实验三 数据结构 报告(汽院)
- 格式:doc
- 大小:114.50 KB
- 文档页数:5
《数据结构》实验报告目录一、实验概述 (2)二、实验原理 (2)2.1 数据结构基本概念 (3)2.2 选择的数据结构类型 (4)2.3 实验原理说明 (5)三、实验步骤 (6)3.1 实验准备 (7)3.2 数据结构选择与实现 (7)3.2.1 数据结构类型选择 (9)3.2.2 数据结构实现细节 (9)3.3 实验功能实现 (10)3.3.1 功能一 (11)3.3.2 功能二 (12)四、实验结果与分析 (13)4.1 实验数据 (15)4.2 结果展示 (16)4.2.1 结果一展示 (17)4.2.2 结果二展示 (17)4.3 结果分析 (18)4.3.1 结果一分析 (19)4.3.2 结果二分析 (20)五、实验总结与讨论 (22)5.1 实验总结 (23)5.2 实验中遇到的问题及解决方法 (24)5.3 对数据结构的认识与体会 (25)5.4 对实验教学的建议 (27)一、实验概述本次实验旨在通过实际操作,加深对《数据结构》课程中所学理论知识的理解和掌握。
实验内容围绕数据结构的基本概念、常用算法以及在实际应用中的实现进行设计。
通过本次实验,学生将能够:理解并掌握线性表、栈、队列、链表、树、图等基本数据结构的特点和适用场景。
掌握常用的数据结构操作算法,如插入、删除、查找等,并能够运用这些算法解决实际问题。
学习使用C++、或其他编程语言实现数据结构的操作,提高编程能力和算法设计能力。
本次实验报告将对实验的目的、内容、步骤、结果及分析等方面进行详细阐述,旨在通过实验过程的学习,提高学生对数据结构理论知识的理解和应用能力。
二、实验原理数据结构的基本概念:介绍数据结构的基本定义,包括数据元素、数据集合、数据关系等基本概念,以及数据结构的三要素:逻辑结构、存储结构和运算。
栈和队列:介绍栈和队列的定义、特点、基本运算及其在算法设计中的重要性。
树和二叉树:讲解树的基本概念、二叉树的结构特点、遍历方法、二叉搜索树及其在数据检索中的应用。
数据结构实验报告想必学计算机专业的同学都知道数据结构是一门比较重要的课程,那么,下面是小编给大家整理收集的数据结构实验报告,供大家阅读参考。
数据结构实验报告1一、实验目的及要求1)掌握栈和队列这两种特殊的线性表,熟悉它们的特性,在实际问题背景下灵活运用它们。
本实验训练的要点是“栈”和“队列”的观点;二、实验内容1) 利用栈,实现数制转换。
2) 利用栈,实现任一个表达式中的语法检查(选做)。
3) 编程实现队列在两种存储结构中的基本操作(队列的初始化、判队列空、入队列、出队列);三、实验流程、操作步骤或核心代码、算法片段顺序栈:Status InitStack(SqStack &S){S.base=(ElemType*)malloc(STACK_INIT_SIZE*sizeof(ElemTyp e));if(!S.base)return ERROR;S.top=S.base;S.stacksize=STACK_INIT_SIZE;return OK;}Status DestoryStack(SqStack &S){free(S.base);return OK;}Status ClearStack(SqStack &S){S.top=S.base;return OK;}Status StackEmpty(SqStack S){if(S.base==S.top)return OK;return ERROR;}int StackLength(SqStack S){return S.top-S.base;}Status GetTop(SqStack S,ElemType &e){if(S.top-S.base>=S.stacksize){S.base=(ElemType*)realloc(S.base,(S.stacksize+STACKINCREMENT)*sizeof(ElemTyp e));if(!S.base) return ERROR;S.top=S.base+S.stacksize;S.stacksize+=STACKINCREMENT;}*S.top++=e;return OK;Status Push(SqStack &S,ElemType e){if(S.top-S.base>=S.stacksize){S.base=(ElemType*)realloc(S.base,(S.stacksize+STACKINCREMENT)*sizeof(ElemTyp e));if(!S.base)return ERROR;S.top=S.base+S.stacksize;S.stacksize+=STACKINCREMENT;}*S.top++=e;return OK;}Status Pop(SqStack &S,ElemType &e){if(S.top==S.base)return ERROR;e=*--S.top;return OK;}Status StackTraverse(SqStack S){ElemType *p;p=(ElemType *)malloc(sizeof(ElemType));if(!p) return ERROR;p=S.top;while(p!=S.base)//S.top上面一个...p--;printf("%d ",*p);}return OK;}Status Compare(SqStack &S){int flag,TURE=OK,FALSE=ERROR; ElemType e,x;InitStack(S);flag=OK;printf("请输入要进栈或出栈的元素:"); while((x= getchar)!='#'&&flag) {switch (x){case '(':case '[':case '{':if(Push(S,x)==OK)printf("括号匹配成功!\n\n"); break;case ')':if(Pop(S,e)==ERROR || e!='('){printf("没有满足条件\n");flag=FALSE;}break;case ']':if ( Pop(S,e)==ERROR || e!='[')flag=FALSE;break;case '}':if ( Pop(S,e)==ERROR || e!='{')flag=FALSE;break;}}if (flag && x=='#' && StackEmpty(S)) return OK;elsereturn ERROR;}链队列:Status InitQueue(LinkQueue &Q) {Q.front =Q.rear=(QueuePtr)malloc(sizeof(QNode));if (!Q.front) return ERROR;Q.front->next = NULL;return OK;}Status DestoryQueue(LinkQueue &Q) {while(Q.front){Q.rear=Q.front->next;free(Q.front);Q.front=Q.rear;}return OK;}Status QueueEmpty(LinkQueue &Q){if(Q.front->next==NULL)return OK;return ERROR;}Status QueueLength(LinkQueue Q){int i=0;QueuePtr p,q;p=Q.front;while(p->next){i++;p=Q.front;q=p->next;p=q;}return i;}Status GetHead(LinkQueue Q,ElemType &e) {QueuePtr p;p=Q.front->next;if(!p)return ERROR;e=p->data;return e;}Status ClearQueue(LinkQueue &Q){QueuePtr p;while(Q.front->next ){p=Q.front->next;free(Q.front);Q.front=p;}Q.front->next=NULL;Q.rear->next=NULL;return OK;}Status EnQueue(LinkQueue &Q,ElemType e) {QueuePtr p;p=(QueuePtr)malloc(sizeof (QNode));if(!p)return ERROR;p->data=e;p->next=NULL;Q.rear->next = p;Q.rear=p; //p->next 为空return OK;}Status DeQueue(LinkQueue &Q,ElemType &e) {QueuePtr p;if (Q.front == Q.rear)return ERROR;p = Q.front->next;e = p->data;Q.front->next = p->next;if (Q.rear == p)Q.rear = Q.front; //只有一个元素时(不存在指向尾指针) free (p);return OK;}Status QueueTraverse(LinkQueue Q){QueuePtr p,q;if( QueueEmpty(Q)==OK){printf("这是一个空队列!\n");return ERROR;}p=Q.front->next;while(p){q=p;printf("%d<-\n",q->data);q=p->next;p=q;}return OK;}循环队列:Status InitQueue(SqQueue &Q){Q.base=(QElemType*)malloc(MAXQSIZE*sizeof(QElemType)); if(!Q.base)exit(OWERFLOW);Q.front=Q.rear=0;return OK;}Status EnQueue(SqQueue &Q,QElemType e){if((Q.rear+1)%MAXQSIZE==Q.front)return ERROR;Q.base[Q.rear]=e;Q.rear=(Q.rear+1)%MAXQSIZE;return OK;}Status DeQueue(SqQueue &Q,QElemType &e){if(Q.front==Q.rear)return ERROR;e=Q.base[Q.front];Q.front=(Q.front+1)%MAXQSIZE;return OK;}int QueueLength(SqQueue Q){return(Q.rear-Q.front+MAXQSIZE)%MAXQSIZE;}Status DestoryQueue(SqQueue &Q){free(Q.base);return OK;}Status QueueEmpty(SqQueue Q) //判空{if(Q.front ==Q.rear)return OK;return ERROR;}Status QueueTraverse(SqQueue Q){if(Q.front==Q.rear)printf("这是一个空队列!");while(Q.front%MAXQSIZE!=Q.rear){printf("%d<- ",Q.base[Q.front]);Q.front++;}return OK;}数据结构实验报告2一.实验内容:实现哈夫曼编码的生成算法。
一、实验目的1. 理解并掌握数据结构的基本概念和常用算法。
2. 学会使用C语言实现线性表、栈、队列、树和图等基本数据结构。
3. 培养动手实践能力,提高编程水平。
二、实验内容1. 线性表(1)顺序表(2)链表2. 栈(1)顺序栈(2)链栈3. 队列(1)顺序队列(2)链队列4. 树(1)二叉树(2)二叉搜索树5. 图(1)邻接矩阵表示法(2)邻接表表示法三、实验环境1. 操作系统:Windows 102. 编程语言:C语言3. 编译器:Visual Studio 20194. 实验软件:C语言开发环境四、实验步骤1. 线性表(1)顺序表1)定义顺序表结构体2)实现顺序表的初始化、插入、删除、查找等基本操作3)编写测试程序,验证顺序表的基本操作(2)链表1)定义链表结构体2)实现链表的创建、插入、删除、查找等基本操作3)编写测试程序,验证链表的基本操作2. 栈(1)顺序栈1)定义顺序栈结构体2)实现顺序栈的初始化、入栈、出栈、判空等基本操作3)编写测试程序,验证顺序栈的基本操作(2)链栈1)定义链栈结构体2)实现链栈的初始化、入栈、出栈、判空等基本操作3)编写测试程序,验证链栈的基本操作3. 队列(1)顺序队列1)定义顺序队列结构体2)实现顺序队列的初始化、入队、出队、判空等基本操作3)编写测试程序,验证顺序队列的基本操作(2)链队列1)定义链队列结构体2)实现链队列的初始化、入队、出队、判空等基本操作3)编写测试程序,验证链队列的基本操作4. 树(1)二叉树1)定义二叉树结构体2)实现二叉树的创建、遍历、查找等基本操作3)编写测试程序,验证二叉树的基本操作(2)二叉搜索树1)定义二叉搜索树结构体2)实现二叉搜索树的创建、遍历、查找等基本操作3)编写测试程序,验证二叉搜索树的基本操作5. 图(1)邻接矩阵表示法1)定义邻接矩阵结构体2)实现图的创建、添加边、删除边、遍历等基本操作3)编写测试程序,验证邻接矩阵表示法的基本操作(2)邻接表表示法1)定义邻接表结构体2)实现图的创建、添加边、删除边、遍历等基本操作3)编写测试程序,验证邻接表表示法的基本操作五、实验结果与分析1. 线性表(1)顺序表实验结果表明,顺序表的基本操作实现正确,测试程序运行稳定。
数据结构试验报告. 数据结构实验报告班级:姓名:学号:实验三一.实验内容:利用哈夫曼编码进行通信可以大大提高信道利用率,缩短信息传输时间,降低传输成本。
但是,这要求在发送端通过一个编码系统对待传输数据预先编码,在接收端将传来的数据进行译码(复原)。
对于双工信道(即可以双向传输信息的信道),每端都需要一个完整的编/译码系统。
试为这样的信息收发站写一个哈夫曼的编/译码系统。
一个完整的系统应具有以下功能:(1)I:初始化(Initialization)。
从终端读入字符集大小n,以及n 个字符和n个权值,建立哈夫曼树,并将它存于文件hfmTree中。
(2)E:编码(Encoding)。
利用以建好的哈夫曼树(如不在内存,则从文件hfmTree中读入),对文件ToBeTran中的正文进行编码,然后将结果存入文件CodeFile中。
(3)D:译码(Decoding)。
利用已经建好的哈夫曼树将文件CodeFile 中的代码进行译码,结果存入文件TextFile中。
(4)P:打印代码文件(Print)。
将文件CodeFile以紧凑格式显示在终端上,每行50个代码,同时将此字符形式的编码写入文件CodePrint 中。
T:打印哈夫曼树(Tree printing)。
将已经在内存中的哈夫曼树以直观的方式(树或凹入表形式)显示在终端上,同时将此字符形式的哈夫曼树写入文件TreePrint中。
二.实验目的(1)掌握二叉树的存储结构及其相关操作。
(2)掌握构造哈夫曼树的基本思想,及其编码/译码过程。
三.程序清单#include #include #include //定义赫夫曼树结点的结构体typedef struct{ char ch; //增加一个域,存放该节点的字符int weight; int parent,lchild,rchild;}HTNode,*HuffmanTree;typedef char **HuffmanCode; //指向赫夫曼编码的指针void tips(); //打印操作选择界面void HuffmanCoding(HuffmanTree ,char *,int *,int); //建立赫夫曼树的算法void select(HuffmanTree HT,int j,int *x,int *y); //从已建好的赫夫曼树中选择parent为0,weight最小的两个结点void Init();void Coding(); //编码void Decoding(); //译码void Print_code(); //打印译码好的代码void Print_tree(); //打印哈夫曼树int Read_tree(HuffmanTree ); //从文件中读入赫夫曼树void find(Huffman-省略部分-ice) { coute.key; SearchBST( T,e,f,p); couty; if(y=='Y'||y=='y') choice=true; else choice=false; } int shorter; choice=true; while(choice) { coute.key; DeleteA VL(T,e,shorter); Print_BSTTree(T,0); couty; if(y=='Y'||y=='y') choice=true; else choice=false; } return 0;}四.调试步骤开始输入要插入字符InsertA VL(T,e,tall); Print_BSTTree(T,0); 是执行SearchBST( T,e,f,p);输入要查询的字符执行SearchBST( T,e,f,p);是否继续插入?否输入要搜索的字符SearchBST( T,e,f,p); 是是否继续搜索?执行SearchBST( T,e,f,p); 否输入要查询的字符是执行SearchBST( T,e,f,p);是否继续搜索?否输入要删除的字符执行DeleteA VL(T,e,shorter); Print_BSTTree(T,0); 是执行SearchBST( T,e,f,p);是否继续删除?否结束五.运行结果六.分析与思考完成本次数据结构实验课后发现这些算法跟程序在脑海里变得清晰了许多,这次实验课做的课题是查找算法实现,实验的结果全部都在意料之中,不由得松了一口气。
数据结构课程实验报告一、实验目的数据结构是计算机科学中一门重要的基础课程,通过本次实验,旨在加深对数据结构基本概念和算法的理解,提高编程能力和解决实际问题的能力。
具体目标包括:1、掌握常见数据结构(如数组、链表、栈、队列、树、图等)的基本操作和实现方法。
2、学会运用数据结构解决实际问题,培养算法设计和分析的能力。
3、提高程序设计的规范性和可读性,培养良好的编程习惯。
二、实验环境本次实验使用的编程语言为C++,开发环境为Visual Studio 2019。
三、实验内容本次实验共包括以下几个部分:(一)线性表的实现与操作1、顺序表的实现定义一个顺序表结构体,包含数据元素数组和表的长度。
实现顺序表的初始化、插入、删除、查找等基本操作。
2、链表的实现定义链表节点结构体,包含数据域和指针域。
实现链表的创建、插入、删除、遍历等操作。
(二)栈和队列的实现与应用1、栈的实现采用顺序存储或链式存储实现栈。
实现栈的入栈、出栈、栈顶元素获取等操作,并应用于表达式求值。
2、队列的实现用循环队列或链式队列实现队列。
实现队列的入队、出队、队头元素获取等操作,应用于模拟排队系统。
(三)树的基本操作与遍历1、二叉树的实现定义二叉树节点结构体,包含数据域、左子树指针和右子树指针。
实现二叉树的创建、插入、删除节点等操作。
2、二叉树的遍历分别实现前序遍历、中序遍历和后序遍历,并输出遍历结果。
(四)图的表示与遍历1、邻接矩阵和邻接表表示图定义图的结构体,使用邻接矩阵和邻接表两种方式存储图的信息。
实现图的创建、添加边等操作。
2、图的遍历分别用深度优先搜索(DFS)和广度优先搜索(BFS)遍历图,并输出遍历序列。
四、实验步骤(一)线性表的实现与操作1、顺序表的实现首先,定义了一个结构体`SeqList` 来表示顺序表,其中包含一个整数数组`data` 用于存储数据元素,以及一个整数`length` 表示表的当前长度。
在初始化函数`InitSeqList` 中,将表的长度初始化为 0,并分配一定的存储空间给数组。
数据结构实验报告一、实验目的数据结构是计算机科学中非常重要的一门课程,通过本次实验,旨在加深对常见数据结构(如链表、栈、队列、树、图等)的理解和应用,提高编程能力和解决实际问题的能力。
二、实验环境本次实验使用的编程语言为C++,开发工具为Visual Studio 2019。
操作系统为 Windows 10。
三、实验内容1、链表的实现与操作创建一个单向链表,并实现插入、删除和遍历节点的功能。
对链表进行排序,如冒泡排序或插入排序。
2、栈和队列的应用用栈实现表达式求值,能够处理加、减、乘、除和括号。
利用队列实现银行排队系统的模拟,包括顾客的到达、服务和离开。
3、二叉树的遍历与操作构建一棵二叉树,并实现前序、中序和后序遍历。
进行二叉树的插入、删除节点操作。
4、图的表示与遍历用邻接矩阵和邻接表两种方式表示图。
实现图的深度优先遍历和广度优先遍历。
四、实验步骤及结果1、链表的实现与操作首先,定义了链表节点的结构体:```cppstruct ListNode {int data;ListNode next;ListNode(int x) : data(x), next(NULL) {}};```插入节点的函数:```cppvoid insertNode(ListNode& head, int val) {ListNode newNode = new ListNode(val);head = newNode;} else {ListNode curr = head;while (curr>next!= NULL) {curr = curr>next;}curr>next = newNode;}}```删除节点的函数:```cppvoid deleteNode(ListNode& head, int val) {if (head == NULL) {return;}ListNode temp = head;head = head>next;delete temp;return;}ListNode curr = head;while (curr>next!= NULL && curr>next>data!= val) {curr = curr>next;}if (curr>next!= NULL) {ListNode temp = curr>next;curr>next = curr>next>next;delete temp;}}```遍历链表的函数:```cppvoid traverseList(ListNode head) {ListNode curr = head;while (curr!= NULL) {std::cout << curr>data <<"";curr = curr>next;}std::cout << std::endl;}```对链表进行冒泡排序的函数:```cppvoid bubbleSortList(ListNode& head) {if (head == NULL || head>next == NULL) {return;}bool swapped;ListNode ptr1;ListNode lptr = NULL;do {swapped = false;ptr1 = head;while (ptr1->next!= lptr) {if (ptr1->data > ptr1->next>data) {int temp = ptr1->data;ptr1->data = ptr1->next>data;ptr1->next>data = temp;swapped = true;}ptr1 = ptr1->next;}lptr = ptr1;} while (swapped);}```测试结果:创建了一个包含 5、3、8、1、4 的链表,经过排序后,输出为 1 3 4 5 8 。
一、实验目的本次实验旨在让学生掌握数据结构的基本概念、逻辑结构、存储结构以及各种基本操作,并通过实际编程操作,加深对数据结构理论知识的理解,提高编程能力和算法设计能力。
二、实验内容1. 线性表(1)顺序表1)初始化顺序表2)向顺序表插入元素3)从顺序表删除元素4)查找顺序表中的元素5)顺序表的逆序操作(2)链表1)创建链表2)在链表中插入元素3)在链表中删除元素4)查找链表中的元素5)链表的逆序操作2. 栈与队列(1)栈1)栈的初始化2)入栈操作3)出栈操作4)获取栈顶元素5)判断栈是否为空(2)队列1)队列的初始化2)入队操作3)出队操作4)获取队首元素5)判断队列是否为空3. 树与图(1)二叉树1)创建二叉树2)遍历二叉树(前序、中序、后序)3)求二叉树的深度4)求二叉树的宽度5)二叉树的镜像(2)图1)创建图2)图的深度优先遍历3)图的广度优先遍历4)最小生成树5)最短路径三、实验过程1. 线性表(1)顺序表1)初始化顺序表:创建一个长度为10的顺序表,初始化为空。
2)向顺序表插入元素:在顺序表的第i个位置插入元素x。
3)从顺序表删除元素:从顺序表中删除第i个位置的元素。
4)查找顺序表中的元素:在顺序表中查找元素x。
5)顺序表的逆序操作:将顺序表中的元素逆序排列。
(2)链表1)创建链表:创建一个带头结点的循环链表。
2)在链表中插入元素:在链表的第i个位置插入元素x。
3)在链表中删除元素:从链表中删除第i个位置的元素。
4)查找链表中的元素:在链表中查找元素x。
5)链表的逆序操作:将链表中的元素逆序排列。
2. 栈与队列(1)栈1)栈的初始化:创建一个栈,初始化为空。
2)入栈操作:将元素x压入栈中。
3)出栈操作:从栈中弹出元素。
4)获取栈顶元素:获取栈顶元素。
5)判断栈是否为空:判断栈是否为空。
(2)队列1)队列的初始化:创建一个队列,初始化为空。
2)入队操作:将元素x入队。
3)出队操作:从队列中出队元素。
第1篇一、引言数据结构是计算机科学中一个重要的基础学科,它研究如何有效地组织、存储和操作数据。
在计算机科学中,数据结构的选择直接影响到算法的效率、存储空间和程序的可维护性。
为了使学生在实际操作中更好地理解数据结构的概念、原理和应用,本实验报告旨在明确数据结构实验的目的,指导学生进行实验,并总结实验成果。
二、实验目的1. 理解数据结构的基本概念和原理通过实验,使学生深入理解数据结构的基本概念,如线性表、栈、队列、树、图等,掌握各种数据结构的定义、性质和特点。
2. 掌握数据结构的存储结构及实现方法实验过程中,使学生熟悉各种数据结构的存储结构,如顺序存储、链式存储等,并掌握相应的实现方法。
3. 培养编程能力通过实验,提高学生的编程能力,使其能够熟练运用C、C++、Java等编程语言实现各种数据结构的操作。
4. 提高算法设计能力实验过程中,要求学生根据实际问题设计合适的算法,提高其算法设计能力。
5. 培养实际应用能力通过实验,使学生将所学知识应用于实际问题,提高解决实际问题的能力。
6. 培养团队合作精神实验过程中,鼓励学生进行团队合作,共同完成实验任务,培养团队合作精神。
7. 提高实验报告撰写能力通过实验报告的撰写,使学生学会总结实验过程、分析实验结果,提高实验报告撰写能力。
三、实验内容1. 线性表实验(1)实现线性表的顺序存储和链式存储结构;(2)实现线性表的基本操作,如插入、删除、查找等;(3)比较顺序存储和链式存储的优缺点。
2. 栈和队列实验(1)实现栈和队列的顺序存储和链式存储结构;(2)实现栈和队列的基本操作,如入栈、出栈、入队、出队等;(3)比较栈和队列的特点及适用场景。
3. 树和图实验(1)实现二叉树、二叉搜索树、图等数据结构的存储结构;(2)实现树和图的基本操作,如遍历、插入、删除等;(3)比较不同树和图结构的优缺点及适用场景。
4. 查找算法实验(1)实现二分查找、顺序查找、哈希查找等查找算法;(2)比较不同查找算法的时间复杂度和空间复杂度;(3)分析查找算法在实际应用中的适用场景。
数据结构实习报告
实习报告:数据结构
一、实习背景及目的
在本学期的数据结构课程中,我参加了一次数据结构实习。
这次实习的目的是帮助我巩固和应用课堂上所学的数据结构知识,同时提高解决实际问题的能力。
二、实习过程及所学内容
1. 实习任务
在实习中,我所负责的任务是实现一个简单的图书管理系统。
该系统需要能够实现图书的借阅、还书以及查询功能。
2. 数据结构的应用
在实现该图书管理系统时,我运用到了以下几种常用的数据结构:
(1)链表:用于存储图书信息。
通过链表,可以方便地插入、删除和搜索图书。
(2)栈:用于实现借书和还书功能。
借书和还书的操作都遵循\。
数据结构实验报告数据结构实验报告1.实验目的1.1 理解数据结构的基本概念和原理1.2 掌握数据结构的常用算法和操作方法1.3 培养编写高效数据结构代码的能力2.实验背景2.1 数据结构的定义和分类2.2 数据结构的应用领域和重要性3.实验内容3.1 实验一:线性表的操作3.1.1 线性表的定义和基本操作3.1.2 实现顺序存储结构和链式存储结构的线性表 3.1.3 比较顺序存储结构和链式存储结构的优缺点3.2 实验二:栈和队列的实现3.2.1 栈的定义和基本操作3.2.2 队列的定义和基本操作3.2.3 比较栈和队列的应用场景和特点3.3 实验三:树的操作3.3.1 树的定义和基本概念3.3.2 实现二叉树的遍历和插入操作3.3.3 比较不同类型的树的存储结构和算法效率3.4 实验四:图的遍历和最短路径算法3.4.1 图的定义和基本概念3.4.2 实现深度优先搜索和广度优先搜索算法3.4.3 实现最短路径算法(例如Dijkstra算法)4.实验步骤4.1 实验一的步骤及代码实现4.2 实验二的步骤及代码实现4.3 实验三的步骤及代码实现4.4 实验四的步骤及代码实现5.实验结果与分析5.1 实验一的结果和分析5.2 实验二的结果和分析5.3 实验三的结果和分析5.4 实验四的结果和分析6.实验总结6.1 实验心得体会6.2 实验中存在的问题及解决方案6.3 对数据结构的理解和应用展望7.附件实验所使用的源代码、运行截图等相关附件。
8.法律名词及注释8.1 数据结构:指计算机中数据的存储方式和组织形式。
8.2 线性表:一种数据结构,其中的元素按照顺序排列。
8.3 栈:一种特殊的线性表,只能在一端进行插入和删除操作。
8.4 队列:一种特殊的线性表,按照先进先出的顺序进行插入和删除操作。
8.5 树:一种非线性的数据结构,由节点和边组成。
8.6 图:一种非线性的数据结构,由顶点和边组成。