BC,∴∠ABC=∠DFB=45°.∴DB=DF.∴△ADF≌△EDB.∴AF=EB.在△ABC和△DFB中,∵AC=8,DF=3,∴A=,BF=.AF=AB﹣BF=即BE=.(2)如图2,BD=BE+AB.。
中考数学模拟试卷含答案注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题4分,满分40分)1.﹣2017的倒数是()A.2017 B.﹣2017 C.D.﹣2.下列计算正确的是()A.a+a=a2B.a•a2=a3C.(﹣a3)2=a9D.(3a)3=9a33.在下面的四个几何体中,左视图与主视图不相同的几何体是()A.B.C.D.4.一个多边形的内角和是外角和的3倍,则这个多边形是()A.六边形B.七边形C.八边形D.九边形5.为促进朗诵艺术的普及、发展,挖掘播音主持人才,某校初二年级举办朗诵大赛,凡凡同学根据比赛中九位评委所给的某位参赛选手的分数,制作了一个表格,如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()A.中位数B.众数 C.平均数D.方差6.已知点P(3﹣3a,1﹣2a)在第四象限,则a的取值范围在数轴上表示正确的是()A.B.C.D.7.正六边形的外接圆半径为1,则它的内切圆半径为()A.B.C.D.18.已知关于x的分式方程=1的解是负数,则a的取值范围是()A.a<1 B.a>1 C.a>1且a≠2 D.a<1且a≠9.如图,⊙O是△ABC的外接圆,若∠AOB=130°,则∠ACB的度数是()A.115°B.120°C.125°D.130°10.已知抛物线y=ax2+bx+c的顶点为D(﹣1,2),其部分图象如图所示,给出下列四个结论:①a<0;②b2﹣4ac>0;③2a﹣b=0;④若点P(x0,y0)在抛物线上,则ax02+bx0+c≤a﹣b+c.其中结论正确的是()A.1个B.2个C.3个D.4个二、填空题(每小题4分,共24分):在答题卡上相应题目的答题区域内作答.11.因式分解:m2+6m+9= .12.共享单车是指企业与政府合作,在公共服务区提供自行车单车共享服务.截至去年底,中国共享单车市场整体用户数已达到18860000,这个数据用科学记数法表示为.13.方程x2﹣5x=0的解是.14.已知三角形的两边分别是2cm和4cm,现从长度分别为2cm、3cm、4cm、5cm、6cm五根小木棒中随机抽一根,抽到的木棒能作为该三角形第三边的概率是.15.如图,在矩形ABCD中,点E在BC上,连接AE、DE,若AD=DE=2,∠BAE=15°,则CE的长为.16.如图,已知一次函数y=kx﹣4k+5的图象与反比例函数y=(x>0)的图象相交于点A(p,q).当一次函数y的值随x的值增大而增大时,p的取值范围是.三、解答题(共86分):在答题卡上相应题目的答题区域内作答.17.计算:()﹣2+(+)0﹣÷.18.请先将下式化简,再选择一个使原式有意义的数代入求值.(﹣1)÷.19.如图,点A、B、E、D在同一直线上,AC∥DF,AE=BD,AC=DF.求证:∠C=∠F.20.某中学组织学生参加交通安全知识网络测试活动.小王对九年(3)班全体学生的测试成绩进行了统计,并将成绩分为四个等级:优秀、良好、一般、不合格,绘制成如下的统计图(不完整),请你根据图中所给的信息解答下列问题:(1)九年(3)班有名学生,并把折线统计图补充完整;(2)已知该市共有12000名中学生参加了这次交通安全知识测试,请你根据该班成绩估计该市在这次测试中成绩为优秀的人数;(3)小王查了该市教育网站发现,全市参加本次测试的学生中,成绩为优秀的有5400人,请你用所学统计知识简要说明实际优秀人数与估计人数出现较大偏差的原因;(4)该班从成绩前3名(2男1女)的学生中随机抽取2名参加复赛,请用树状图或列表法求出抽到“一男一女”的概率.21.如图,在△ABC中,AB=AC,∠B=30°,BC=12.(1)用尺规作图的方法作AB的垂直平分线MN,分别交BC、AB于点M、N(保留作图痕迹,不要求写作法);(2)求第(1)题中的CM的长.22.在一条笔直的公路上有A、B两地,甲从A地去B地,乙从B地去A地然后立即原路返回B地,返回时的速度是原来的2倍,如图是甲、乙两人离B地的距离y(千米)和时间x(小时)之间的函数图象.请根据图象回答下列问题:(1)A、B两地的距离是千米,a= ;(2)求P的坐标,并解释它的实际意义;(3)请直接写出当x取何值时,甲乙两人相距15千米.23.如图,在△ABC中,AB=AC,以AB为直径的半圆交BC于点D,过点D作EF⊥AC于点F,交AB的延长线于点E.(1)求证:EF是⊙O的切线;(2)当BD=3,DF=时,求直径AB.24.如图,直线y=x+n与x轴交于点A,与y轴交于点B(点A与点B不重合),抛物线y=﹣x2﹣2x+c经过点A、B,抛物线的顶点为C.(1)∠BAO= °;(2)求tan∠CAB的值;(3)在抛物线上是否存在点P,能够使∠PCA=∠BAC?如果存在,请求出点P的坐标;如果不存在,请说明理由.25.如图,正方形ABCD的边长为1,E、F、G、H分别是AB、BC、CD、DA边上的动点(不含端点),且EG、FH均过正方形的中心O.(1)填空:OH OF (“>”、“<”、“=”);(2)当四边形EFGH为矩形时,请问线段AE与AH应满足什么数量关系;(3)当四边形EFGH为正方形时,AO与EH交于点P,求OP2+PH•PE的最小值.参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.﹣2017的倒数是()A.2017 B.﹣2017 C.D.﹣【考点】17:倒数.【分析】根据乘积为1的两个数互为倒数,可得答案.【解答】解:﹣2017的倒数是﹣,故选:D.2.下列计算正确的是()A.a+a=a2B.a•a2=a3C.(﹣a3)2=a9D.(3a)3=9a3【考点】47:幂的乘方与积的乘方;35:合并同类项;46:同底数幂的乘法.【分析】分别根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘进行计算即可.【解答】解:A、a+a=2a,故原题计算错误;B、a•a2=a3,故原题计算正确;C、(﹣a3)2=a6,故原题计算错误;D、(3a)3=27a3,故原题计算错误;故选:B.3.在下面的四个几何体中,左视图与主视图不相同的几何体是()A.B.C.D.【考点】U1:简单几何体的三视图.【分析】主视图、左视图是分别从物体正面、左面看,所得到的图形.【解答】解:A、正方体的左视图与主视图是全等的正方形,不符合题意;B、长方体的左视图和主视图分别是不全等的长方形,符合题意;C、球的左视图与主视图是全等的圆形,不符合题意;D、圆锥的左视图和主视图是全等的等腰三角形,不符合题意;故选B.4.一个多边形的内角和是外角和的3倍,则这个多边形是()A.六边形B.七边形C.八边形D.九边形【考点】L3:多边形内角与外角.【分析】根据多边形的内角和定理,多边形的内角和等于(n﹣2)•180°,外角和等于360°,然后列方程求解即可.【解答】解:设多边形的边数是n,根据题意得,(n﹣2)•180°=3×360°,解得n=8,∴这个多边形为八边形.故选C.5.为促进朗诵艺术的普及、发展,挖掘播音主持人才,某校初二年级举办朗诵大赛,凡凡同学根据比赛中九位评委所给的某位参赛选手的分数,制作了一个表格,如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()A.中位数B.众数 C.平均数D.方差【考点】W7:方差;W2:加权平均数;W4:中位数;W5:众数.【分析】根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.【解答】解:去掉一个最高分和一个最低分对中位数没有影响,故选:A.6.已知点P(3﹣3a,1﹣2a)在第四象限,则a的取值范围在数轴上表示正确的是()A.B.C.D.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集;D1:点的坐标.【分析】由点P在第四象限,可得出关于a的一元一次不等式组,解不等式组即可得出a的取值范围,再对照四个选项即可得出结论.【解答】解:∵点P(3﹣3a,1﹣2a)在第四象限,∴,解不等式①得:a<1;解不等式②得:a>.∴a的取值范围为<a<1.故选C.7.正六边形的外接圆半径为1,则它的内切圆半径为()A.B.C.D.1【考点】MM:正多边形和圆.【分析】根据题意画出图形,利用正六边形中的等边三角形的性质求解即可.【解答】解:如图,连接OA、OB,OG;∵六边形ABCDEF是边长为2的正六边形,∴△OAB是等边三角形,∴∠OAB=60°,∴OG=OA•sin60°=1×=,∴半径为2的正六边形的内切圆的半径为.故选B.8.已知关于x的分式方程=1的解是负数,则a的取值范围是()A.a<1 B.a>1 C.a>1且a≠2 D.a<1且a≠【考点】B2:分式方程的解;C6:解一元一次不等式.【分析】求出方程的解,根据已知方程的解为负数和x+1是分母得出2a﹣2<0,x+1≠0,求出即可.【解答】解: =1,x+1=2a﹣1,x=2a﹣2,∵关于x的分式方程=1的解是负数,∴2a﹣2<0,x+1≠0,∴a<1,2a﹣2≠﹣1,∴a<1且a≠,故选D.9.如图,⊙O是△ABC的外接圆,若∠AOB=130°,则∠ACB的度数是()A.115°B.120°C.125°D.130°【考点】M5:圆周角定理.【分析】根据圆周角定理和圆内接四边形的性质即可得到结论.【解答】解:如图,在优弧AB上取一点D,连接AD,BD,则∠ADB=AOB=65°,∴∠ACB=180°﹣∠ADB=115°.故选A.10.已知抛物线y=ax2+bx+c的顶点为D(﹣1,2),其部分图象如图所示,给出下列四个结论:①a<0;②b2﹣4ac>0;③2a﹣b=0;④若点P(x0,y0)在抛物线上,则ax02+bx0+c≤a﹣b+c.其中结论正确的是()A.1个B.2个C.3个D.4个【考点】H4:二次函数图象与系数的关系.【分析】利用抛物线开口方向可对①进行判断;利用抛物线与x轴的交点个数可对②进行判断;利用顶点坐标得到抛物线的对称轴,然后利用对称轴方程可对③进行判断;利用二次函数的性质可对④进行判断.【解答】解:∵抛物线开口向下,∴a<0,所以①正确;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以②正确;∵抛物线y=ax2+bx+c的顶点为D(﹣1,2),∴抛物线的对称轴为直线x=﹣=﹣1,∴b=2a,即2a﹣b=0,所以③正确;∵抛物线y=ax2+bx+c的顶点为D(﹣1,2),∴x=﹣1时,y有最大值2,∴点P(x0,y0)在抛物线上,则ax02+bx0+c≤a﹣b+c,所以④正确.故选D.二、填空题(每小题4分,共24分):在答题卡上相应题目的答题区域内作答.11.因式分解:m2+6m+9= (m+3)2.【考点】54:因式分解﹣运用公式法.【分析】直接运用完全平方公式进行分解.【解答】解:m2+6m+9=(m+3)2.12.共享单车是指企业与政府合作,在公共服务区提供自行车单车共享服务.截至去年底,中国共享单车市场整体用户数已达到18860000,这个数据用科学记数法表示为 1.886×107.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:18 860 000=1.886×107,故答案为:1.886×107.13.方程x2﹣5x=0的解是x1=0,x2=5 .【考点】A8:解一元二次方程﹣因式分解法.【分析】在方程左边两项中都含有公因式x,所以可用提公因式法.【解答】解:直接因式分解得x(x﹣5)=0,解得x1=0,x2=5.14.已知三角形的两边分别是2cm和4cm,现从长度分别为2cm、3cm、4cm、5cm、6cm五根小木棒中随机抽一根,抽到的木棒能作为该三角形第三边的概率是.【考点】X4:概率公式.【分析】根据三角形三边的关系确定三角形第三边的取值范围,然后根据概率公式求解.【解答】解:∵三角形的两边分别是2cm和4cm,∴第三边取值为大于2cm小于6cm,∴2cm、3cm、4cm、5cm、6cm五根小木棒中3cm、4cm、5cm三根小棒满足条件,∴抽到的木棒能作为该三角形第三边的概率为,故答案为.15.如图,在矩形ABCD中,点E在BC上,连接AE、DE,若AD=DE=2,∠BAE=15°,则CE的长为.【考点】LB:矩形的性质.【分析】只要证明∠ADE=∠EDC=30°,在Rt△DEC中,根据EC=DE•cos30°计算即可.【解答】解:∵四边形ABCD是矩形,∴∠BAD=∠C=90°,AD∥BC,∵∠BAE=15°,∴∠DAE=75°,∵DA=DE,∴∠DAE=∠DEA=75°,∴∠ADE=∠EDC=30°,∴EC=DE•cos30°=2×=,故答案为.16.如图,已知一次函数y=kx﹣4k+5的图象与反比例函数y=(x>0)的图象相交于点A(p,q).当一次函数y的值随x的值增大而增大时,p的取值范围是<p<4 .【考点】G8:反比例函数与一次函数的交点问题.【分析】先根据一次函数的解析式,得到一次函数y=kx﹣4k+5的图象经过点(4,5),过点(4,5)分别作y 轴与x轴的垂线,分别交反比例函数图象于B点和C点,根据点A(p,q)只能在B点与C点之间,即可求得p 的取值范围是<p<4.【解答】解:一次函数y=kx﹣4k+5中,令x=4,则y=5,故一次函数y=kx﹣4k+5的图象经过点(4,5),如图所示,过点(4,5)分别作y轴与x轴的垂线,分别交反比例函数图象于B点和C点,把y=5代入y=,得x=;把x=4代入y=,得y=,所以B点坐标为(,5),C点坐标为(4,),因为一次函数y的值随x的值增大而增大,所以点A(p,q)只能在B点与C点之间的曲线上,所以p的取值范围是<p<4.故答案为:<p<4.三、解答题(共86分):在答题卡上相应题目的答题区域内作答.17.计算:()﹣2+(+)0﹣÷.【考点】79:二次根式的混合运算;6E:零指数幂;6F:负整数指数幂.【分析】利用负整数指数幂、零指数幂的意义和二次根式的除法法则运算.【解答】解:原式=4+1﹣=5﹣3=2.18.请先将下式化简,再选择一个使原式有意义的数代入求值.(﹣1)÷.【考点】6D:分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a=2代入计算即可求出值.【解答】解:原式=•=•=a﹣1,当a=2时,原式=2﹣1=1.19.如图,点A、B、E、D在同一直线上,AC∥DF,AE=BD,AC=DF.求证:∠C=∠F.【考点】KD:全等三角形的判定与性质.【分析】先根据平行线的性质,以及等式性质,得出∠A=∠D,AB=DE,进而判定△ABC≌△DEF,进而得出∠C=∠F.【解答】证明:∵AC∥DF,∴∠A=∠D,∵AE=BD,∴AE=BE=BD﹣BE,即AB=DE,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠C=∠F.20.某中学组织学生参加交通安全知识网络测试活动.小王对九年(3)班全体学生的测试成绩进行了统计,并将成绩分为四个等级:优秀、良好、一般、不合格,绘制成如下的统计图(不完整),请你根据图中所给的信息解答下列问题:(1)九年(3)班有50 名学生,并把折线统计图补充完整;(2)已知该市共有12000名中学生参加了这次交通安全知识测试,请你根据该班成绩估计该市在这次测试中成绩为优秀的人数;(3)小王查了该市教育网站发现,全市参加本次测试的学生中,成绩为优秀的有5400人,请你用所学统计知识简要说明实际优秀人数与估计人数出现较大偏差的原因;(4)该班从成绩前3名(2男1女)的学生中随机抽取2名参加复赛,请用树状图或列表法求出抽到“一男一女”的概率.【考点】X6:列表法与树状图法;V5:用样本估计总体;VB:扇形统计图;VD:折线统计图.【分析】(1)根据成绩为良好的人数以及百分比,即可得到九年(3)班的人数,根据成绩为一般的人数为:50﹣15﹣20﹣5=10(人),即可补充折线统计图;(2)利用该市中学生总数乘以成绩为优秀的人数所占的百分比,即可得到结论;(3)根据样本是否具有代表性和广泛性,说明实际优秀人数与估计人数出现较大偏差的原因;(4)根据题意列表,进而求出抽到“一男一女”的概率.【解答】解:(1)20÷40%=50(人);成绩为一般的人数为:50﹣15﹣20﹣5=10(人)折线统计图如图所示:故答案为:50;(2)该市在这次测试中成绩为优秀的人数为:12000×=3600(人),答:估计该市在这次测试中成绩为优秀的人数为3600人;(3)实际优秀人数与估计人数出现较大偏差的原因:小王只抽查了九年(3)班的测试成绩,对于全市来讲不具有代表性,且抽查的样本只有50名学生,对于全市12000名中学生来讲不具有广泛性;(4)列表如下:由上表知:P(一男一女)==.21.如图,在△ABC中,AB=AC,∠B=30°,BC=12.(1)用尺规作图的方法作AB的垂直平分线MN,分别交BC、AB于点M、N(保留作图痕迹,不要求写作法);(2)求第(1)题中的CM的长.【考点】N2:作图—基本作图;KG:线段垂直平分线的性质;KH:等腰三角形的性质;KO:含30度角的直角三角形.【分析】(1)根据尺规作图的方法,作AB的垂直平分线MN,分别交BC、AB于点M、N;(2)根据线段垂直平分线的性质,得出∠BAM=∠B=30°,再根据等腰三角形的性质,即可得到∠CAM=90°,再根据含30度角的直角三角形的性质,得出MC=2AM=2BM,最后求得CM的长.【解答】解:(1)如图所示,MN即为所求;(2)如图,连结AM,∵MN是AB的垂直平分线,∴MB=MA∴∠BAM=∠B=30°,∴∠AMC=30°+30°=60°,又∵AB=AC,∴∠C=∠B=30°,∴∠CAM=180°﹣60°﹣30°=90°,∵在Rt△ACM中,∠C=30°,∴MC=2AM=2BM,又∵BC=12,∴3BM=12,即BM=4,∴MC=2BM=8.22.在一条笔直的公路上有A、B两地,甲从A地去B地,乙从B地去A地然后立即原路返回B地,返回时的速度是原来的2倍,如图是甲、乙两人离B地的距离y(千米)和时间x(小时)之间的函数图象.请根据图象回答下列问题:(1)A、B两地的距离是90 千米,a= 2 ;(2)求P的坐标,并解释它的实际意义;(3)请直接写出当x取何值时,甲乙两人相距15千米.【考点】FH:一次函数的应用.【分析】(1)观察函数图象即可得出A、B两地的距离,由乙往返需要3小时结合返回时的速度是原来的2倍,即可求出a值;(2)观察函数图象找出点的坐标,利用待定系数法求出甲、乙离B地的距离y和时间x之间的函数关系式,令两函数关系式相等即可求出点P的坐标,再解释出它的实际意义即可;(3)分0≤x<1.2、1.2≤x<2和2≤x≤3三段,找出关于x的一元一次方程,解之即可得出结论.【解答】解:(1)观察函数图象可知:A、B两地的距离是90千米,∵乙从B地去A地然后立即原路返回B地,返回时的速度是原来的2倍,∴a=3×=2.故答案为:90;2.(2)设甲离B地的距离y(千米)和时间x(小时)之间的函数关系式为y=kx+b,乙离B地的距离y(千米)和时间x(小时)之间的函数关系式为y=mx+n,将(0,90)、(3,0)代入y=kx+b中,,解得:,∴甲离B地的距离y和时间x之间的函数关系式为y=﹣30+90;将(0,0)、(2,90)代入y=mx+n中,,解得:,∴此时y=45x(0≤x≤2);将(2,90)、(3,0)代入y=mx+n中,,解得:,此时y=﹣90x+270(2≤x≤3).∴乙离B地的距离y和时间x之间的函数关系式为y=.令y=﹣30+90=45x,解得:x=1.2,当x=1.2时,y=45x=45×1.2=54,∴点P的坐标为(1.2,54).点P的实际意义是:甲、乙分别从A、B两地出发,经过1.2小时相遇,这时离B地的距离为54千米.(3)当0≤x<1.2时,﹣30x+90﹣45x=15,解得:x=1;当1.2≤x<2时,45x﹣(﹣30x+90)=15,解得:x=1.4;当2≤x≤3时,﹣90x+270﹣(﹣30x+90)=15,解得:x=2.75.综上所述:当x为1、1.4或2.75时,甲乙两人相距15千米.23.如图,在△ABC中,AB=AC,以AB为直径的半圆交BC于点D,过点D作EF⊥AC于点F,交AB的延长线于点E.(1)求证:EF是⊙O的切线;(2)当BD=3,DF=时,求直径AB.【考点】ME:切线的判定与性质;KH:等腰三角形的性质.【分析】(1)连结OD.根据垂直的定义得到∠DFA=90°,根据等腰三角形的性质得到∠1=∠C,∠1=∠2,等量代换得到∠2=∠C,根据平行线的性质得到∠EDO=∠DFA=90°,即OD⊥EF.于是得到结论;(2)连结AD,根据勾股定理得到CF==,根据相似三角形的性质得到AF==,于是得到结论.【解答】(1)证明:连结OD.∵EF⊥AC,∴∠DFA=90°,∵AB=AC,∴∠1=∠C,∵OB=OD,∴∠1=∠2,∴∠2=∠C,∴OD∥AC,∴∠EDO=∠DFA=90°,即OD⊥EF.∴EF是⊙O的切线;(2)解:连结AD,∵AB是直径∴AD⊥BC,又AB=AC,∴CD=BD=3,在Rt△CFD中,DF=,∴CF==,在Rt△CFD中,DF⊥AC,∴△CFD∽△DFA,∴=,即AF==,∴AC=CF+AF=+=5,∴AB=AC=5.24.如图,直线y=x+n与x轴交于点A,与y轴交于点B(点A与点B不重合),抛物线y=﹣x2﹣2x+c经过点A、B,抛物线的顶点为C.(1)∠BAO= 45 °;(2)求tan∠CAB的值;(3)在抛物线上是否存在点P,能够使∠PCA=∠BAC?如果存在,请求出点P的坐标;如果不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)求直线AB与两坐标轴的交点坐标,得OA=OB,可得结论;(2)如图1,作辅助线,构建直角三角形,证明∠CBA=∠CBD+∠DBA=90°,利用勾股定理计算BC和AB的长,根据正切的定义代入求值即可;(3)分两种情况:①当点P在CA左侧时,如图2,延长BD交抛物线于点E,此时,点P与点E重合,点P的坐标是(﹣4,6);②当点P在CA右侧时,如图3,作辅助线,直线CF与抛物线的交点就是P点.【解答】解:(1)y=x+n,当x=0时,y=n,则B(0,n),当y=0时,x=﹣n,则A(﹣n,0),∴OA=OB=n,∴△AOB是等腰直角三角形,∴∠BAO=45°,故答案为:45;(2)由(1)得:B(0,n),A(﹣n,0),∵抛物线y=﹣x2﹣2x+c经过点A、B∴,解得或(舍去)∴A(﹣6,0),B(0,6),直线AB的解析式为:y=x+6,抛物线为:y=﹣﹣2x+6=﹣(x+2)2+8,∴抛物线的顶点为C(﹣2,8),设抛物线的对称轴为直线l,连结BC,如图1,过点B作BD⊥l,则BD=CD=2,BD∥x轴,∴∠CBD=45°,又BD∥x轴,∴∠DBA=∠BAO=45°,∴∠CBA=∠CBD+∠DBA=90°,在Rt△CDB中,BC==2,在Rt△AOB中,AB==6,∴在Rt△ABC中,tan∠CAB==;(3)①当点P在CA左侧时,如图2,延长BD交抛物线于点E,当∠PCA=∠BAC时,CP∥AB,此时,点P与点E重合,点P的坐标是(﹣4,6);②当点P在CA右侧时,如图3,过点A作AC的垂线交CP于点F,过点A作y轴的平行线m,过点C作CM⊥m,过点F作FN⊥m,由于tan∠BAC=,所以tan∠ACF=tan∠ACP=,∵Rt△CMA∽Rt△ANF,∴,,AN=CM=,NF=MA=,∴F(﹣,﹣);易求得直线CF的解析式为:y=7x+22,由,消去y,得x2+18x+32=0,解得x=16或x=﹣2(舍去),因此点P的坐标(﹣16,﹣90);综上所述,P的坐标是(﹣4,6)或(﹣16,﹣90).25.如图,正方形ABCD的边长为1,E、F、G、H分别是AB、BC、CD、DA边上的动点(不含端点),且EG、FH 均过正方形的中心O.(1)填空:OH = OF (“>”、“<”、“=”);(2)当四边形EFGH为矩形时,请问线段AE与AH应满足什么数量关系;(3)当四边形EFGH为正方形时,AO与EH交于点P,求OP2+PH•PE的最小值.【考点】SO:相似形综合题;LE:正方形的性质;S9:相似三角形的判定与性质.【分析】(1)根据全等三角形的对应边相等,即可得出结论;(2)根据相似三角形的对应边成比例,即可得出AE=AH,或AE+AH=1;(3)根据△OPH∽△EPA,即可得到PH×PE=OP×AP,据此可得OP2+PH×PE=OP2+OP×AP=OP(OP+AP)=OP×OA,再根据△OPE∽△OEA,即可得到OP×OA=OE2,据此可得OP2+PH×PE=OE2,最后根据OE的最小值求得OP2+PH•PE 的最小值.【解答】解:(1)如图所示,∵正方形ABCD,∴AO=CO,∠OAH=∠OCF=45°,又∵∠AOH=∠COF,∴△AOH≌△COF,∴OH=OF;故答案为:=;(2)当四边形EFGH为矩形时,∠HEF=90°,∴∠AEH+∠BEF=90°,在正方形ABCD中,∠HAE=∠EBF=90°,∴∠AEH+∠AHF=90°,∴∠AHE=∠BEF,∴△AEH∽△BFE,∴=,令AE=x,AH=y,则BF=1﹣y,BE=1﹣x,∴=,即x﹣y=x2﹣y2=(x+y)(x﹣y),∴x=y或x+y=1,∴AE=AH,或AE+AH=1;(3)如图所示,当四边形EFGH为正方形时,∠HOE=90°,OH=OE,∴∠OEH=∠OHE=45°,∴∠OHP=∠PAE=45°,∵∠HPO=∠APE,∴△OPH∽△EPA,∴=,即PH×PE=OP×AP,∴OP2+PH×PE=OP2+OP×AP=OP(OP+AP)=OP×OA,∵∠OEP=∠OAE=45°,∠POE=∠EOA,∴△OPE∽△OEA,∴=,即OP×OA=OE2,∴OP2+PH×PE=OE2,∵当OE⊥AB时,OE最小,此时OE=,∴当OE=时,OP2+PH×PE最小,且等于.中考数学模拟试卷含答案注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
中考模拟试卷数学卷一、仔细选一选。
(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案. 1.下列四个运算中,结果最小的是( ). A 、2017的相反数 B 、2017的绝对值 C 、2017的0次幂 D 、2017的立方根 2.已知∠α=23°45′,则∠α的余角=( ).A .66°55′B .156°15′C .66°15′D .156°55′3.若代数式x 2+bx 可以分解因式,则常数b 不可以是( ). A .﹣1B .0C .1D .24.在代数式x ﹣y, 4a, y+,,yz, ,中有( ).A .5个整式B .3个单项式,4个多项式C .6个整式,4个单项式D .单项式与多项式的个数相同5.下图是小方送给她外婆的生日蛋糕,则下面关于三种视图判断正确的( ).A.主视图、俯视图、左视图都正确B.主视图、俯视图、左视图都错误C.主视图、左视图正确、俯视图错误D. 左视图、俯视图正确、主视图错误 6.已知⎩⎨⎧>≤-,,a xb x 则的值( ).A.大于0B.小于0C.大于或等于0D.小于或等于07.某超市举办促销活动,促销方式是将原价x 元的衣服以(45x -10) 元出售,则下列说法中,能正确表达该超市促销方式的是( ).A. 原价减去10元后再打8折B. 原价打8折后再减去10元C. 原价减去10元后再打2折D. 原价打2折后再减去10元8.如图为4×4的网格图,A ,B ,C ,D ,O 均在格点上,点O 是( ).(第8题图) A .△ACD 的外心 B .△ABC 的外心C .△ACD 的内心 D .△ABC 的内心9.在同一直角坐标系中,对于以下四个函数①y=-x-1;②y=x+1;③y=-x+1; ④y=-2(x+1)的图像。
山东省菏泽市2019-2020学年中考数学考前模拟卷(2)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知二次函数2y ax bx c =++的图象如图所示,则下列说法正确的是( )A .ac <0B .b <0C .24b ac -<0D .a b c ++<02.估计8-1的值在( )A .0到1之间B .1到2之间C .2到3之间D .3至4之间3.一个几何体的俯视图如图所示,其中的数字表示该位置上小正方体的个数,那么这个几何体的主视图是( )A .B .C .D .4.不等式组312840x x ->⎧⎨-≤⎩的解集在数轴上表示为( ) A . B . C . D .5.如图,在矩形 ABCD 中,AB=2a ,AD=a ,矩形边上一动点 P 沿 A →B→C→D 的路径移动.设点 P 经过的路径长为 x ,PD2=y ,则下列能大致反映 y 与 x 的函数关系的图象是( )A .B .C.D.6.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A.B.C.D.7.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是()A.16cm B.18cm C.20cm D.21cm8.如图,已知二次函数y=ax2+bx的图象与正比例函数y=kx的图象相交于点A(1,2),有下面四个结论:①ab>0;②a﹣b>﹣23;③sinα=21313;④不等式kx≤ax2+bx的解集是0≤x≤1.其中正确的是()A.①②B.②③C.①④D.③④9.正比例函数y=2kx的图象如图所示,则y=(k-2)x+1-k的图象大致是()A.B.C.D .10.如图,将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD ,转动这个四边形,使它形状改变,当AB 2=,B 60o ∠=时,AC 等于( )A .2B .2C .6D .2211.在△ABC 中,点D 、E 分别在边AB 、AC 上,如果AD=1,BD=3,那么由下列条件能够判断DE ∥BC 的是( )A .31DE BC =B .DE 1BC 4= C .31AE AC =D .AE 1AC 4= 12.在实数0,2-,1,5中,其中最小的实数是( )A .0B .2-C .1D .5二、填空题:(本大题共6个小题,每小题4分,共24分.)13.一个不透明的盒子里有n 个除颜色外其他完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数是_______.14.如果一个直角三角形的两条直角边的长分别为5、12,则斜边上的高的长度为______.15.如图,在平面直角坐标系中,一动点从原点O 出发,沿着箭头所示方向,每次移动一个单位,依次得到点P 1(0,1);P 2(1,1);P 3(1,0);P 4(1,﹣1);P 5(2,﹣1);P 6(2,0)……,则点P 2019的坐标是_____.16.分解因式:(x 2﹣2x)2﹣(2x ﹣x 2)=______.17.如图,以原点O 为圆心的圆交X 轴于A 、B 两点,交y 轴的正半轴于点C ,D 为第一象限内⊙O 上的一点,若∠DAB=20°,则∠OCD= .18.某种商品因换季准备打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,则商品的定价是______元.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A 级:对学习很感兴趣;B 级:对学习较感兴趣;C 级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题: 此次抽样调查中,共调查了 名学生;将图①补充完整;求出图②中C 级所占的圆心角的度数.20.(6分)如图,要修一个育苗棚,棚的横截面是Rt ABC V ,棚高 1.5m AB =,长10m d =,棚顶与地面的夹角为27ACB ∠=︒.求覆盖在顶上的塑料薄膜需多少平方米(结果保留小数点后一位).(参考数据:sin 270.45︒=,cos270.89︒=,tan 270.51︒=)21.(6分)如图,点B 、E 、C 、F 在同一条直线上,AB =DE ,AC =DF ,BE =CF ,求证:AB ∥DE .22.(8分)如图,将等腰直角三角形纸片ABC 对折,折痕为CD .展平后,再将点B 折叠在边AC 上(不与A 、C 重合),折痕为EF ,点B 在AC 上的对应点为M ,设CD 与EM 交于点P ,连接PF .已知BC=1.(1)若M 为AC 的中点,求CF 的长;(2)随着点M 在边AC 上取不同的位置,①△PFM 的形状是否发生变化?请说明理由;②求△PFM 的周长的取值范围.23.(8分)某区域平面示意图如图,点O 在河的一侧,AC 和BC 表示两条互相垂直的公路.甲勘测员在A 处测得点O 位于北偏东45°,乙勘测员在B 处测得点O 位于南偏西73.7°,测得AC=840m ,BC=500m .请求出点O 到BC 的距离.参考数据:sin73.7°≈2425,cos73.7°≈725,tan73.7°≈24724.(10分)已知P 是⊙O 外一点,PO 交⊙O 于点C ,OC=CP=2,弦AB ⊥OC ,∠AOC 的度数为60°,连接PB .求BC 的长;求证:PB 是⊙O 的切线.25.(10分)已知关于x 的一元二次方程2(3)0x m x m ---=.求证:方程有两个不相等的实数根;如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.26.(12分)佳佳向探究一元三次方程x 3+2x 2﹣x ﹣2=0的解的情况,根据以往的学习经验,他想到了方程与函数的关系,一次函数y=kx+b (k≠0)的图象与x 轴交点的横坐标即为一元一次方程kx+b (k≠0)的解,二次函数y=ax 2+bx+c (a≠0)的图象与x 轴交点的横坐标即为一元二次方程ax 2+bx+c=0(a≠0)的解,如:二次函数y=x 2﹣2x ﹣3的图象与x 轴的交点为(﹣1,0)和(3,0),交点的横坐标﹣1和3即为x 2﹣2x ﹣3=0的解.根据以上方程与函数的关系,如果我们直到函数y=x 3+2x 2﹣x ﹣2的图象与x 轴交点的横坐标,即可知方程x 3+2x 2﹣x ﹣2=0的解.佳佳为了解函数y=x 3+2x 2﹣x ﹣2的图象,通过描点法画出函数的图象.x …﹣3 ﹣52﹣2 ﹣32﹣1﹣12121322 …y …﹣8 ﹣21858m ﹣98﹣2 ﹣15835812 …(1)直接写出m的值,并画出函数图象;(2)根据表格和图象可知,方程的解有个,分别为;(3)借助函数的图象,直接写出不等式x3+2x2>x+2的解集.27.(12分)东东玩具商店用500元购进一批悠悠球,很受中小学生欢迎,悠悠球很快售完,接着又用900元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了5元.求第一批悠悠球每套的进价是多少元;如果这两批悠悠球每套售价相同,且全部售完后总利润不低于25%,那么每套悠悠球的售价至少是多少元?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据抛物线的开口方向确定a,根据抛物线与y轴的交点确定c,根据对称轴确定b,根据抛物线与x轴解:∵抛物线开口向上,∴a >0,∵抛物线交于y 轴的正半轴,∴c >0,∴ac >0,A 错误;∵-2b a>0,a >0, ∴b <0,∴B 正确;∵抛物线与x 轴有两个交点,∴b 2-4ac >0,C 错误;当x=1时,y >0,∴a+b+c >0,D 错误;故选B .【点睛】本题考查的是二次函数图象与系数的关系,二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点抛物线与x 轴交点的个数确定.2.B【解析】试题分析:∵23,∴1<2,在1到2之间,故选B .考点:估算无理数的大小.3.A【解析】【分析】一一对应即可.【详解】最左边有一个,中间有两个,最右边有三个,所以选A.【点睛】理解立体几何的概念是解题的关键.【分析】分别求得不等式组中两个不等式的解集,再确定不等式组的解集,表示在数轴上即可.【详解】312840x x ->⎧⎨-≤⎩①②解不等式①得,x>1;解不等式②得,x>2;∴不等式组的解集为:x≥2,在数轴上表示为:故选A.【点睛】本题考查了一元一次不等式组的解法,正确求得不等式组中每个不等式的解集是解决问题的关键. 5.D【解析】解:(1)当0≤t≤2a 时,∵222PD AD AP =+,AP=x ,∴22y x a =+;(2)当2a <t≤3a 时,CP=2a+a ﹣x=3a ﹣x ,∵222PD CD CP =+,∴22(3)(2)y a x a =-+=22613x ax a -+;(3)当3a <t≤5a 时,PD=2a+a+2a ﹣x=5a ﹣x ,∵2PD =y ,∴2(5)y a x =-=2(5)x a -;综上,可得22225)2(02)613(23)((35)x a x a x a y x ax a a x a a x a -⎧+≤≤⎪=-+<≤⎨⎪<≤⎩n ,∴能大致反映y 与x 的函数关系的图象是选项D 中的图象.故选D .6.D【解析】【分析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是D .【详解】解:观察图形可知图案D 通过平移后可以得到.本题考查图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.7.C【解析】试题分析:已知,△ABE向右平移2cm得到△DCF,根据平移的性质得到EF=AD=2cm,AE=DF,又因△ABE的周长为16cm,所以AB+BC+AC=16cm,则四边形ABFD的周长=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm.故答案选C.考点:平移的性质.8.B【解析】【分析】根据抛物线图象性质确定a、b符号,把点A代入y=ax2+bx得到a与b数量关系,代入②,不等式kx≤ax2+bx 的解集可以转化为函数图象的高低关系.【详解】解:根据图象抛物线开口向上,对称轴在y轴右侧,则a>0,b<0,则①错误将A(1,2)代入y=ax2+bx,则2=9a+1b∴b=233a -,∴a﹣b=a﹣(233a-)=4a﹣23>-23,故②正确;由正弦定义==,则③正确;不等式kx≤ax2+bx从函数图象上可视为抛物线图象不低于直线y=kx的图象则满足条件x范围为x≥1或x≤0,则④错误.故答案为:B.【点睛】二次函数的图像,sinα公式,不等式的解集.9.B【解析】试题解析:由图象可知,正比函数y=2kx的图象经过二、四象限,∴2k<0,得k<0,∴k−2<0,1−k>0,∴函数y=(k−2)x+1−k图象经过一、二、四象限,【解析】【分析】首先连接AC,由将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD,AB=1,B60o∠=,易得△ABC是等边三角形,即可得到答案.【详解】连接AC,∵将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD,∴AB=BC,∵B60o∠=,∴△ABC是等边三角形,∴AC=AB=1.故选:B.【点睛】本题考点:菱形的性质.11.D【解析】【详解】如图,∵AD=1,BD=3,∴AD1 AB4=,当AE1AC4=时,AD AEAB AC=,又∵∠DAE=∠BAC,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,而根据选项A、B、C的条件都不能推出DE∥BC,故选D.12.B【解析】【分析】由正数大于一切负数,负数小于0,正数大于0,两个负数绝对值大的反而小,把这四个数从小到大排列,即可求解.【详解】解:∵0,-2,15-2<0<15,∴其中最小的实数为-2;故选:B.【点睛】本题考查了实数的大小比较,关键是掌握:正数大于0,负数小于0,正数大于一切负数,两个负数绝对值大的反而小.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】【分析】根据利用频率估计概率得到摸到黄球的概率为1%,然后根据概率公式计算n的值.【详解】解:根据题意得9n=1%,解得n=1,所以这个不透明的盒子里大约有1个除颜色外其他完全相同的小球.故答案为1.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.14.60 13【分析】利用勾股定理求出斜边长,再利用面积法求出斜边上的高即可.【详解】解:∵直角三角形的两条直角边的长分别为5,12,=13,∵三角形的面积=12×5×12=12×13h (h 为斜边上的高), ∴h=6013. 故答案为:6013. 【点睛】考查了勾股定理,以及三角形面积公式,熟练掌握勾股定理是解本题的关键.15.(673,0)【解析】【分析】由P 3、P 6、P 9 可得规律:当下标为3的整数倍时,横坐标为3n ,纵坐标为0,据此可解. 【详解】解:由P 3、P 6、P 9 可得规律:当下标为3的整数倍时,横坐标为3n ,纵坐标为0, ∵2019÷3=673,∴P 2019 (673,0)则点P 2019的坐标是 (673,0).故答案为 (673,0).【点睛】本题属于平面直角坐标系中找点的规律问题,找到某种循环规律之后,可以得解.本题难度中等偏上. 16.x (x ﹣2)(x ﹣1)2【解析】【分析】先整理出公因式(x 2-2x ),提取公因式后再对余下的多项式整理,利用提公因式法分解因式和完全平方公式法继续进行因式分解.【详解】解:(x 2−2x)2−(2x−x 2) =(x 2−2x)2+(x 2−2x) =(x 2−2x)(x 2−2x+1) =x(x−2)(x−1)2故答案为x (x ﹣2)(x ﹣1)2此题考查了因式分解-提公因式法和公式法,熟练掌握这两种方法是解题的关键.17.65°【解析】【分析】【详解】解:由题意分析之,得出弧BD对应的圆周角是∠DAB,所以,DOB∠=40°,由此则有:∠OCD=65°考点:本题考查了圆周角和圆心角的关系点评:此类试题属于难度一般的试题,考生在解答此类试题时一定要对圆心角、弧、弦等的基本性质要熟练把握18.300【解析】【分析】设成本为x元,标价为y元,根据已知条件可列二元一次方程组即可解出定价.【详解】设成本为x元,标价为y元,依题意得0.75250.920y xy x+=⎧⎨-=⎩,解得250300xy=⎧⎨=⎩故定价为300元.【点睛】此题主要考查二元一次方程组的应用,解题的关键是根据题意列出方程再求解.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)200,(2)图见试题解析(3)540【解析】【详解】试题分析:(1)根据A级的人数与所占的百分比列式进行计算即可求出被调查的学生人数;(2)根据总人数求出C级的人数,然后补全条形统计图即可;(3)1减去A、B两级所占的百分比乘以360°即可得出结论.试题解析::(1)调查的学生人数为:5025%=200名;(2)C级学生人数为:200-50-120=30名,补全统计图如图;(3)学习态度达标的人数为:360×[1-(25%+60%]=54°.答:求出图②中C级所占的圆心角的度数为54°.考点:条形统计图和扇形统计图的综合运用20.33.3【解析】【分析】根据解直角三角形的知识先求出AC的值,再根据矩形的面积计算方法求解即可. 【详解】解:∵AC=sin ABACB∠=1.5sin27︒=1.50.45=103∴矩形面积=10⨯103≈33.3(平方米)答:覆盖在顶上的塑料薄膜需33.3平方米【点睛】本题考查了解直角三角形的应用,掌握正弦的定义是解题的关键.21.详见解析.【解析】试题分析:利用SSS证明△ABC≌△DEF,根据全等三角形的性质可得∠B=∠DEF,再由平行线的判定即可得AB∥DE.试题解析:证明:由BE=CF可得BC=EF,又AB=DE,AC=DF,故△ABC≌△DEF(SSS),则∠B=∠DEF,∴AB∥DE.考点:全等三角形的判定与性质.22.(1)CF=32;(2)①△PFM的形状是等腰直角三角形,不会发生变化,理由见解析;②△PFM的周长满足:2<(2)y<2.【解析】【分析】构建方程即可解决问题;(2)①△PFM的形状是等腰直角三角形,想办法证明△POF∽△MOC,可得∠PFO=∠MCO=15°,延长即可解决问题;②设FM=y,由勾股定理可知:PF=PM=2y,可得△PFM的周长=()y,由2<y<1,可得结论.【详解】(1)∵M为AC的中点,∴CM=12AC=12BC=2,由折叠的性质可知,FB=FM,设CF=x,则FB=FM=1﹣x,在Rt△CFM中,FM2=CF2+CM2,即(1﹣x)2=x2+22,解得,x=32,即CF=32;(2)①△PFM的形状是等腰直角三角形,不会发生变化,理由如下:由折叠的性质可知,∠PMF=∠B=15°,∵CD是中垂线,∴∠ACD=∠DCF=15°,∵∠MPC=∠OPM,∴△POM∽△PMC,∴POPM=OMMC,∴MCPM=OMPO,∵∠EMC=∠AEM+∠A=∠CMF+∠EMF,∴∠AEM=∠CMF,∵∠DPE+∠AEM=90°,∠CMF+∠MFC=90°,∠DPE=∠MPC,∴∠DPE=∠MFC,∠MPC=∠MFC,∵∠PCM=∠OCF=15°,∴△MPC∽△OFC,∴MP MC OF OC=,∴MC OC PM OF=,∴OM OC=,∴△POF∽△MOC,∴∠PFO=∠MCO=15°,∴△PFM是等腰直角三角形;②∵△PFM是等腰直角三角形,设FM=y,由勾股定理可知:PF=PM=2y,∴△PFM的周长=(1+2)y,∵2<y<1,∴△PFM的周长满足:2+22<(1+2)y<1+12.【点睛】本题考查三角形综合题、等腰直角三角形的性质和判定、翻折变换、相似三角形的判定和性质、勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数解决问题,属于中考常考题型.23.点O到BC的距离为480m.【解析】【分析】作OM⊥BC于M,ON⊥AC于N,设OM=x,根据矩形的性质用x表示出OM、MC,根据正切的定义用x表示出BM,根据题意列式计算即可.【详解】作OM⊥BC于M,ON⊥AC于N,则四边形ONCM为矩形,∴ON=MC,OM=NC,设OM=x,则NC=x,AN=840﹣x,在Rt△ANO中,∠OAN=45°,∴ON=AN=840﹣x,则MC=ON=840﹣x,在Rt△BOM中,BM==x,由题意得,840﹣x+x=500,答:点O到BC的距离为480m.【点睛】本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、正确标注方向角是解题的关键.24.(1)BC=2;(2)见解析【解析】试题分析:(1)连接OB,根据已知条件判定△OBC的等边三角形,则BC=OC=2;(2)欲证明PB是⊙O的切线,只需证得OB⊥PB即可.(1)解:如图,连接OB.∵AB⊥OC,∠AOC=60°,∴∠OAB=30°,∵OB=OA,∴∠OBA=∠OAB=30°,∴∠BOC=60°,∵OB=OC,∴△OBC的等边三角形,∴BC=OC.又OC=2,∴BC=2;(2)证明:由(1)知,△OBC的等边三角形,则∠COB=60°,BC=OC.∵OC=CP,∴BC=PC,∴∠P=∠CBP.又∵∠OCB=60°,∠OCB=2∠P,∴∠P=30°,∴∠OBP=90°,即OB⊥PB.又∵OB是半径,∴PB是⊙O的切线.【解析】试题分析:(1)要证明方程有两个不相等的实数根,只要证明原来的一元二次方程的△的值大于0即可;(1)根据根与系数的关系可以得到关于m 的方程,从而可以求得m 的值.试题解析:(1)证明:∵()230x m x m ---=,∴△=[﹣(m ﹣3)]1﹣4×1×(﹣m )=m 1﹣1m+9=(m ﹣1)1+8>0,∴方程有两个不相等的实数根;(1)∵()230x m x m ---=,方程的两实根为1x ,2x ,且2212127x x x x +-=,∴123x x m +=- ,12x x m =- ,∴()2121237x x x x +-=,∴(m ﹣3)1﹣3×(﹣m )=7,解得,m 1=1,m 1=1,即m 的值是1或1.26.(1)2;(2)3,﹣2,或﹣1或1.(3)﹣2<x <﹣1或x >1.【解析】试题分析:(1)求出x=﹣1时的函数值即可解决问题;利用描点法画出图象即可;(2)利用图象以及表格即可解决问题;(3)不等式x 3+2x 2>x+2的解集,即为函数y=x 3+2x 2﹣x ﹣2的函数值大于2的自变量的取值范围,观察图象即可解决问题.试题解析:(1)由题意m=﹣1+2+1﹣2=2.函数图象如图所示.(2)根据表格和图象可知,方程的解有3个,分别为﹣2,或﹣1或1.(3)不等式x 3+2x 2>x+2的解集,即为函数y=x 3+2x 2﹣x ﹣2的函数值大于2的自变量的取值范围.27.(1)第一批悠悠球每套的进价是25元;(2)每套悠悠球的售价至少是1元.【解析】分析:(1)设第一批悠悠球每套的进价是x 元,则第二批悠悠球每套的进价是(x+5)元,根据数量=总价÷单价结合第二批购进数量是第一批数量的1.5倍,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设每套悠悠球的售价为y 元,根据销售收入-成本=利润结合全部售完后总利润不低于25%,即可得出关于y 的一元一次不等式,解之取其中的最小值即可得出结论.详解:(1)设第一批悠悠球每套的进价是x 元,则第二批悠悠球每套的进价是(x+5)元,根据题意得:9005001.55x x=⨯+, 解得:x=25,经检验,x=25是原分式方程的解.答:第一批悠悠球每套的进价是25元.(2)设每套悠悠球的售价为y 元,根据题意得:500÷25×(1+1.5)y-500-900≥(500+900)×25%, 解得:y≥1.答:每套悠悠球的售价至少是1元.点睛:本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程是解题的关键;(2)根据各数量之间的关系,正确列出一元一次不等式.。
2024年初中学生学业水平考试数学押题预测试卷注意事项:1.本试题分为第1卷和第Ⅱ卷两部分。
第1卷为选择题,30分;第Ⅱ卷为非选择题,90分;共120分。
考试时间为120分钟。
2.答卷前务必将试题密封线内及答题卡上面的项目填涂清楚。
所有答案都必须涂、写在答题卡相应位置,答在本试卷上一律无效。
第Ⅰ卷(选择题 30分)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.计算82024×(−0.125)2023的结果为( )A. −8B. 8C. −2D. −0.1252.剪纸是中国优秀的传统文化.如图剪纸图案中,是中心对称图形的是( )A. B. C. D.3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4600000000人,这个数用科学记数法表示为( )A. 46×108B. 4.6×108C. 4.6×109D. 4.6×10104.如图是一个玻璃烧杯,图2是玻璃烧杯抽象的几何体,以箭头所指的方向为主视图方向,则它的俯视图为( )A. B. C. D.5.下列计算正确的是( )A. aa2+aa4=aa6B. (−aa3)2=aa6C. 2aa+3bb=5aabbD. aa6÷aa3=aa26.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.若∠1=30°,则∠2的度数是( )A. 45°B. 55°C. 65°D. 75°7.乘坐高铁现在是人们非常方便快捷的一种出行方式,甲、乙两城市之间的铁路距离约2800kkkk,乘坐高铁列车比普通快车能提前8ℎ到达,已知高铁列车的平均行驶速度是普通快车的2倍.设普通快车的平均行驶速度为xx kkkk/ℎ,根据题意所列出的方程为( )A. 2800xx=2800×2xx+8B. 2800×2xx=2800xx+8C. 28002xx−2800xx=8D. 2800xx−28002xx=88.如图,点AA,BB分别在反比例函数yy=12xx和yy=kk xx的图象上,分别过AA,BB两点向xx轴,yy轴作垂线,形成的阴影部分的面积为7,则kk的值为( )A. 6B. 7C. 5D. 89.某品牌20寸的行李箱拉杆拉开后放置如图所示,经测量该行李箱从轮子底部到箱子上沿的高度AABB与从轮子底部到拉杆顶部的高度CCCC之比是黄金比.已知CCCC=80cckk,则AABB的长度是( )A. (20√ 5−20)cckkB. (80−40√ 5)cckkC. (40√ 5−40)cckkD. (120−40√ 5)cckk10.如图,在平面直角坐标系xxxxyy中,四边形xxAABBCC的顶点xx在原点上,xxAA边在xx轴的正半轴上,AABB⊥xx轴,AABB=CCBB=2,xxAA=xxCC,∠AAxxCC=60°,将四边形xxAABBCC绕点xx逆时针旋转,每次旋转90°,则第2024次旋转结束时,点CC的坐标为( )A. (√ 3,3)B. (3,−√ 3)C. (−√ 3,1)D. (1,−√ 3)第Ⅱ卷(非选择题 90分)二、填空题:本题共6小题,每小题3分,共18分。
2019年菏泽市中考数学押题卷与答案考生须知:1.本试卷满分为120分,考试时间为120分钟。
2.答题前,考生先将自己的”姓名”、“考号”、“考场"、”座位号”在答题卡上填写清楚,将“条形码”准确粘贴在条形码区域内。
3.保持卡面整洁,不要折叠、不要弄脏、不要弄皱,不准使用涂改液、修正带、刮纸刀。
第Ⅰ卷 选择题(共30分)一、选择题(每小3分,共计30分。
每小超都给出A,B,C,D 四个选项,其中只有一个是正确的。
) 1.23-的绝对值是( )A . 32-B .23-C .3D .1 2.下列计算正确的是( )A .2a+3b =5abB .(a ﹣b )2=a 2﹣b 2C .a 6÷a 3=a 2D .(ab )2=a 2b2 3.在国家大数据战略的引领下,我国在人工智能领域取得显著成就,自主研发的人工智能“绝艺”获得全球最前沿的人工智能赛事冠军,这得益于所建立的大数据中心的规模和数据存储量,它们决定着人工智能深度学习的质量和速度,其中的一个大数据中心能存储58000000000本书籍,将58000000000用科学记数法表示应为( )A .105.810⨯B .115.810⨯C .95810⨯D .110.5810⨯4.下列几何体中,有一个几何体的主视图与俯视图的形状不一样,这个几何体是( ) A .B .C .D .5.郑州某中学在备考 2018 河南中考体育的过程中抽取该校九年级 20 名男生进 行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:则下列叙述正确的是( ) A .这些运动员成绩的众数是 5 B .这些运动员成绩的中位数是 2.30C.这些运动员的平均成绩是 2.25D.这些运动员成绩的方差是 0.072 56.若要得到函数y=(x+1)2+2的图象,只需将函数y=x2的图象()A.先向右平移1个单位长度,再向上平移2个单位长度B.先向左平移1个单位长度,再向上平移2个单位长度C.先向左平移1个单位长度,再向下平移2个单位长度D.先向右平移1个单位长度,再向下平移2个单位长度7.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A.30°B.40°C.50°D.60°8. 下列给出5个命题:①对角线互相垂直且相等的四边形是正方形;②六边形的内角和等于720°;③相等的圆心角所对的弧相等;④顺次连接菱形各边中点所得的四边形是矩形;⑤三角形的内心到三角形三个顶点的距离相等.其中真命题的个数是()A. 2个B. 3个C. 4个D. 5个9.如图,⊙O是△ABC的外接圆,∠A=60°,⊙O的半径是2,则BC长()A.2B.3C.D.410. 函数y=x 2+bx+c 与y=x 的图象如图所示,有以下结论:①b 2﹣4c >0; ②b+c+1=0;③3b+c+6=0; ④当1<x <3时,x 2+(b ﹣1)x+c <0。
2018精编中考数学押题试卷含答案一套题号一二三总分得分考生注意:本卷共25题;试卷满分150分,考试时间100分钟;一、选择题(本大题共6小题,每小题4分,共24分,在每小题给出的四个选项中,有且只有一个选项是正确的,请将正确选项的代号填在括号里。
)下列函数中是二次函数的是( )A. y=2(x-1)B. y=(x-1)^2-x^2C. y=a(x-1)^2D. y=2x^2-1下列方程中,有实数根的是( )A. √(x-1)+1=0B. x+1/x=1C. 2x^4+3=0D. 2/(x-1)=-1如果△ABC∽△DEF,A、B分别对应D、E,且AB:DE=1:2,那么下列等式一定成立的是( )A. BC:DE=1:2B. △ABC的面积:△DEF的面积=1:2C. ∠A的度数:∠D的度数=1:2D. △ABC的周长:△DEF的周长=1:2在△ABC中,点D、E分别在AB、AC的延长线上,下列不能判定DE//BC的条件是( )A. EA:AC=DA:ABB. DE:BC=DA:ABC. EA:EC=DA:DBD. AC:EC=AB:DB下列关于向量的说法中,不正确的是( )A. 3(a-b)=3a-3bB. 若|a|=3|b|,则a=3b 或a=-3bC. 3|a|=|3a|D. m(n a)=(mn)a下列四个命题中,真命题是( )A. 相等的圆心角所对的两条弦相等B. 圆既是中心对称图形也是轴对称图形C. 平分弦的直径一定垂直于这条弦D. 相切两圆的圆心距等于这两圆的半径之和二、填空题(本大题共12小题,每小题4分,共48分,请将结果直接写在横线上。
)已知5a=4b,那么(a+b)/b=______.已知线段AB长是2厘米,P是线段AB上的一点,且满足AP^2=AB⋅BP,那么AP长为______厘米.点A(-1,m)和点B(-2,n)都在抛物线y=(x-3)^2+2上,则m与n的大小关系为m______n(填“<”或“>”).如果二次函数y=x^2-8x+m-1的顶点在x轴上,那么m=______.如图,在梯形ABCD中,AB//DC,AD=2,BC=6,若△AOB的面积等于6,则△AOD的面积等于______.在Rt△ABC中,∠C=〖90〗^∘,如果cos∠A=2/3,那么cot∠A=______.在Rt△ABC中,∠BAC=〖90〗^∘,AD⊥BC,垂足为点D,如果AC=6,AB=8,那么AD的长度为______.如图,四边形ABCD、CDEF、EFGH都是正方形,则tan∠CAF=______.将一个三角形经过放大后得到另一个三角形,如果所得三角形在原三角形的外部,这两个三角形各对应边平行且距离都相等,那么我们把这样的两个三角形叫做“等距三角形”,它们对应边之间的距离叫做“等距”.如果两个等边三角形是“等距三角形”,它们的“等距”是1,那么它们周长的差是______.如图,在边长为2的菱形ABCD中,∠D=〖60〗^∘,点E、F分别在边AB、BC上.将△BEF沿着直线EF翻折,点B恰好与边AD的中点G重合,则BE的长等于______.已知⊙O_1的半径为4,⊙O_2的半径为R,若⊙O_1与⊙O_2相切,且O_1 O_2=10,则R的值为______.如图,在△ABC中,∠ACB=〖90〗^∘,点D,E分别在AC,BC上,且∠CDE=∠B,将△CDE沿DE折叠,点C恰好落在AB边上的点F处.若AC=8,AB=10,则CD的长为______.三、解答题(本大题共7小题,共78.0分)(10分)计算:(√3 cot〖45〗^∘)/(cos〖30〗^∘)+1/(2cos 〖60〗^∘+1)-tan〖60〗^∘×sin〖60〗^∘.(10分)已知:如图,Rt△ABC中,∠ACB=〖90〗^∘,sinB=3/5,点D、E分别在边AB、BC上,且AD:DB=2:3,DE⊥BC.(1)求∠DCE的正切值;(2)如果设AB=a,CD=b,试用a、b表示AC.(10分)如图,已知OC是⊙O半径,点P在⊙O的直径BA的延长线上,且OC⊥PC,垂足为C.弦CD垂直平分半径AO,垂足为E,PA=6.求:(1)⊙O的半径;(2)求弦CD的长.(10分)如图,港口B位于港口A的南偏东〖37〗^∘方向,灯塔C恰好在AB的中点处.一艘海轮位于港口A的正南方向,港口B的正西方向的D处,它沿正北方向航行5km到达E处,测得灯塔C在北偏东〖45〗^∘方向上,这时,E处距离港口A有多远?(参考数据:sin〖37〗^∘≈0.60,cos〖37〗^∘≈0.80,tan〖37〗^∘≈0.75)(12分)如图,△ABC中,AB=AC,过点C作CF//AB 交△ABC的中位线DE的延长线于F,联结BF,交AC 于点G.(1)求证:AE/AC=EG/CG;(2)若AH平分∠BAC,交BF于H,求证:BH是HG和HF的比例中项.(12分)如图,在平面直角坐标系xOy中,抛物线y=ax^2+bx+c(a>0)与x轴相交于点A(-1,0)和点B,与y 轴交于点C,对称轴为直线x=1.(1)求点C的坐标(用含a的代数式表示);(2)联结AC、BC,若△ABC的面积为6,求此抛物线的表达式;(3)在第(2)小题的条件下,点Q为x轴正半轴上一点,点G与点C,点F与点A关于点Q成中心对称,当△CGF为直角三角形时,求点Q的坐标.(14分)已知在矩形ABCD中,AB=2,AD=4.P是对角线BD上的一个动点(点P不与点B、D重合),过点P作PF⊥BD,交射线BC于点F.联结AP,画∠FPE=∠BAP,PE交BF于点E.设PD=x,EF=y.(1)当点A、P、F在一条直线上时,求△ABF的面积;(2)如图1,当点F在边BC上时,求y关于x的函数解析式,并写出函数定义域;(3)联结PC,若∠FPC=∠BPE,请直接写出PD的长.答案和解析【答案】1. D2. D3. D4. B5. B6. B7. 9/58. (√5-1)9. <10. 1711. 212. (2√5)/513. 4.814. 1/315. 6√316. 7/517. 6或14cm18. 25/819. 解:原式=(√3×1)/(√3/2)+1/(2×1/2+1)-√3×√3/2=2+1/2-3/2=1.20. 解:(1)∵∠ACB=〖90〗^∘,sinB=3/5,∴AC/AB=3/5,∴设AC=3a,AB=5a.则BC=4a.∵AD:DB=2:3,∴AD=2a,DB=3a.∵∠ACB=〖90〗^∘即AC⊥BC,又DE⊥BC,∴AC//DE.∴DE/AC=BD/AB,CE/CB=AD/AB.∴DE/3a=3a/5a,CE/4a=2a/5a.∴DE=9/5 a,CE=8/5 a,∵DE⊥BC,∴tan∠DCE=DE/CE=9/8.(2)∵AD:DB=2:3,∴AD:AB=2:5,∵AB=a,CD=b,∴AD=2/5 a,DC=-b,∵AC=AD+DC,∴AC=2/5 a-b.21. 解:(1)设OC=x,∵弦CD垂直平分半径AO,∴OE=1/2 OA=1/2 x,∵PC⊥OC,CD⊥OP,∴∠PCO=∠CEO=〖90〗^∘,∴∠P+∠COP=〖90〗^∘,∠ECO+∠COP=〖90〗^∘,∴∠P=∠ECO,∴△CEO∽△PCO,∴CO/OE=OP/OC,∴x/(1/2 x)=(6+x)/x,x=6则⊙O的半径为6;(2)由(1)得:OC=6,OE=3,由勾股定理得:CE=√(6^2-3^2 )=3√3,∵CD⊥OA,∴CD=2CE=6√3.22. 解:如图作CH⊥AD于H.设CH=xkm,在Rt△ACH中,∠A=〖37〗^∘,∵tan〖37〗^∘=CH/AH,∴AH=CH/(tan〖37〗^∘)=x/(tan〖37〗^∘),在Rt△CEH中,∵∠CEH=〖45〗^∘,∴CH=EH=x,∵CH⊥AD,BD⊥AD,∴CH//BD,∴AH/HD=AC/CB,∵AC=CB,∴AH=HD,∴x/(tan〖37〗^∘)=x+5,∴x=(5⋅tan〖37〗^∘)/(1-tan〖37〗^∘)≈15,∴AE=AH+HE=15/(tan〖37〗^∘)+15≈35km,∴E处距离港口A有35km.23. 证明:(1)∵CF//AB,DE是中位线,∴四边形BCFD是平行四边形,∴DE=EF,∴AE/AC=DE/DF=EF/BC=EG/CG,即AE/AC=EG/CG;(2)连接CH,∵AH平分∠BAC,∴∠BAH=∠CAH,在△ABH与△ACH中{■(AB=AC@∠BAH=∠CAH@AH=AH)┤,∴△ABH≌△ACH,∴∠HCG=∠DBH=∠HFC,∵∠GHC=∠CHF,∴△GHC∽△CHF,∴HC/HF=GH/CH,∴HC^2=HG⋅HF,∵BH=HC,∴BH^2=HG⋅HF,即BH是HG和HF的比例中项.24. 解:(1)∵抛物线y=ax^2+bx+c(a>0)的对称轴为直线x=1,而抛物线与x轴的一个交点A的坐标为(-1,0)∴抛物线与x轴的另一个交点B的坐标为(3,0)设抛物线解析式为y=a(x+1)(x-3),即y=ax^2-2ax-3a,当x=0时,y=-3a,∴C(0,-3a);(2)∴AB=4,OC=3a,∴S_(△ACB)=1/2 AB⋅OC=6a,∴6a=6,解得a=1,∴抛物线解析式为y=x^2-2x-3;(3)设点Q的坐标为(m,0).过点G作GH⊥x轴,垂足为点H,如图,∵点G与点C,点F与点A关于点Q成中心对称,∴QC=QG,QA=QF=m+1,QO=QH=m,OC=GH=3,∴OF=2m+1,HF=1,当∠CGF=〖90〗^∘时,∵∠QGH+∠FGH=〖90〗^∘,∠QGH+∠GQH=〖90〗^∘,∴∠GQH=∠HGF,∴Rt△QGH∽Rt△GFH,∴GH/FH=QH/GH,即3/1=m/3,解得m=9,∴Q的坐标为(9,0);当∠CFG=〖90〗^∘时,∵∠GFH+∠CFO=〖90〗^∘,∠GFH+∠FGH=〖90〗^∘,∴∠CFO=∠FGH,∴Rt△GFH∽Rt△FCO,∴GH/FO=FH/CO,即3/(2m+1)=1/3,解得m=4,∴Q的坐标为(4,0);∠GCF=〖90〗^∘不存在,综上所述,点Q的坐标为(4,0)或(9,0).25. 解:(1)如图,∵矩形ABCD,∴∠BAD=∠ABF=〖90〗^∘,∴∠ABD+∠ADB=〖90〗^∘,∵A、P、F在一条直线上,且PF⊥BD,∴∠BPA=〖90〗^∘,∴∠ABD+∠BAF=〖90〗^∘,∴∠ADB=∠BAF,∵tan∠ADB=AB/AD=2/4=1/2,∴tan∠BAF=BF/AB=1/2,∴BF=1,∴S_(△ABF)=1/2⋅AB⋅BF=1/2×2×1=1.(2)如图1中,∵PF⊥BP,∴∠BPF=〖90〗^∘,∴∠PFB+∠PBF=〖90〗^∘,∵∠ABF=〖90〗^∘,∴∠PBF+∠ABP=〖90〗^∘,∴∠ABP=∠PFB,又∵∠BAP=∠FPE∴△BAP∽△FPE,∴AB/PF=BP/EF,∵AD//BC,∴∠ADB=∠PBF,∴tan∠PBF=tan∠ADB=1/2,即PF/BP=1/2,∵BP=2√5-x,∴PF=1/2(2√5-x),∴2/((2√5-x)/2)=(2√5-x)/y,∴y=((2√5-x)^2)/4((2√5)/5≤x<2√5).(3)①当点F在线段BC上时,如图1-1中,∵∠FPB=∠BCD=〖90〗^∘,∴∠1+∠2=〖90〗^∘,∠1+∠3=〖90〗^∘,∴∠2=∠3,∵∠4=∠5,∠4+∠7=〖90〗^∘,∠5+∠6=〖90〗^∘,∴∠6=∠7,∴△PEF∽△PCD,∴PF/PD=EF/CD,∴(1/2(2√5-x))/x=(((2√5-x)^2)/4)/2,整理得:x^2-2√5 x+4=0,解得x=√5±1.②如图2中,当点F在线段BC的延长线上时,作PH ⊥AD于H,连接DF.由△APH∽△DFC,可得AH/DC=PH/CF,∴(4-(2√5)/5 x)/2=(√5/5 x)/(√5/2(2√5-x)-4),解得x=(7√5-√145)/5或(7√5+√145)/5(舍弃),综上所述,PD的长为√5±1或(7√5-√145)/5.【解析】1. 解:A、y=2x-2,是一次函数,B、y=(x-1)^2-x^2=-2x+1,是一次函数,C、当a=0时,y=a(x-1)^2不是二次函数,D、y=2x^2-1是二次函数.故选:D.依据二次函数的定义进行判断即可.本题主要考查的是二次函数的定义,掌握二次函数的特点是解题的关键.2. 解:A、由题意√(x-1)=-1<0,方程没有实数根;B、去分母得到:x^2-x+1=0,△<0,没有实数根;C、由题意x^4=-3/2<0,没有实数根,D、去分母得到:x=-1,有实数根,故选D.A、移项根据二次根式的性质即可判断;B、去分母后,化为整式方程即可判断;C、根据乘方的意义即可判断;D、去分母化为整式方程即可判断;本题考查了无理方程,解题的关键要注意是否有实数根,有实数根时是否有意义,用到的知识点是根的判别式.3. 解:A、BC与EF是对应边,所以,BC:DE=1:2不一定成立,故本选项错误;B、△ABC的面积:△DEF的面积=1:4,故本选项错误;C、∠A的度数:∠D的度数=1:1,故本选项错误;D、△ABC的周长:△DEF的周长=1:2正确,故本选项正确.故选D.根据相似三角形对应边成比例,相似三角形面积的比等于相似比的平方,周长的比等于相似比对各选项分析判断即可得解.本题考查对相似三角形性质的理解:(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.4. 解:A.∵EA:AC=AD:AB,∴DE//BC,选项A能判定DE//BC;B.∵DE:BC=DA:AB,∴DE//BC,选项B不能判定DE//BC;C.∵EA:EC=DA:DB,∴DE//BC,选项C能判定DE//BC;D.∵AC:EC=AB:DB,∴DE//BC,选项D能判定DE//BC.故选:B.根据平行线分线段成比例定理对各个选项进行判断即可.本题考查平行线分线段成比例定理,如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.5. 解:A、正确.根据去括号法则可得结论;B、错误.因为|a|=3|b|,模相等,平面向量不一定共线,故结论错误;C、正确.根据模的性质即可判断;D、正确.根据数乘向量的性质即可判断;故选:B.根据平面向量、模、数乘向量等知识一一判断即可;本题考查平平面向量、模、数乘向量等知识,解题的关键是灵活运用所学知识解决问题,属于中考基础题.6. 解:A、错误.应该是在同圆或等圆中,相等的圆心角所对的两条弦相等;B、正确;C、错误.此弦非直径时,平分弦的直径一定垂直于这条弦;D、错误.应该是外切两圆的圆心距等于这两圆的半径之和;故选:B.根据轴对称图形、垂径定理、两圆相切的条件等知识一一判断即可;本题考查命题与定理,垂径定理,两圆相切的性质、轴对称图形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7. 解:∵5a=4b,∴a=4/5 b,∴(a+b)/b=(4/5 b+b)/b=9/5.故答案为:9/5.利用已知将原式变形进而代入求出答案.此题主要考查了比例的性质,正确得出a,b之间关系是解题关键.8. 解:∵P是线段AB上的一点,且满足AP^2=AB⋅BP,∴P为线段AB的黄金分割点,且AP是较长线段,∴AP=(√5-1)/2 AB=2×(√5-1)/2=(√5-1)厘米.故答案为(√5-1).根据黄金分割点的定义,知AP是较长线段,得出AP=(√5-1)/2 AB,代入数据即可得出AP的长.本题考查了黄金分割的概念:如果一个点把一条线段分成两条线段,并且较长线段是较短线段和整个线段的比例中项,那么就说这个点把这条线段黄金分割,这个点叫这条线段的黄金分割点;较长线段是整个线段的(√5-1)/2倍.9. 解:∵二次函数的解析式为y=(x-3)^2+2,∴该抛物线开口向上,对称轴为x=3,在对称轴y的左侧y随x的增大而减小,∵-1>-2,∴m<n.故答案为:<.由在抛物线y=(x-3)^2+2可知抛物线开口向上,且对称轴为x=3,根据二次函数的性质即可判定.题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能求出对称轴和根据二次函数的性质求出正确答案是解此题的关键.10. 解:∵二次函数y=x^2-8x+m-1的顶点在x轴上,∴(4ac-b^2)/4a=(4(m-1)-(-8)^2)/4=0,即4m-68=0,∴m=17.故答案为:17.由二次函数的顶点在x轴上结合二次函数的性质,即可得出关于m的一元一次方程,解之即可得出结论.本题考查了二次函数的性质,牢记二次函数的顶点坐标为(-b/2a,(4ac-b^2)/4a)是解题的关键.11. 解:∵AD//BC,AD=2,BC=6,∴△ADO∽△CBO,∴OD/OB=AD/BC=1/3,∴S_(△AOD)=1/3 S_(△AOB)=2.故答案为2.由AD//BC,AD=2,BC=6,可得OD/OB=AD/BC=1/3,推出S_(△AOD)=1/3 S_(△AOB),即可解决问题;本题考查相似三角形的判定和性质、平行线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.12. 解:∵在Rt△ABC中,∠C=〖90〗^∘,cos∠A=AC/AB=2/3,∴设AC=2x,则AB=3x,∴由勾股定理得到:BC=√(AB^2-AC^2 )=√(9x^2-4x^2 )=√5 x,∴cot∠A=AC/BC=2x/(√5 x)=(2√5)/5;故答案是:(2√5)/5.设AC=2x,则AB=3x,由勾股定理求得BC的长度,继而由三角形函数的定义求得cot∠A的值.此题主要考查了锐角三角函数关系,正确记忆锐角三角函数关系是解题关键.13. 解:∵∠BAC=〖90〗^∘,AB=8,AC=6,∴BC=√(AB^2+AC^2 )=10,∵AD⊥BC,∴6×8=AD×10,解得:AD=4.8.故答案为:4.8.首先利用勾股定理得出BC的长,再利用三角形面积求法得出AD的长.此题主要考查了勾股定理以及三角形面积求法,得出BC的长是解题关键.14. 解:连接AG,设正方形的边长为a,AC=√(a^2+a^2 )=√2 a,∵AC/CF=(√2 a)/a=√2,CG/AC=2a/(√2 a)=√2,∴AC/CF=CG/AC,∵∠ACF=∠ACF,∴△ACF∽△GCA,∴∠AGB=∠CAF,∴tan∠CAF=tan∠AGB=AB/BG=a/3a=1/3,故答案为:1/3设正方形的边长为a,求出AC的长为√2 a,再求出△ACF与△GCA中夹∠ACF的两边的比值相等,根据两边对应成比例、夹角相等,两三角形相似,即可判定△ACF与△GCA相似,进而得出tan∠CAF=tan∠AGB=1/3.本题主要利用两边对应成比例,夹角相等两三角形相似的判定和相似三角形对应角相等的性质,求出两三角形的对应边的比值相等是解本题的关键.15. 解:设等边三角形△ABC和△DEF的边长分别为a、b,点O为位似中心,作OH⊥BC交EF于G,如图,根据题意,△ABC与△DEF的位似图形,点O、E、B 共线,在Rt△OEG中,∠OEG=〖30〗^∘,EG=1/2 b,∴OG=EG/√3=√3/6 b,同理得到OH=√3/6 a,而OH-OG=1,∴√3/6 a-√3/6 b=1,∴a-b=2√3,∴3(a-b)=6√3.故答案为6√3.设等边三角形△ABC和△DEF的边长分别为a、b,点O为位似中心,作OH⊥BC交EF于G,如图,利用位似的性质得到点O、E、B共线,根据等边三角形的性质得∠OEG=〖30〗^∘,EG=1/2 b,利用含30度的直角三角形三边的关系得到OG=EG/√3=√3/6 b,同理得到OH=√3/6 a,再利用OH-OG=1得到√3/6 a-√3/6 b=1,然后计算3(a-b)即可.本题考查了含30度角的直角三角形的性质:在直角三角形中,〖30〗^∘角所对的直角边等于斜边的一半.也考查了等边三角形的性质和位似的性质.16. 解:如图,作GH⊥BA交BA的延长线于H,EF交BG于O.∵四边形ABCD是菱形,∠D=〖60〗^∘,∴△ABC,△ADC度数等边三角形,AB=BC=CD=AD=2,,∴AH=1/2 AG=1/2,HG=√3/2,在Rt△BHG中,BG=√((√3/2 )^2+(5/2 )^2 )=√7,∵△BEO∽△BGH,∴BE/BG=OB/BH,∴BE/√7=(√7/2)/(5/2),∴BE=7/5,故答案为7/5.如图,作GH⊥BA交BA的延长线于H,EF交BG于O.利用勾股定理求出BG,再根据△BEO∽△BGH,可得BE/BG=OB/BH,由此即可解决问题;本题考查菱形的性质、翻折变换、相似三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形、相似三角形解决问题,属于中考填空题中的压轴题.17. 解:当⊙O_1和⊙O_2内切时,⊙O_2的半径为10+4=14cm;当⊙O_1和⊙O_2外切时,⊙O_2的半径为10-4=6cm;故答案为:6或14cm.⊙O_1和⊙O_2相切,有两种情况需要考虑:内切和外切.内切时,⊙O_2的半径=圆心距+⊙O_1的半径;外切时,⊙O_2的半径=圆心距-⊙O_1的半径.主要是考查两圆相切与数量关系间的联系,一定要考虑两种情况.18. 解:由折叠可得,∠DCE=∠DFE=〖90〗^∘,∴D,C,E,F四点共圆,∴∠CDE=∠CFE=∠B,又∵CE=FE,∴∠CFE=∠FCE,∴∠B=∠FCE,∴CF=BF,同理可得,CF=AF,∴AF=BF,即F是AB的中点,∴Rt△ABC中,CF=1/2 AB=5,由D,C,E,F四点共圆,可得∠DFC=∠DEC,由∠CDE=∠B,可得∠DEC=∠A,∴∠DFC=∠A,又∵∠DCF=∠FCA,∴△CDF∽△CFA,∴CF^2=CD×CA,即5^2=CD×8,∴CD=25/8,故答案为:25/8.根据D,C,E,F四点共圆,可得∠CDE=∠CFE=∠B,再根据CE=FE,可得∠CFE=∠FCE,进而根据∠B=∠FCE,得出CF=BF,同理可得CF=AF,由此可得F是AB的中点,求得CF=1/2 AB=5,再判定△CDF∽△CFA,得到CF^2=CD×CA,进而得出CD的长.本题主要考查了折叠问题,四点共圆以及相似三角形的判定与性质的运用,解决问题的关键是根据四点共圆以及等量代换得到F是AB的中点.19. 直接利用特殊角的三角函数值代入求出答案.此题主要考查了实数运算,正确记忆特殊角的三角函数值是解题关键.20. (1)设AC=3a,AB=5a.则BC=4a.想办法求出DE、CE,根据tan∠DCE=DE/CE即可解决问题;(2)根据AC=AD+DC,只要求出AD、DC即可解决问题;本题考查平面向量、锐角三角函数、平行线的性质等知识,解题的关键是灵活运用所学知识,学会利用参数解决问题,属于中考常考题型.21. (1)设OC=x,证明△CEO∽△PCO,得CO/OE=OP/OC,代入x可得结论;(2)由勾股定理得CE的长,根据垂径定理可得CD的长.本题考查了垂径定理,线段垂直平分线的性质,相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.22. 如图作CH⊥AD于H.设CH=xkm,在Rt△ACH中,可得AH=CH/(tan〖37〗^∘)=x/(tan〖37〗^∘),在Rt △CEH中,可得CH=EH=x,由CH//BD,推出AH/HD=AC/CB,由AC=CB,推出AH=HD,可得x/(tan 〖37〗^∘)=x+5,求出x即可解决问题.本题考查了解直角三角形的应用--方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.23. (1)根据平行四边形的判定得出四边形BCFD是平行四边形,进而利用相似比解答即可;(2)根据全等三角形的判定得出△ABH≌△ACH,进而利用全等三角形的性质证明△GHC∽△CHF,再根据相似三角形的性质证明即可.本题主要考查相似三角形的判定与性质,熟练掌握三角形相似判定方法是解题的关键.24. (1)先利用抛物线的对称性得到B(3,0),则可设交点式y=a(x+1)(x-3),然后展开即可得到C点坐标;(2)利用三角形面积公式得到6a=6,然后求出a即可得到抛物线解析式;(3)设点Q的坐标为(m,0).过点G作GH⊥x轴,垂足为点H,如图,利用中心对称的性质得QC=QG,QA=QF=m+1,QO=QH=m,OC=GH=3,则OF=2m+1,HF=1,讨论:当∠CGF=〖90〗^∘时,证明Rt△QGH∽Rt△GFH,利用相似比得到3/1=m/3,解方程求出m即可得到此时Q的坐标;当∠CFG=〖90〗^∘时,证明Rt△GFH∽Rt △FCO,利用相似比得到3/(2m+1)=1/3,解方程求出m即可得到此时Q的坐标.本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、中心对称的性质和相似三角形的判定与性质;会利用待定系数法求抛物线解析式;灵活应用相似比表示线段之间的关系;理解坐标与图形的性质;会利用分类讨论的思想解决数学问题.25. (1)首先证明∠ADB=∠BAF,由tan∠ADB=AB/AD=2/4=1/2,推出tan∠BAF=BF/AB=1/2,可得BF=1,根据S_(△ABF)=1/2⋅AB⋅BF计算即可;(2)首先证明△BAP∽△BAP,可得AB/PF=BP/EF,由AD//BC,推出∠ADB=∠PBF,tan∠PBF=tan∠ADB=1/2,即PF/BP=1/2,由BP=2√5-x,可得PF=1/2(2√5-x),代入比例式即可解决问题;(3)分两种情形分别求解:①当点F在线段BC上时,如图1-1中;②如图2中,当点F在线段BC的延长线上时,作PH⊥AD于H,连接DF.寻找相似三角形,构建方程即可解决问题;本题考查四边形综合题.相似三角形的判定和性质、锐角三角函数、矩形的性质等知识,解题的关键是正确寻找相似三角形解决问题,学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题.。
2024年山东省菏泽市中考数学模拟押题试题一、单选题1.2024的相反数是( )A .2024B .2024-C .2024D .120242.将等腰直角三角形纸片和长方形纸片按如下图方式叠放,若125∠=︒,则2∠的度数为( )A .45︒B .30︒C .25︒D .20︒3.下列运算正确的是( )A .369a a a +=B .5433a a a ÷=C .()437a a -=D .33333a a a a ⋅⋅= 4.下图是几个相同的小正方体搭成的几何体的俯视图,则该几何体是( )A .B .C .D .5.解一元二次方程2250x x --=,配方后正确的是( )A .()213x -=B .()214x -=C .()216x -=D .()228x -= 6.2023年3月5日-3月13日,全国两会在首都北京召开,为了让学生更好地了解两会,某学校组织了一次关于“全国两会”的知识比赛,在抢答赛初赛中,某班4个小队的成绩统计结果如下表:要从4个小队中选出一个小队代表班级参加决赛,应该选哪个队伍参赛比较合理?( ) A .第1队 B .第2队 C .第3队 D .第4队7.如图,在矩形ABCD 中,6AB =,3BC =,将矩形沿AC 折叠,点D 落在点D ¢处,则CF 的长为( )A .94B .154C .278D .2748.如图,AB 为O e 的直径,点C D E 、、在O e 上,且¶¶AD CD=,70E ∠=︒,则ABC ∠的度数为( )A .30︒B .40︒C .35︒D .50︒9.对于实数a 、b ,定义新运算“&”如下:2&a b a ab =-.例如:25&355310=-⨯=,若()1&23x +=,则x 的值为( )A .12x =,22x =-B .122x x ==-C .11x =,21x =-D .10x =,24x =-10.抛物线()20y ax bx c a =++≠的对称轴是直线1x =-,其图象如图所示.下列结论:①0abc <;②()()2242a c b +<;③若()11,x y 和()22,x y 是抛物线上的两点,则当1211x x +>+时,12y y <;④抛物线的顶点坐标为()1,m -,则关于x 的方程21ax bx c m ++=-无实数根.其中正确结论的个数是( )A .4B .3C .2D .1二、填空题11.已知(a+b )2=26,(a -b )2=6,则ab =.12.芯片内部有数以亿计的晶体管,为追求更高质量的芯片和更低的电力功耗,需要设计体积更小的晶体管.目前,某品牌手机自主研发了最新型号芯片,其晶体管栅极的宽度为0.000000014米.数据0.000000014用科学记数法表示为.13.一个正多边形的内角和比它的外角和多180°,则这个正多边形的每一个内角等于. 14.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,E 是AB 的中点,连接OE ,若6AC =,60ACB ∠=︒,则OE 的长为.15.如图,图中的折线OABC 反映了圆圆从家到学校所走的路程()m S 与时间()min t 的函数关系,其中,OA 所在直线的表达式为()110y k x k =≠,BC 所在直线的表达式为()220y k x b k =+≠,则21k k -=.16.观察下列各式:2(1)(1)1x x x -+=-()23(1)11x x x x -++=-()324(1)11x x x x x -+++=-()4325(1)11x x x x x x -++++=-⋯. 则2024202320222222221+++⋯+++的结果为.三、解答题17.计算:(1)101202422-⎛⎫+ ⎪⎝⎭ (2)先化简,再求值:22291121x x x x -⎛⎫+÷ ⎪+++⎝⎭,其中2x =. 18.扎染文化是我国传统文化的重要组成部分,扎染文化的发展带动了旅游相关产业的发展,电视剧《去有风的地方》的热映不仅推动了云南大理旅游业的热潮,也增进了人们对扎染文化的了解,云南大理某扎染坊第一次用3700元购进甲、乙两种布料共80件,其中两种布料的成本价和销售价如表:(1)该扎染坊第一次购进甲、乙两种布料各多少件?(2)因热销,第一次购进的布料全部售完,该扎染坊第二次以相同的成本价购进甲、乙两种布料共100件.若此次购进甲种布料的数量不超过乙种布料的数量的1.5倍,且以相同的销售价全部售完这批布料,设第二次购进甲种布料m 件,第二次销售完后获得的利润为W 元,试问第二次以何种进货方案,才能使第二次销售完后获得的利润最大?最大利润是多少元? 19.北京冬奥村的餐厅由机器人送餐.一送餐机器人从世界餐台A 处向正南方向走200米到达亚洲餐台B 处,再从B 处向正东方向走500米到达中餐餐台C 处,然后从C 处向北偏西37︒走到就餐区D 处,最后从D 回到A 处,已知就餐区D 在A 的北偏东73︒方向,求中餐台C 到就餐区D (即CD )的距离.(结果保留整数,参考数值:19sin 7320︒≈,29cos73100︒≈,10tan 733≈︒,3sin375︒≈,cos3745︒≈,3tan374︒≈)20.为培养学生良好学习习惯,某学校计划举行一次“错题集”的展示活动,对该校部分学生“错题集”的情况进行了一次抽样调查,根据收集的数据绘制了如图不完整的统计图表.请根据图表中提供的信息,解答下列问题:(1)补全统计表,本次抽样共调查了多少本学生的错题集?(2)该校有1500名学生,每名学生都有整理错题集,估计该校学生整理错题集情况“非常好”和“较好”的错题集一共约多少本?(3)某学习小组4名学生的错题集中,有2本“非常好”( 记为1A ,2A ),1本“较好”( 记为B ),1本“一般”( 记为C ),这些错题集封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本错题集中再抽取一本,请用“列表法”或“画树形图”的方法求出两次抽到的错题集都是“非常好”的概率.21.如图,已知直线y x =与双曲线k y x =交于 A 、B 两点,且点A 的横坐标 3. (1)求 k 的值;(2)若双曲线k y x=上点C 的纵坐标为3,求△AOC 的面积; (3)在y 轴上有一点M ,在直线AB 上有一点P ,在双曲线k y x =上有一点N ,若四边形OPNM 是有一组对角为 60°的菱形,请写出所有满足条件的点 P 的坐标.22.已知,如图,AB 是O e 的直径,点C 为O e 上一点,OF BC ⊥于点F ,交O e 于点E ,AE 与BC 交于点H ,点D 为OE 的延长线上一点,且ODB AEC ∠=∠.(1)求证:BD 是O e 的切线;(2)连接BE ,求证:2BE EH EA =⋅;(3)若O e 的半径为10,3sin 5A =,求BH 的长. 23.如图,已知抛物线24y ax bx =+-与x 轴交于()()2,04,0AB -,两点(点A 在点B 的左侧),与y 轴交点C .(1)求抛物线的解析式;(2)点D 是第四象限内抛物线上的一个动点(与点C B ,不重合),过点D 作DF x ⊥轴于点F ,交直线BC 于点E ,连接BD ,若23BEFBDE S S =V V ∶∶,求出点D 的坐标. (3)P 为拋物线上一动点,是否存在点P Q 、,使得以点B C P Q ,,,为顶点的四边形是以BC 为对角线的菱形?若存在,请直接写出P Q ,两点的坐标;若不存在,请说明理由. 24.【问题呈现】CAB △和CDE V 都是直角三角形,90,,ACB DCE CB mCA CE mCD ∠=∠=︒==,连接AD ,BE ,探究AD ,BE 的位置关系.(1)如图1,当1m =时,直接写出AD ,BE 的位置关系:____________;(2)如图2,当1m ≠时,(1)中的结论是否成立?若成立,给出证明;若不成立,说明理由.【拓展应用】(3)当4m AB DE ===时,将CDE V 绕点C 旋转,使,,A D E 三点恰好在同一直线上,求BE 的长.。
2018年山东省菏泽市中考数学试卷一、选择题(本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项是正确的,请把正确选项的序号填在答题卡的相应位置。
) 1.(3分)下列各数:﹣2,0,,0.020020002…,π,,其中无理数的个数是()A.4 B.3 C.2 D.12.(3分)习近平主席在2018年新年贺词中指出,“安得广厦千万间,大庇天下寒土俱欢颜!”2017年,340万贫困人口实现异地扶贫搬迁,有了温暖的新家,各类棚户区改造开工提前完成600万套目标任务.将340万用科学记数法表示为()A.0。
34×107B.34×105 C.3.4×105D.3.4×1063.(3分)如图,直线a∥b,等腰直角三角板的两个顶点分别落在直线a、b上,若∠1=30°,则∠2的度数是()A.45°B.30°C.15°D.10°4.(3分)如图是两个等直径圆柱构成的“T”形管道,其左视图是()A.B.C.D.5.(3分)关于x的一元二次方程(k+1)x2﹣2x+1=0有两个实数根,则k的取值范围是()A.k≥0 B.k≤0 C.k<0且k≠﹣1 D.k≤0且k≠﹣16.(3分)如图,在⊙O中,OC⊥AB,∠ADC=32°,则∠OBA的度数是()A.64°B.58°C.32°D.26°7.(3分)规定:在平面直角坐标系中,如果点P的坐标为(m,n),向量可以用点P的坐标表示为:=(m,n).已知:=(x1,y1),=(x2,y2),如果x1•x2+y1•y2=0,那么点与互相垂直.下列四组向量,互相垂直的是() A.=(3,2),=(﹣2,3)B.=(﹣1,1),=(+1,1)C.=(3,20180),=(﹣,﹣1) D.=(,﹣),=(()2,4)8.(3分)已知二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+a与反比例函数y=在同一平面直角坐标系中的图象大致是()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,共18分,请把最后结果填写在答题卡的相应区域内.)9.(3分)不等式组的最小整数解是.10.(3分)若a+b=2,ab=﹣3,则代数式a3b+2a2b2+ab3的值为.11.(3分)若正多边形的每一个内角为135°,则这个正多边形的边数是.12.(3分)据资料表明:中国已成为全球机器人第二大专利来源国和目标国.机器人几大关键技术领域包括:谐波减速器、RV减速器、电焊钳、3D视觉控制、焊缝跟踪、涂装轨迹规划等,其中涂装轨迹规划的来源国结构(仅计算了中、日、德、美)如图所示,在该扇形统计图中,美国所对应的扇形圆心角是度.13.(3分)如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为3:4,∠OCD=90°,∠AOB=60°,若点B的坐标是(6,0),则点C的坐标是.14.(3分)一组“数值转换机"按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是.三、解答题(本大题共10个小题,共78分,请把解答或证明过程写在答题卡的相应区域内。