2018年高考数学一轮复习专题12函数模型及其应用押题专练文!
- 格式:doc
- 大小:269.50 KB
- 文档页数:7
专题12函数模型及其应用(押题专练) 高考数学(理)一轮复习精品资料1.函数f (x )=2x-1x的零点所在的大致区间是()A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫12,1C.⎝ ⎛⎭⎪⎫1,32D.⎝ ⎛⎭⎪⎫32,2 解析由题意知函数f (x )在(0,+∞)上单调递增,且f ⎝ ⎛⎭⎪⎫12=212-2<0,f (1)=21-1>0,所以函数的零点在区间⎝ ⎛⎭⎪⎫12,1内. 答案B2.若函数f (x )=ax +b 有一个零点是2,那么函数g (x )=bx 2-ax 的零点是() A.0,2B.0,12C.0,-12D.2,-12解析由已知得b =-2a ,所以g (x )=-2ax 2-ax =-a (2x 2+x ).令g (x )=0,得x 1=0,x 2=-12.答案C3.已知函数f (x )=⎝ ⎛⎭⎪⎫15x-log 3x ,若x 0是函数y =f (x )的零点,且0<x 1<x 0,则f (x 1)的值()A.恒为正值B.等于0C.恒为负值D.不大于0解析注意到函数f (x )=⎝ ⎛⎭⎪⎫15x-log 3x 在(0,+∞)上是减函数,因此当0<x 1<x 0时,有f (x 1)>f (x 0).又x 0是函数f (x )的零点,因此f (x 0)=0,所以f (x 1)>0,即此时f (x 1)的值恒为正值,选A.答案A4.某企业投入100万元购入一套设备,该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.为使该设备年平均费用最低,该企业需要更新设备的年数为()A.10B.11C.13D.21解析设该企业需要更新设备的年数为x ,设备年平均费用为y ,则x 年后的设备维护费用为2+4+…+2x =x (x +1),所以x 年的平均费用为y =100+0.5x +x (x +1)x =x +100x+1.5(x ∈N *),由基本不等式得y =x +100x+1.5≥2x ·100x +1.5=21.5,当且仅当x =100x,即x =10时取等号,所以选A.答案A5.若函数f (x )=ax 2-x -1有且仅有一个零点,则实数a 的取值为() A.0B.-14C.0或-14D.26.某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n 次涨停(每次上涨10%),又经历了n 次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用)为()A.略有盈利B.略有亏损C.没有盈利也没有亏损D.无法判断盈亏情况解析设该股民购这支股票的价格为a 元,则经历n 次涨停后的价格为a (1+10%)n=a ×1.1n 元,经历n 次跌停后的价格为a ×1.1n ×(1-10%)n =a ×1.1n ×0.9n =a ×(1.1×0.9)n=0.99n·a <a ,故该股民这支股票略有亏损.答案B7.函数f (x )=x 2-ax +1在区间⎝ ⎛⎭⎪⎫12,3上有零点,则实数a 的取值范围是()A.(2,+∞)B.[2,+∞)C.⎣⎢⎡⎭⎪⎫2,52D.⎣⎢⎡⎭⎪⎫2,103解析当f ⎝ ⎛⎭⎪⎫12·f (3)<0时,函数在区间⎝ ⎛⎭⎪⎫12,3上有且仅有一个零点,即⎝ ⎛⎭⎪⎫54-a 2(10-3a )<0,解得52<a <103;当⎩⎪⎨⎪⎧12<a2<3,Δ=a 2-4≥0,f ⎝ ⎛⎭⎪⎫12>0,f (3)>0时,函数在区间⎝ ⎛⎭⎪⎫12,3上有一个或两个零点,解得2≤a <52;当a =52时,函数的零点为12和2,符合题意;当a =103时,函数的零点为13或3,不符合题意.综上a 的取值范围是⎣⎢⎡⎭⎪⎫2,103,故选D.答案D8.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为________m.9.已知函数f (x )=⎩⎪⎨⎪⎧2x-1,x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是________.解析画出f (x )=⎩⎪⎨⎪⎧2x-1,x >0,-x 2-2x ,x ≤0的图象,如图.由函数g (x )=f (x )-m 有3个零点,结合图象得0<m <1,即m ∈(0,1).答案(0,1)10.已知关于x 的二次方程x 2+2mx +2m +1=0有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的取值范围.解由条件,抛物线f (x )=x 2+2mx +2m +1与x 轴的交点分别在区间(-1,0)和(1,2)内,如图所示,得⎩⎪⎨⎪⎧ f (0)=2m +1<0,f (-1)=2>0,f (1)=4m +2<0,f (2)=6m +5>0⇒⎩⎪⎨⎪⎧m <-12,m ∈R ,m <-12,m >-56.即-56<m <-12.故m 的取值范围是⎝ ⎛⎭⎪⎫-56,-12.11.在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3600元后,逐步偿还转让费(不计息).在甲提供的资料中:①这种消费品的进价为每件14元;②该店月销量Q (百件)与销售价格P (元)的关系如图所示;③每月需各种开支2000元.(1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;(2)企业乙只依靠该店,最早可望在几年后脱贫?(2)设可在n 年后脱贫,依题意有12n ×450-50000-58000≥0,解得n ≥20. 即最早可望在20年后脱贫.12.已知二次函数f (x )的最小值为-4,且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R }.(1)求函数f (x )的解析式; (2)求函数g (x )=f (x )x-4ln x 的零点个数. 解(1)∵f (x )是二次函数,且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R }, ∴f (x )=a (x +1)(x -3)=ax 2-2ax -3a ,且a >0. ∴f (x )min =f (1)=-4a =-4,a =1. 故函数f (x )的解析式为f (x )=x 2-2x -3.(2)∵g (x )=x 2-2x -3x -4ln x =x -3x-4ln x -2(x >0),∴g ′(x )=1+3x 2-4x =(x -1)(x -3)x2. 令g ′(x )=0,得x 1=1,x 2=3.当x 变化时,g ′(x ),g (x )的取值变化情况如下:当又因为g(x)在(3,+∞)上单调递增,因而g(x)在(3,+∞)上只有1个零点. 故g(x)在(0,+∞)上只有1个零点.高考一轮复习微课视频手机观看地址:http://xkw.so/wksp。
专题2.12 函数模型及其应用班级__________ 姓名_____________ 学号___________ 得分__________(满分100分,测试时间50分钟)一、填空题:请把答案直接填写在答题卡相应的位置........上(共10题,每小题6分,共计60分). 1. 在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为________m. 【答案】202.如果在今后若干年内,我国国民经济生产总值都控制在平均每年增长9%的水平,那么要达到国民经济生产总值比1995年翻两番的年份大约是________.(lg2=0.301 0,lg3=0.477 1,lg109=2.037 4,lg0.09=-2.954 3) 【答案】2011年【解析】 设1995年总值为a ,经过x 年翻两番,则a ·(1+9%)x=4a .∴x =2lg2lg1.09≈16.3. 给出下列函数模型:①一次函数模型;②幂函数模型;③指数函数模型;④对数函数模型.下表是函数值y 随自变量x 变化的一组数据,它最可能的函数模型是________(填序号).【答案】①【解析】根据已知数据可知,自变量每增加1函数值增加2,因此函数值的增量是均匀的,故为一次函数模型. 4.一个容器装有细沙a cm 3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为y =a e-bt(cm 3),若经过8 min 后发现容器内还有一半的沙子,则再经过________min ,容器中的沙子只有开始时的八分之一. 【答案】16【解析】当t =0时,y =a ;当t =8时,y =a e-8b=12a , ∴e-8b=12,容器中的沙子只有开始时的八分之一时, 即y =a e -bt=18a . e-bt=18=(e -8b )3=e -24b,则t =24,所以再经过16 min. 5.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式y =(116)t -a (a 为常数),如图所示,根据图中提供的信息,回答下列问题:(1)从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式为__________________________.(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始,至少需要经过________小时后,学生才能回到教室. 【答案】(1)y =⎩⎪⎨⎪⎧10t ,0≤t ≤0.1,116t -0.1,t >0.1 (2)0.66.某工厂产生的废气经过过滤后排放,排放时污染物的含量不得超过1%.已知在过滤过程中废气中的污染物数量P (单位:mg/L)与过滤时间t (单位:h)之间的函数关系为P =P 0e -kt (k ,P 0均为正的常数).如果在前5个小时的过滤过程中污染物被排除了90%,那么至少还需过滤 才可以排放. 【答案】5 h【解析】设原污染物数量为a ,则P 0=a .由题意有10%a =a e -5k,所以5k =ln10.设t h 后污染物的含量不得超过1%,则有1%a ≥a e-tk,所以tk ≥2ln10,t ≥10.因此至少还需过滤10-5=5 h 才可以排放.7.某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km 按起步价付费);超过3 km 但不超过8 km 时,超过部分按每千米2.15元收费;超过8 km 时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________ km. 【答案】9【解析】设出租车行驶x km 时,付费y 元,则y =⎩⎪⎨⎪⎧9,0<x ≤3,8+x -+1,3<x ≤8,8+2.15×5+x -+1,x >8.由y =22.6,解得x =9.8.某杂志每本原定价2元,可发行5万本,若每本提价0.20元,则发行量减少4 000本,为使销售总收入不低于9万元,需要确定杂志的最高定价是 【答案】3元9.某单位“五一”期间组团包机去上海旅游,其中旅行社的包机费为30 000元,旅游团中的每人的飞机票按以下方式与旅行社结算:若旅游团中的人数在30或30以下,飞机票每张收费1 800元.若旅游团的人数多于30人,则给以优惠,每多1人,机票费每张减少20元,但旅游团的人数最多有75人,那么旅游团的人数为_______人时,旅行社获得的利润最大. 【答案】60【解析】设旅游团的人数为x 人,飞机票为y 元,利润为Q 元,依题意,①当1≤x ≤30时,y =1 800元,此时利润Q=yx-30 000=1 800x-30 000,此时最大值是当x=30时,Q max =1 800×30-30 000=24 000(元);②当30<x ≤75时,y=1 800-20(x-30)=-20x+2 400,此时利润Q=yx-30 000 =-20x 2+2 400x-30 000=-20(x-60)2+42 000,所以当x=60时,旅行社可获得的最大利润42 000元.综上,当旅游团的人数为60人时,旅行社获得的利润最大.10.某地西红柿从2 月1日起开始上市,通过市场调查,得到西红柿种植成本Q(单位:元/100 kg)与上市时间t(单位:天)的数据如下表:. Q=at+b,Q=at 2+bc+c,Q=a ·b t,Q=a ·log b t 利用你选取的函数,求得:(1)西红柿种植成本最低时的上市天数是________. (2)最低种植成本是________(元/100kg).【答案】(1)120 (2)80二、解答题:解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内.....。
2018年高考数学一轮复习 第二章 函数、导数及其应用 第12讲 函数模型及其应用实战演练 理1.(2016·四川卷)某公司为激励创新,计划逐年加大研发奖金投入.若该公司2015年全年投入研发奖金130万元,在此基础上,每年投入的研发奖金比上一年增长12%,则该公司全年投入的研发奖金开始超过200万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2=0.30)( B )A .2018年B .2019年C .2020年D .2021年解析:设第n (b ∈N *)年该公司年投入的研发资金开始超过200万元.根据题意得130(1+12%)n -1>200,则lg[130(1+12%)n -1]>lg 200,∴lg 130+(n -1)lg 1.12>lg 2+2, ∴2+lg 1.3+(n -1)lg 1.12>lg 2+2, ∴0.11+(n -1)×0.05>0.30,解得n >245,又∵n ∈N *,∴n ≥5,∴该公司全年投入的研发资金开始超过200万元的年份是2019年.故选B .2.(2015·北京卷)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列叙述中正确的是( D )A .消耗1升汽油,乙车最多可行驶5千米B .以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C .甲车以80千米/小时的速度行驶1小时,消耗10升汽油D .某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油 解析:对于A 选项,由题图可知,当乙车速度大于40 km/h 时,乙车每消耗1升汽油,行驶里程都超过5 km ,则A 错;对于B 选项,由题意可知,以相同速度行驶相同路程,燃油效率越高,耗油越少,故三辆车中甲车耗油最少,则B 错;对于C 选项,甲车以80千米/小时的速度行驶时,燃油效率为10 km/L ,则行驶1小时,消耗了汽油80×1÷10=8(L),则C 错;对于D 选项,当行驶速度小于80 km/h ,在相同条件下,丙车的燃油效率高于乙车,则在该市用丙车比用乙车更省油,则D 对.3.(2014·湖南卷)某市生产总值连续两年持续增加,第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为( D )A .p +q2B .p +q +-12C .pqD .p +q +-1解析:设两年前的年底该市的生产总值为a ,则第二年年底的生产总值为a (1+p )(1+q ).设这两年生产总值的年平均增长率为x ,则a (1+x )2=a (1+p )(1+q ),由于连续两年持续增加,所以x >0,因此x =+p+q -1,故选D .4.(2015·江苏卷)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l 1,l 2,山区边界曲线为C ,计划修建的公路为l ,如图所示,M ,N 为C 的两个端点,测得点M 到l 1,l 2的距离分别为5千米和40千米,点N 到l 1,l 2的距离分别为20千米和2.5千米,以l 2,l 1所在的直线分别为x ,y 轴,建立平面直角坐标系xOy ,假设曲线C 符合函数y =ax 2+b(其中a ,b 为常数)模型.(1)求a ,b 的值;(2)设公路l 与曲线C 相切于点P ,点P 的横坐标为t . ①请写出公路l 长度的函数解析式f (t ),并写出其定义域; ②当t 为何值时,公路l 的长度最短?求出最短长度.解析:(1)由题意知,点M ,N 的坐标分别为(5,40),(20,2.5),分别代入y =ax 2+b ,得⎩⎪⎨⎪⎧a25+b =40,a400+b =2.5,解得⎩⎪⎨⎪⎧a =1 000,b =0.(2)①由(1)知,y =1 000x2(5≤x ≤20),则点P 的坐标为⎝⎛⎭⎪⎫t ,1 000t2,设在点P 处的切线l 交x ,y 轴分别于A ,B 点,易知y ′=-2 000x3,则l 的方程为y -1 000t 2=-2 000t3(x -t ),由此得A ⎝ ⎛⎭⎪⎫3t 2,0,B ⎝⎛⎭⎪⎫0,3 000t 2.故f (t )=⎝ ⎛⎭⎪⎫3t 22+⎝ ⎛⎭⎪⎫3 000t 22=32t 2+4×106t4,t ∈[5,20].②设g (t )=t 2+4×106t 4,则g ′(t )=2t -16×106t5. 令g ′(t )=0,解得t =10 2.当t ∈(5,102)时,g ′(t )<0,g (t )是减函数; 当t ∈(102,20)时,g ′(t )>0,g (t )是增函数;从而,当t =102时,函数g (t )有极小值,也是最小值,所以g (t )min =300,则f (t )min=15 3.故当t =102时,公路l 的长度最短,最短长度为153千米.。
+-
2
++-
,原生产总值为a,则a(1+p)(1+++
.(20xx·北京高考)根据有关资料,围棋状态空间复杂度的上限中普通物质的原子总
根据图中提供的信息,下列关于成人使用该药物的说法中不正确的是(
单位约10分钟后,药物发挥治疗作用
单位,两次服药间隔小于2小时,一定会产生药物中毒
小时服用该药物1单位,可使药物持续发挥治疗作用
-,
月份
一月份
-,
阴影部分),则其边
,解得y=40-x,所以
-
当且仅当x =11
4
A B
C D
,排除B和C;当θ=0时,y取得最小值-.某公司为激励创新,计划逐年增加研发资金投入,若该公司20xx 万元,在此基础上,每年投入的研发资金比上一年增长10%
万元的年份是________.(参考数据:lg 1.1=
-b-a
=5-1
2
或λ=
-5-1
2。
专题2.12 函数模型及其应用【考纲解读】【直击考点】题组一常识题1.[教材改编] 函数模型:①y=1.002x,②y=0.25x,③y=log2x+1.随着x的增大,增长速度的大小关系是____________.【解析】根据指数函数、幂函数、对数函数的增长速度关系可得.①>②>③2.[教材改编] 某公司市场营销人员的个人月收入与其每月的销售量的关系满足一次函数,已知销售量为1000件时,收入为3000元,销售量为2000件时,收入为5000元,则营销人员没有销售量时的收入是________元.【解析】设收入y与销售量x的关系为y=kx+b,则有3000=1000k+b,5000=2000k +b,解得k=2,b=1000,所以y=2x+1000,故没有销售量时的收入y=2×0+1000=1000.3.[教材改编] 某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是________元.【解析】设进货价为a元,由题意知132×(1-10%)-a=10%·a,解得a=108.题组二常错题4.据调查,某自行车存车处在某星期日的存车量为4000辆次,其中变速车存车费是每辆一次0.3元,普通车存车费是每辆一次0.2元.若普通车存车量为x辆次,存车费总收入为y元,则y关于x的函数关系式是________.【解析】y =0.2x +(4000-x )×0.3=-0.1x +1200(0≤x ≤4000,x ∈N ),这里不能忽略x 的取值范围,否则函数解析式失去意义.5.等腰三角形的周长为20,腰长为x ,则其底边长y =f (x )=________________.题组三 常考题6.某市职工收入连续两年持续增加,第一年的增长率为a ,第二年的增长率为b ,则该市这两年职工收入的年平均增长率为______________.【解析】设年平均增长率为x ,则有(1+a )(1+b )=(1+x )2,解得x =(1+a )(1+b )-1.7.某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =ekx +b(e=2.718 28…为自然对数的底数,k ,b 为常数).若该食品在0 ℃的保鲜时间是240小时,在22 ℃的保鲜时间是60小时,则该食品在11℃的保鲜时间是________小时.【解析】由题意,⎩⎪⎨⎪⎧240=e b,60=e 22k +b , 得⎩⎪⎨⎪⎧240=e b,2-1=e 11k ,于是当x =11时,y =e 11k +b =e 11k ·e b =2-1×240=120.8.要制作一个容积为16 m 3,高为1 m 的无盖长方体容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________.【解析】设长方体底面边长分别为x ,y ,则y =16x,所以容器的总造价为z =2(x +y )×10+20xy =20⎝⎛⎭⎪⎫x +16x +20×16,由基本不等式得,z =20⎝ ⎛⎭⎪⎫x +16x +20×16≥40x ·16x+320=480,当且仅当x =y =4,即底面是边长为4的正方形时,总造价最低.【知识清单】1.几种常见的函数模型2.三种函数模型性质比较【考点深度剖析】解答应用问题的程序概括为“四步八字”,即①审题:弄清题意,分清条件和结论,理顺数量关系,初步选择模型;②建模:把自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;③求模:求解数学模型,得出数学结论;④还原:将数学结论还原为实际问题的意义.【重点难点突破】考点1 一次函数与二次函数模型【1-1】某电信公司推出两种手机收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内通话时间t(分钟)与电话费s(元)的函数关系如图所示,当通话150分钟时,这两种方式电话费相差_________元.【答案】10【解析】依题意可设s A(t)=20+kt,s B(t)=mt,又s A(100)=s B(100),∴100k+20=100m,得k-m=-0.2,于是s A (150)-s B (150)=20+150k -150m =20+150×(-0.2)=-10, 即两种方式电话费相差10元.【1-2】将进货单价为80元的商品按90元出售时,能卖出400个.若该商品每个涨价1元,其销售量就减少20个,为了赚取最大的利润,售价应定为每个_________元. 【答案】95【思想方法】(1)二次函数的最值一般利用配方法与函数的单调性解决,但一定要密切注意函数的定义域,否则极易出错;(2)确定一次函数模型时,一般是借助两个点来确定,常用待定系数法; (3)解决函数应用问题时,最后要还原到实际问题. 【温馨提醒】1.易忽视实际问题的自变量的取值范围,需合理确定函数的定义域.2.注意问题反馈.在解决函数模型后,必须验证这个数学结果对实际问题的合理性. 考点2 分段函数模型【2-1】提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20≤x ≤200时,车流速度v 是车流密度x 的一次函数.(1)当0≤x ≤200时,求函数v (x )的表达式.(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f (x )=x ·v (x )可以达到最大,并求出最大值(精确到1辆/小时). 【答案】(1) v (x )=⎩⎪⎨⎪⎧60,0≤x ≤20,200-x3,20<x ≤200.(2) 当x =100时,f (x )在区间(20,200]上取得最大值.【解析】(1)由题意:当0≤x ≤20时,v (x )=60;【2-2】某公司研制出了一种新产品,试制了一批样品分别在国内和国外上市销售,并且价格根据销售情况不断进行调整,结果40天内全部销完.公司对销售及销售利润进行了调研,结果如图所示,其中图①(一条折线)、图②(一条抛物线段)分别是国外和国内市场的日销售量与上市时间的关系,图③是每件样品的销售利润与上市时间的关系.(1)分别写出国外市场的日销售量f (t )与上市时间t 的关系及国内市场的日销售量g (t )与上市时间t 的关系;(2)国外和国内的日销售利润之和有没有可能恰好等于6 300万元?若有,请说明是上市后的第几天;若没有,请说明理由.【答案】(1) f (t )=⎩⎪⎨⎪⎧2t ,0≤t ≤30,-6t +240,30<t ≤40. g (t )=-320t 2+6t (0≤t ≤40). (2) 上市后的第30天.【思想方法】(1)实际问题中有些变量间的关系不能用同一个关系式给出,而是由几个不同的关系式构成,如出租车票价与路程之间的关系,应构建分段函数模型求解.(2) 分段函数的最值是各段的最大(最小)者的最大者(最小者).【温馨提醒】构造分段函数时,要力求准确、简洁,做到分段合理、不重不漏. 考点3 指数函数模型【3-1】一片森林原来面积为a ,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林剩余面积为原来的22. (1)求每年砍伐面积的百分比;(2)到今年为止,该森林已砍伐了多少年? (3)今后最多还能砍伐多少年?【答案】(1) x =1-⎝ ⎛⎭⎪⎫12110 (2) 5.(3)15.【3-2】某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n 次涨停(每次上涨10%),又经历了n 次跌停(每次下跌10%),判定该股民这支股票的盈亏情况(不考虑其他费用). 【答案】略有亏损【解析】设该股民购这支股票的价格为a ,则经历n 次涨停后的价格为a (1+10%)n=a ×1.1n,经历n 次跌停后的价格为a ×1.1n×(1-10%)n=a ×1.1n×0.9n=a ×(1.1×0.9)n=0.99n·a <a ,故该股民这支股票略有亏损. 【思想方法】(1)指数函数模型,常与增长率相结合进行考查,在实际问题中有人口增长、银行利率、细胞分裂等增长问题可以利用指数函数模型来解决.(2)应用指数函数模型时,关键是对模型的判断,先设定模型,再将已知有关数据代入验证,确定参数,从而确定函数模型.(3)y =a (1+x )n通常利用指数运算与对数函数的性质求解.【温馨提醒】解指数不等式时,一定要化为同底,且注意对应函数的单调性.【易错试题常警惕】数学实际应用问题,一定要正确理解题意,选择适当的函数模型;合理确定实际问题中自变量的取值范围;必须验证答案对实际问题的合理性.如:如图所示,在矩形CD AB 中,已知a AB =,C b B =(a b >).在AB 、D A 、CD 、C B 上分别截取AE 、AH 、CG 、CF 都等于x ,当x 为何值时,四边形FG E H 的面积最大?求出这个最大面积.【易错点】忽略实际问题中自变量的取值范围,造成与实际问题不相符合的错误结论.m的矩形蔬菜温室,在温室内,沿左、右两侧【练一练】某村计划建造一个室内面积为8002与后侧内墙各保留m宽的通道,沿前侧内墙保留m宽的空地,当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大面积是多少?m.【答案】当矩形温室的边长各为40m,20m时,蔬菜的种植面积最大,最大面积是6482。
专题2.12 函数模型及其应用一、填空题1.给出下列函数模型:①一次函数模型;②幂函数模型;③指数函数模型;④对数函数模型.下表是函数值y 随自变量x 变化的一组数据,它最可能的函数模型是________(填序号).x 4 5 6 7 8 9 10 y15171921232527【答案】①【解析】根据已知数据可知,自变量每增加1函数值增加2,因此函数值的增量是均匀的,故为一次函数模型.2.某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年年产量保持不变,则该厂6年来这种产品的总产量C 与时间t (年)的函数关系图象正确的是________(填序号).【答案】①3.某电信公司推出两种手机收费方式:A 种方式是月租20元,B 种方式是月租0元.一个月的本地网内打出电话时间t (分钟)与打出电话费s (元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差________元.【答案】10【解析】设A 种方式对应的函数解析式为s =k 1t +20,B 种方式对应的函数解析式为s =k 2t ,当t =100时,100k 1+20=100k 2,∴k 2-k 1=15,t =150时,150k 2-150k 1-20=150×15-20=10.4.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为________m.【答案】20【解析】设内接矩形另一边长为y ,则由相似三角形性质可得x 40=40-y40,解得y =40-x ,所以面积S =x (40-x )=-x 2+40x =-(x -20)2+400(0<x <40),当x =20时,S max =400. 5.(2017·长春模拟)一个容器装有细沙a cm 3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为 y =a e-bt(cm 3),经过 8 min 后发现容器内还有一半的沙子,则再经过________min ,容器中的沙子只有开始时的八分之一. 【答案】166.A ,B 两只船分别从在东西方向上相距145 km 的甲乙两地开出.A 从甲地自东向西行驶.B 从乙地自北向南行驶,A 的速度是40 km h ,B 的速度是 16 km h ,经过________h ,AB 间的距离最短.【答案】258【解析】设经过x h ,A ,B 相距为y km ,则y =145-40x2+16x2=1 856t 2-11 600t +1452(0≤x ≤298),求得函数的最小值时x 的值为258.7.某企业投入100万元购入一套设备,该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.为使该设备年平均费用最低,该企业需要更新设备的年数为________. 【答案】10【解析】设该企业需要更新设备的年数为x ,设备年平均费用为y ,则x 年后的设备维护费用为2+4+…+2x =x (x +1),所以x 年的平均费用为y =100+0.5x +x x +1x =x +100x+1.5,由基本不等式得y =x +100x+1.5≥2x ·100x +1.5=21.5,当且仅当x =100x,即x=10时取等号.8.某公司为激励创新,计划逐年加大研发奖金投入.若该公司2015年全年投入研发奖金130万元.在此基础上,每年投入的研发奖金比上一年增长12%,则该公司全年投入的研发奖金开始超过200万元的年份是________(参考数据:lg 1.12=0.05,lg 1.3=0.11,lg 2=0.30). 【答案】2019二、解答题9.现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥P -A 1B 1C 1D 1,下部分的形状是正四棱柱ABCD -A 1B 1C 1D 1(如图所示),并要求正四棱柱的高OO 1是正四棱锥的高PO 1的4倍.(1)若AB =6 m ,PO 1=2 m ,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6 m ,则当PO 1为多少时,仓库的容积最大? 解 (1)V =13×62×2+62×2×4=312(m 3).(2)设PO 1=x ,则O 1B 1=62-x 2,B 1C 1=2·62-x 2, ∴SA 1B 1C 1D 1=2(62-x 2),又由题意可得下面正四棱柱的高为4x .则仓库容积V =13x ·2(62-x 2)+2(62-x 2)·4x =263x (36-x 2).由V ′=0得x =23或x =-23(舍去). 由实际意义知V 在x =23(m)时取到最大值, 故当PO 1=2 3 m 时,仓库容积最大.10.(2017·南通模拟)某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y (万元)与年产量x (吨)之间的函数关系式可以近似地表示为y =x 25-48x +8 000,已知此生产线年产量最大为210吨.(1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;(2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?能力提升题组11.(2017·南京调研)某市对城市路网进行改造,拟在原有a 个标段(注:一个标段是指一定长度的机动车道)的基础上,新建x 个标段和n 个道路交叉口,其中n 与x 满足n =ax +5.已知新建一个标段的造价为m 万元,新建一个道路交叉口的造价是新建一个标段的造价的k 倍.(1)写出新建道路交叉口的总造价y(万元)与x的函数关系式;(2)设P是新建标段的总造价与新建道路交叉口的总造价之比.若新建的标段数是原有标段数的20%,且k≥3.问:P 能否大于120,说明理由.解(1)依题意得y=mkn=mk(ax+5),x∈N*.(2)法一依题意x=0.2a,所以P=mxy=xk ax+5=0.2ak0.2a2+5=ak a2+2512.(2017·苏、锡、常、镇四市调研)某经销商计划销售一款新型的空气净化器,经市场调研发现以下规律:当每台净化器的利润为x(单位:元,x>0)时,销售量q(x)(单位:百台)与x的关系满足:若x不超过20,则q(x)=1 260x+1;若x大于或等于180,则销售量为零;当20≤x≤180时,q(x)=a-b x(a,b为实常数).(1)求函数q(x)的表达式;(2)当x为多少时,总利润(单位:元)取得最大值,并求出该最大值.解(1)当20≤x≤180时,由⎩⎨⎧a-b·20=60,a-b·180=0,得⎩⎨⎧a=90,b=3 5.故q(x)=⎩⎪⎨⎪⎧1 260x+1,0<x≤20,90-35x,20<x<180,0,x≥180.(2)设总利润f(x)=x·q(x),由(1)得f (x )=⎩⎪⎨⎪⎧126 000x x +1,0<x ≤20,9 000x -3005·x x ,20<x <180,0,x ≥180,当0<x ≤20时,f (x )=126 000x x +1=126 000-126 000x +1,又f (x )在(0,20]上单调递增,所以当x =20时,f (x )有最大值120 000. 当20<x <180时,f (x )=9 000x -3005·x x ,f ′(x )=9 000-4505·x ,令f ′(x )=0,得x =80.当20<x <80时,f ′(x )>0,f (x )单调递增, 当80<x <180时,f ′(x )<0,f (x )单调递减, 所以当x =80时,f (x )有最大值240 000. 当x ≥180时,f (x )=0.综上,当x =80元时,总利润取得最大值240 000元.13.(2017·苏北四市调研)如图,某森林公园有一直角梯形区域ABCD ,其四条边均为道路,AD ∥BC ,∠ADC =90°,AB =5 千米,BC =8 千米,CD =3 千米.现甲、乙两管理员同时从A地出发匀速前往D 地,甲的路线是AD ,速度为6千米/时,乙的路线是ABCD ,速度为v 千米/时.(1)若甲、乙两管理员到达D 的时间相差不超过15分钟,求乙的速度v 的取值范围; (2)已知对讲机有效通话的最大距离是5千米.若乙先到D ,且乙从A 到D 的过程中始终能用对讲机与甲保持有效通话,求乙的速度v 的取值范围.。
2018年高考数学一轮复习 第二章 函数、导数及其应用 课时达标12函数模型及其应用 理[解密考纲]本考点考查函数在实际生活中的应用等.在近几年的高考中选择题、填空题、解答题都出现过.选择题、填空题通常排在中间位置,解答题往往与其他知识综合考查,题目难度中等.一、选择题1.(2017·湖南永州模拟)某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y 与投放市场的月数x 之间关系的是( C )A .y =100xB .y =50x 2-50x +100 C .y =50×2xD .y =100log 2x +100解析:根据函数模型的增长差异和题目中的数据可知,应为指数型函数模型,代入数据验证即可得,应选C .2.(2016·河北唐山检测)某食品厂定期购买面粉,已知该厂每天需要面粉6吨,每吨面粉的价格为1 800元,面粉的保管等其他费用为平均每吨每天3元,购买面粉每次需支付运费900元.求该厂多少天购买一次面粉,才能使平均每天所支付的总费用最少( B )A .9天B .10天C .11天D .12天解析:设该厂应每隔x 天购买一次面粉,则购买量为6x 吨,由题意可知,面粉的保管等其他费用为3[6x +6(x -1)+6(x -2)+…+6×1]=9x (x +1), 设平均每天所支付的总费用为y 1元,则y 1=9xx ++900x +1 800×6=900x+9x +10 809≥2900x·9x +10 809=10 989,当且仅当9x =900x,即x =10时取等号.即该厂每隔10天购买一次面粉,才能使平均每天所支付的总费用最少,故选B . 3.国家规定某行业征税如下:年收入在280万元及以下的税率为p %,超过280万元的部分按(p +2)%征税,有一公司的实际缴税比例为(p +0.25)%,则该公司的年收入是( D )A .560万元B .420万元C .350万元D .320万元解析:设该公司的年收入为x 万元,纳税额为y 万元,则由题意,得y =⎩⎪⎨⎪⎧x ×p %,x ≤280,280×p %+x -p +,x >280,依题意有,280×p %+x -280p +x=(p +0.25)%,解之得x =320(万元).4.世界人口在过去40年内翻了一番,则每年人口平均增长率是(参考数据lg 2≈0.301 0,100.007 5≈1.017)( C )A .1.5%B .1.6%C .1.7%D .1.8%解析:设每年世界人口平均增长率为x ,则(1+x )40=2,两边取以10为底的对数,则40lg(1+x )=lg 2,所以lg(1+x )=lg 240≈0.007 5,所以100.007 5=1+x ,得1+x =1.017,所以x =1.7%.5.某校甲、乙两食堂某年1月份的营业额相等,甲食堂的营业额逐月增加,并且每月增加值相同;乙食堂的营业额也逐月增加,且每月增加的百分率相同.已知本年9月份两食堂的营业额又相等,则本年5月份( A )A .甲食堂的营业额较高B .乙食堂的营业额较高C .甲、乙两食堂的营业额相同D .不能确定甲、乙哪个食堂的营业额较高解析:设甲、乙两食堂1月份的营业额均为m ,甲食堂的营业额每月增加a (a >0),乙食堂的营业额每月增加的百分率为x ,由题意可得,m +8a =m ×(1+x )8,则5月份甲食堂的营业额y 1=m +4a ,乙食堂的营业额y 2=m ×(1+x )4=mm +8a ,因为y 21-y 22=(m +4a )2-m (m +8a )=16a 2>0,所以y 1>y 2,故本年5月份甲食堂的营业额较高.6.(2017·北京朝阳区模拟)某房地产公司计划出租70套相同的公寓房.当每套房月租金定为3000元时,这70套公寓能全租出去;当月租金每增加50元时(设月租金均为50元的整数倍),就会多一套房子不能出租.设租出的每套房子每月需要公司花费100元的日常维修等费用(设租不出的房子不需要花这些费用).要使公司获得最大利润,每套房月租金应定为( B )A .3 000元B .3 300元C .3 500元D .4 000元解析:由题意,设利润为y 元,租金定为3 000+50x 元(0≤x ≤70,x ∈N ). 则y =(3 000+50x )(70-x )-100(70-x ) =(2 900+50x )(70-x ) =50(58+x )(70-x )≤50⎝⎛⎭⎪⎫58+x +70-x 22,当且仅当58+x =70-x ,即x =6时,等号成立,故每月租金定为3 000+300=3 300(元)时,公司获得最大利润,故选B .二、填空题7.某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,则截取的矩形面积的最大值为180.解析:依题意知:20-x x =y -824-y ,即x =54(24-y ),y ∈[8,24),∴阴影部分的面积S =xy =54(24-y )y =54(-y 2+24y ),∴当y =12时,S 有最大值为180.8.有一批材料可以建成200 m 长的围墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样材料隔成三个面积相等的矩形(如图所示),则围成场地的最大面积为2_500_m 2(围墙厚度不计).解析:设矩形场地的宽度为x m ,则矩形场地长(200-4x )m ,面积S =x (200-4x )=-4(x -25)2+ 2 500.故当x =25时,S 取得最大值2 500,即围成场地的最大面积为2 500 m 2.9.(2017·山东潍坊模拟)某地西红柿从2月1日起开始上市,通过市场调查,得到西红柿种植成本Q (单位:元/100 kg)与上市时间t (单位:天)的数据关系如下表:根据上表数据,Q 与上市时间t 的变化关系.Q =at +b ,Q =at 2+bt +c ,Q =a ·b t ,Q =a ·log b t利用你选取的函数,求得:(1)西红柿种植成本最低时的上市天数是120. (2)最低种植成本是80(元/100 kg). 解析:根据表中数据可知函数不单调, 所以Q =at 2+bt +c 且开口向上,对称轴t =-b2a=60+1802=120. 代入数据⎩⎪⎨⎪⎧3 600a +60b +c =116,10 000a +100b +c =84,32 400a +180b +c =116,得⎩⎪⎨⎪⎧b =-2.4,c =224,a =0.01,所以西红柿种植成本最低时的上市天数是120,最低种植成本是14 400a +120b +c =14 400×0.01+120×(-2.4)+224=80.三、解答题10.(2017·湖北鄂州月考)如图所示,已知边长为8米的正方形钢板有一个角被锈蚀,其中AE =4米,CD =6米.为了合理利用这块钢板,在五边形ABCDE 内截取一个矩形块BNPM ,使点P 在边DE 上.(1)设MP =x 米,PN =y 米,将y 表示成x 的函数,求该函数的解析式及定义域; (2)求矩形BNPM 面积的最大值.解析:(1)作PQ ⊥AF 于Q ,所以PQ =8-y ,EQ =x -4,在△EDF 中,EQ PQ =EFFD,所以x -48-y =42,所以y =-12x +10,定义域为{x |4≤x ≤8}.(2)设矩形BNPM 的面积为S ,则S (x )=xy =x ⎝⎛⎭⎪⎫10-x 2=-12(x -10)2+50,所以S (x )是关于x 的二次函数,且其开口向下,对称轴为x =10,所以当x ∈[4,8],S (x )单调递增,所以当x =8米时,矩形BNPM 面积取得最大值48平方米.11.某产品原来的成本为1 000元/件,售价为1 200元/件,年销售量为1万件,由于市场饱和顾客要求提高,公司计划投入资金进行产品升级.据市场调查,若投入x 万元,每件产品的成本将降低34x 元,在售价不变的情况下,年销售量将减少2x 万件,按上述方式进行产品升级和销售,扣除产品升级资金后的纯利润记为f (x )(单位:万元).(1)求f (x )的函数解析式;(2)求f (x )的最大值,以及f (x )取得最大值时x 的值.解析:(1)依题意,产品升级后,每件的成本为1 000-3x 4元,利润为200+3x4元,年销售量为1-2x万件,纯利润为f (x )=⎝ ⎛⎭⎪⎫200+3x 4⎝ ⎛⎭⎪⎫1-2x -x =198.5-400x -x 4. (2)f (x )=198.5-400x -x4≤198.5-2×400x ×x 4=178.5,当且仅当400x =x4, 即x =40时等号成立.所以f (x )取最大值时的x 的值为40.12.某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1.80元,当用水超过4吨时,超过部分每吨3.00元,某月甲、乙两户共交水费y 元,已知甲、乙两户该月用水量分别为5x 吨,3x 吨.(1)求y 关于x 的函数;(2)若甲、乙两户该月共交水费26.4元,分别求出甲、乙两户该月的用水量和水费. 解析:(1)当甲的用水量不超过4吨时,即5x ≤4,乙的用水量也不超过4吨,y =1.8(5x +3x )=14.4x ;当甲的用水量超过4吨,乙的用水量不超过4吨时,即3x ≤4,且5x >4,y =4×1.8+3x ×1.8+3(5x -4)=20.4x -4.8.当乙的用水量超过4吨时,即3x >4,y =2×4×1.8+3×[(3x -4)+(5x -4)]=24x -9.6.所以y =⎩⎪⎨⎪⎧14.4x ⎝⎛⎭⎪⎫0≤x ≤45,20.4x -4.8⎝ ⎛⎭⎪⎫45<x ≤43,24x -9.6⎝ ⎛⎭⎪⎫x >43.(2)由于y =f (x )在各段区间上均单调递增,当x ∈⎣⎢⎡⎦⎥⎤0,45时,y ≤f ⎝ ⎛⎭⎪⎫45<26.4;当x ∈⎝ ⎛⎦⎥⎤45,43时,y ≤f ⎝ ⎛⎭⎪⎫43<26.4; 当x ∈⎝ ⎛⎭⎪⎫43,+∞时,令24x -9.6=26.4,解得x =1.5. 所以甲户用水量为5x =7.5吨,付费S 1=4×1.8+3.5×3=17.70(元); 乙用户用水量为3x =4.5吨,付费S 2=4×1.8+0.5×3=8.70(元).。
专题12 函数模型及其应用
1.在我国大西北,某地区荒漠化土地面积每年平均比上一年增长10.4%,专家预测经过x 年可能增长到原来的y 倍,则函数y =f (x )的图象大致为 ( ).
【解析】 由题意可得y =(1+10.4%)x
.
【答案】 D
2.甲、乙两人沿同一方向去B 地,途中都使用两种不同的速度1212,()v v v v .甲一半路程使用速度1v ,另一半路程使用速度2v ,乙一半时间使用速度1v ,另一半时间使用速度2v ,甲、乙两人从A 地到B 地的路程与时间的函数图象及关系,有下面图中个不同的图示分析(其中横轴表示时间,纵轴S 表示路程),其中正确的图示分析为( ).
A .(1)
B .(3)
C .(1)或(4) D. (1)或(2)
(1) (2) (3) (4)
【解析】 根据题目描述分析图像可知D 正确
【答案】 D
3.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L 1=5.06x -0.15x 2
和L 2=2x ,其中x 为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得最大利润为
( ).
A.45.606万元B.45.6万元
C.45.56万元D.45.51万元
【答案】 B
4.某汽车运输公司购买了一批豪华大客车投入营运,据市场分析每辆客车营运的总利润y(单位:10万元)与营运年数x(x∈N*)为二次函数关系(如图所示),则每辆客车营运多少年时,其营运的年平均利润最大 ( ).
A.3 B.4 C.5 D.6
【答案】 C
5.一张正方形的纸片,剪去两个一样的小矩形得到一个“E”形图案,如图所示,设小矩形的长、宽分别为x,y剪去部分的面积为20,若2≤x≤10,记y=f(x),则y=f(x)的图象是 ( ).
【解析】 由题意得2xy =20,即y =10x
,当x =2时,y =5,当x =10时,y =1时,排除C ,D ,又2≤x ≤10,排除B.
【答案】 A
6.某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x 、y 应为( ).
A .x =15,y =12
B .x =12,y =15
C .x =14,y =10
D .x =10,y =14
【答案】 A
7.为了保证信息安全,传输必须使用加密方式,有一种方式其加密、解密原理如下:
明文――→加密密文――→发送密文――→解密明文
已知加密为y =a x
-2(x 为明文,y 为密文),如果明文“3”通过加密后得到密文为“6”,再发送,接受方通过解密得到明文“3”,若接受方接到密文为“14”,则原发的明文是________.
【解析】 依题意y =a x -2中,当x =3时,y =6,故6=a 3-2,解得a =2.所以加密为y =
2x -2,因此,当y =14时,由14=2x
-2,解得x =4.
【答案】 4
8.某商店已按每件80元的成本购进某商品1 000件,根据市场预测,销售价为每件100元时可全部售完,定价每提高1元时销售量就减少5件,若要获得最大利润,销售价应定为每件________元.
【解析】 设售价提高x 元,则依题意 y =(1 000-5x )×(20+x )
=-5x 2
+900x +20 000
=-5(x -90)2+60 500.
故当x =90时,y max =60 500,此时售价为每件190元.
【答案】 190 元
9.现有含盐7%的食盐水为200 g ,需将它制成工业生产上需要的含盐5 %以上且在6%以下(不含5%和6%)的食盐水,设需要加入4%的食盐水x g ,则x 的取值范围是__________.
【答案】 (100,400)
10.某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km 按起步价付费);超过3 km 但不超过8 km 时,超过部分按每千米2.15元收费;超过8 km 时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________km.
【解析】 由已知条件y =⎩⎪⎨⎪⎧ 8,0<x ≤3,8+
x -+1,3<x ≤8,8+2.15×5+
x -+1,x >8,
由y =22.6解得x =9.
【答案】 9
11.为了发展电信事业方便用户,电信公司对移动电话采用不同的收费方式,其中所使用的“如意卡”与“便民卡”在某市范围内每月(30天)的通话时间x (分)与通话费y (元)的关系分别如图①、②所示.
(1)分别求出通话费y 1,y 2与通话时间x 之间的函数关系式;
(2)请帮助用户计算,在一个月内使用哪种卡便宜?
解 (1)由图象可设y 1=k 1x +29,y 2=k 2x ,把点B (30,35),C (30,15)分别代入y 1,y 2得k 1=15
,k 2=12.
∴y 1=15x +29,y 2=12
x . (2)令y 1=y 2,即15x +29=12x ,则x =9623
. 当x =9623
时,y 1=y 2,两种卡收费一致; 当x <9623
时,y 1>y 2,即使用“便民卡”便宜; 当x >9623
时,y 1<y 2,即使用“如意卡”便宜. 12.某单位有员工1 000名,平均每人每年创造利润10万元.为了增加企业竞争力,决定优化产业结构,调整出x (x ∈N *)名员工从事第三产业,调整后他们平均每人每年创造利润为10⎝ ⎛⎭
⎪⎫a -3x 500万元(a >0),剩下的员工平均每人每年创造的利润可以提高0.2x %. (1)若要保证剩余员工创造的年总利润不低于原来1 000名员工创造的年总利润,则最多调整出多少名员工从事第三产业?
(2)在(1)的条件下,若调整出的员工创造的年总利润始终不高于剩余员工创造的年总利润,则a 的取值范围是多少?
因为2500x +1 000x ≥2 2x 500×1 000x =4, 当且仅当2x 500=1 000x
,即x =500时等号成立. 所以a ≤5,又a >0,所以0<a ≤5,即a 的取值范围为(0,5].
13.某市出租车的计价标准是:3 km 以内(含3 km)10元;超过3 km 但不超过18 km 的部分1元/km ;超出18 km 的部分2元/km.
(1)如果某人乘车行驶了20 km ,他要付多少车费?某人乘车行驶了x km ,他要付多少车费?
(2)如果某人付了22元的车费,他乘车行驶了多远?
解(1)乘车行驶了20 km ,付费分三部分,前3 km 付费10(元),3 km 到18 km 付费
(18-3)×1=15(元),18 km 到20 km 付费(20-18)×2=4(元),总付费10+15+4=29(元). 设付车费y 元,当0<x ≤3时,车费y =10;
当3<x ≤18时,车费y =10+(x -3)=x +7;
当x >18时,车费y =25+2(x -18)=2x -11.
(2)付出22元的车费,说明此人乘车行驶的路程大于3 km ,且小于18 km ,前3 km 付费10元,余下的12元乘车行驶了12 km ,故此人乘车行驶了15 km.
14.某学校要建造一个面积为10 000平方米的运动场.如图,运动场是由一个矩形ABCD 和分别以AD 、BC 为直径的两个半圆组成.跑道是一条宽8米的塑胶跑道,运动场除跑道外,其他地方均铺设草皮.已知塑胶跑道每平方米造价为150元,草皮每平方米造价为30元.
(1)设半圆的半径OA =r (米),设建立塑胶跑道面积S 与r 的函数关系S (r );
(2)由于条件限制r ∈[30,40],问当r 取何值时,运动场造价最低?最低造价为多少?(精确到元)
∴函数y =300 000+120×⎝ ⎛⎭
⎪⎫80 000r +8πr -7 680π在[30,40]上为减函数.∴当r =40时,y min ≈636 510,
即运动场的造价最低为636 510元.。