摩擦副表面激光微处理控制系统的设计
- 格式:pdf
- 大小:177.43 KB
- 文档页数:3
《基于摩擦补偿的高精度伺服控制方法研究与实现》一、引言随着现代工业自动化和智能制造的快速发展,高精度伺服控制技术在各个领域的应用越来越广泛。
然而,由于机械系统中存在的摩擦力等因素的影响,伺服系统的精度和稳定性常常受到限制。
为了解决这一问题,本文提出了一种基于摩擦补偿的高精度伺服控制方法,旨在提高伺服系统的性能和精度。
二、相关技术背景伺服控制系统是一种通过反馈控制机制来精确控制机械系统运动的系统。
传统的伺服控制系统主要关注于位置、速度和加速度等控制参数的调节,而忽视了机械系统中存在的摩擦力对系统性能的影响。
摩擦力是机械系统中普遍存在的一种阻力,它会对系统的运动产生干扰,导致系统精度和稳定性的降低。
因此,如何有效地补偿摩擦力成为了提高伺服系统性能的关键问题。
三、基于摩擦补偿的高精度伺服控制方法为了解决上述问题,本文提出了一种基于摩擦补偿的高精度伺服控制方法。
该方法主要包括以下步骤:1. 摩擦力建模:首先,需要对机械系统中的摩擦力进行建模。
通过实验数据和理论分析,建立准确的摩擦力模型,以便后续的补偿操作。
2. 实时监测与补偿:在伺服系统运行过程中,实时监测系统的运动状态和摩擦力的变化情况。
根据监测到的数据,通过控制器对摩擦力进行实时补偿,以减小其对系统运动的影响。
3. 优化控制算法:针对不同的机械系统和应用场景,采用不同的控制算法进行优化。
例如,可以采用模糊控制、神经网络控制等智能控制算法,以提高系统的自适应能力和鲁棒性。
4. 反馈校正:通过引入反馈校正机制,对系统的运动状态进行实时校正。
当系统出现偏差时,通过反馈校正机制对控制参数进行调整,以保证系统的稳定性和精度。
四、实现过程在实际应用中,基于摩擦补偿的高精度伺服控制方法的实现过程主要包括硬件设计和软件设计两个方面。
1. 硬件设计:硬件设计主要包括传感器、执行器、控制器等部分的选型和设计。
传感器用于实时监测系统的运动状态和摩擦力的变化情况,执行器用于驱动机械系统进行运动,控制器则负责根据监测到的数据对系统进行控制和调整。
11 中国铸造装备与技术 5∕2017 激光淬火对Cr12MoV钢碳化物不均匀度与耐磨性的影响吴一弘,曲迎东,苏建灏,姜珂,尤俊华,李荣德(沈阳工业大学,辽宁沈阳 110023)摘要:随着模具制造业的快速发展,降低Cr12MoV钢表面共晶碳化物不均匀度和提高表面耐磨性可以有效降低使用过程中发生的开裂与磨损两种主要失效形式,延长Cr12MoV钢使用寿命。
本研究采用激光淬火对Cr12MoV钢进行表面强化,激光输出功率1 400 W,扫描速度5 mm/s,离焦量47 mm,表面硬度达到58.9 HRC。
激光淬火后Cr12MoV钢共晶碳化物不均匀度降低至3级,磨损量降低了92.0%,平均摩擦系数降低了42.8%,磨损率下降了9.2%,耐磨性显著提升。
关键词:Cr12MoV钢;激光淬火;共晶碳化物;不均匀度;耐磨性中图分类号:TG156.99;文献标识码:A;文章编号:1006-9658(2017)05-0011-04DOI:10.3969/j.issn.1006-9658.2017.05.004 基金资助:绿色铸造工艺及新材料制备技术,辽宁省创新团队项目.(项目编号:51274142)收稿日期:2017-04-25稿件编号:1704-1762作者简介:吴一弘(1992—),硕士在读,主要从事铸造材料的研究与开发工作.0 引言Cr12MoV 钢属于冷作模具钢的一种,在模具制造业中应用极为广泛,其消耗量在冷作模具钢中居于首位[1,2]。
Cr12MoV 钢淬透性好,具有较高的硬度以及较好的耐磨性, 但其在使用过程中容易出现表面开裂及磨损两种失效形式, 降低其使用寿命[3,4]。
Cr12MoV 钢属于高碳高铬钢,在最初的铸造Cr12MoV 钢锭冷凝过程中,由于实际冷却速度有限,当温度继续下降时,钢液发生共晶反应易形成大量网状共晶碳化物[5]。
有研究表明,共晶碳化物的大量偏析是Cr12MoV 钢表面产生裂纹的原因之一[6],因此改善Cr12MoV 钢中共晶碳化物的不均匀分布可有效提高其使用寿命。
机械传动系统的摩擦学分析与控制摩擦是机械传动系统中一个不可忽视的现象,它会对系统的性能、效率和寿命产生重要影响。
摩擦学分析与控制是提高机械传动系统性能的关键技术之一。
本文将对机械传动系统的摩擦学进行深入分析,并探讨如何通过控制摩擦来提高系统的性能。
一、摩擦的基本概念和分类摩擦是两个表面相对运动时发生的相互阻碍运动的力,它是由于表面间的不规则形状和表面之间的化学相互作用引起的。
摩擦的大小受到物体之间的压力、表面粗糙度、接触面积以及润滑条件的影响。
根据摩擦力的性质,摩擦可以分为两类:干摩擦和润滑摩擦。
干摩擦是指两个表面之间没有液体或固体润滑层存在的摩擦现象。
润滑摩擦是指在两个表面之间存在润滑剂,润滑剂可以减小摩擦力和磨损。
二、摩擦力的计算和评估准确计算摩擦力对于机械传动系统设计和分析至关重要。
常见的摩擦力计算方法有两种:经验公式法和理论计算法。
经验公式法是根据实验数据建立的经验公式来估计摩擦力。
这种方法简单易用,但精度有限。
理论计算法是根据摩擦学理论和力学原理进行计算。
这种方法需要更多的输入数据和计算步骤,但精度较高。
评估摩擦力的重要指标包括摩擦系数和摩擦功。
摩擦系数是指单位载荷下的摩擦力与垂直载荷之比,是描述摩擦性能的指标。
摩擦功是指在传动过程中摩擦力所做的功,它直接影响传动效率和能量损失。
三、摩擦学分析方法针对不同的摩擦问题,可以采用不同的分析方法来研究和解决。
常见的摩擦学分析方法包括实验方法、数值模拟方法和理论分析方法。
实验方法是通过实验手段来测量和评估摩擦性能。
这种方法具有直观性和可操作性,但成本较高和时间较长。
数值模拟方法是通过建立数学模型和运用计算机模拟来模拟摩擦过程。
这种方法计算速度较快,但依赖于模型的准确性。
理论分析方法是通过摩擦学原理和数学推导来分析摩擦问题。
这种方法要求理论基础扎实,但可以给出较准确的解析解。
四、摩擦控制技术为了提高机械传动系统的性能,需要采取一些措施来控制摩擦。
第33卷第2期中㊀国㊀表㊀面㊀工㊀程Vol.33No.22020年4月CHINA SURFACE ENGINEERINGApril 2020收稿日期:2019-10-10;㊀修回日期:2020-04-01通信作者:朱新河(1964 ),男(汉),教授,博士;研究方向:船机零件的摩擦磨损控制;E-mail :xinhe@ 基金项目:辽宁省自然科学基金(2019-ZD -0148);中央高校基本科研业务费(3132019331)Fund :Supported by Natural Science Foundation of Liaoning Province (2019-ZD -0148)and Fundamental Research Funds for Central Universities(3132019331)引用格式:付景国,徐长旗,朱新河,等.表面微织构复合固体润滑材料的摩擦学性能研究进展[J].中国表面工程,2020,33(2):15-28.FU J G,XU C Q,ZHU X H,et al.Research progress of surface micro-texture combined with solid lubricants on tribological proper-ties [J].China Surface Engineering,2020,33(2):15-28.doi:10.11933/j.issn.10079289.20191010001表面微织构复合固体润滑材料的摩擦学性能研究进展付景国,徐长旗,朱新河,张蓬予,刘耕硕,严志军(大连海事大学轮机工程学院,大连116026)摘㊀要:为提高摩擦副之间的摩擦学性能,润滑油添加剂㊁低摩擦表面以及表面微织构等作为改善表面摩擦学性能的手段已得到国内外研究工作者的广泛关注并取得了一定的成果,而表面微织构复合固体润滑材料技术作为一种集成了已有各种减摩手段优点的复合技术开始被研究㊂文中综述了表面微织构与固体润滑材料复合的物理和化学方法;评述了表面微织构几何形状㊁参数和固体润滑材料种类对复合表面摩擦学性能的影响;分析了表面微织构复合固体润滑材料的减摩机制;最后指出了该复合技术目前尚待解决的问题,并对该技术下一步的发展方向和实际应用进行了展望㊂关键词:表面微织构;固体润滑材料;复合技术;摩擦学性能中图分类号:TH117文献标志码:A文章编号:1007-9289(2020)02-0015-14Research Progress of Surface Micro-texture Combined with SolidLubricants on Tribological PropertiesFU Jingguo,XU Changqi,ZHU Xinhe,ZHANG Pengyu,LIU Gengshuo,YAN Zhijun(School of Marine Engineering,Dalian Maritime University,Dalian 116026,China)Abstract :In order to improve the tribological properties of friction pair,lubricant additives,low-friction surfaces and surfacemicro-textures have aroused great attention by worldwide scientists as means to improve surface tribological properties and havealready achieved certain results.However,surface micro-textures combined with solid lubricants has begun to be studied as acomposite technology because of the integration of existing anti-friction measures.The physical and chemical methods for thecomposite of surface micro-textures and solid lubricants were reviewed.The effects of geometrical shape,parameters of surfacemicro-texture and types of solid lubricants on the tribological properties of composite surface were reviewed.The anti-frictionmechanism of the composite technology was analyzed.Finally,the unsolved problems of composite technology were pointed out,and the development direction and practical application of this technology in the future were proposed.Keywords :surface micro-texture;solid lubricants;composite technology;tribological property0㊀引㊀言摩擦会导致机械零件失效和系统效率的降低,增加动力能源消耗,由于摩擦造成的机械能量损失高达10%~20%[1]㊂为减少摩擦,研究人员针对摩擦副已提出并实施了各种手段,例如改善润滑油性能㊁制备低摩擦表面和表面微织构等㊂改善润滑油性能主要是往在用润滑油中添加功能性的微纳材料,如添加具有减摩抗磨性能的WS 2[2]㊁MoS 2[3]㊁LaF [4]㊁石墨烯[5]等粉体㊂制备低摩擦表面是在在摩擦副之间通过增加易剪切的自润滑材料,利用材料自身的润滑特性来减中㊀国㊀表㊀面㊀工㊀程2020年少表面摩擦,如在摩擦表面形成固体润滑薄膜[6-7]或涂覆自润滑材料[8-9]㊂表面微织构则是通过在摩擦副表面加工不同微造型来减少摩擦副之间实际接触面积,储存润滑油和磨损产物来减少摩擦,如圆形微织构[10]㊁三角形微织构[11]㊁矩形微织构[12]等㊂然而在研究过程中发现表面微织构不仅可以作为液体润滑剂的储存器,还可以作为固体润滑剂或其他功能性材料的储存器㊂此复合方法是将上述现有的减摩手段进行综合处理,即在表面微织构内填充固体润滑材料,让其在使用过程中逐渐释放出来,起到减摩作用㊂填充的固体润滑材料种类也相对较多,如单一固体润滑材料[13-14]㊁多种单一固体润滑材料的混合物等[15]㊂在研究中发现,表面微织构与固体润滑材料复合之后,呈现出比单一表面处理方法更优的减摩耐磨效果[16],并且可针对不同的工况发挥不同的作用㊂在油润滑条件下,固体润滑材料会逐渐释放至摩擦副间的润滑油中;在干摩擦条件,固体润滑材料直接作用在发生摩擦的部位㊂除此之外,表面微织构仍能起到储存磨损产物的作用㊂文中在评述表面微织构复合固体润滑材料的方法,分析减摩因素以及减摩机理的基础上,综述了表面微织构复合固体润滑材料技术最新的研究与发展概况,并探讨复合技术所遇到的问题,为相关研究提供一定的思路,希望对探索机械零件减摩耐磨新方法㊁新途径及其潜在应用提供一定的参考价值㊂1㊀微织构表面固体润滑材料的复合工艺由于研究者研究领域的不同,并在考虑固体润滑材料和应用工况的基础上,微织构表面固体润滑材料的复合工艺也有所不同㊂目前,复合工艺种类繁多,如机械涂覆㊁热压填充㊁有机树脂粘接㊁气相沉积等众多物理和化学方法,由于复合工艺的不同,复合涂层所展现出的摩擦学性能和使用寿命也有一定的差异㊂1.1㊀机械涂覆法机械涂覆法是通过反复的机械作用力将干燥的固体润滑材料粉体涂抹在试样表面,形成润滑膜,达到与基体间的物理结合状态㊂具体操作步骤是先将涂覆布固定在旋转盘上,并将一定量的固体润滑材料均匀分散在涂覆布上,使经过抛光和超声清洗的试样与涂覆布上的润滑材料在一定载荷下对磨,在旋转盘的缓慢匀速转动中制备复合涂层㊂Wu等[17]在Ti-6Al-4V合金微织构表面上机械涂覆MoS2固体润滑剂,并在旋转球盘接触下进行高速干摩擦试验㊂结果表明,填充有MoS2固体润滑剂的钛合金微织构表面呈现出较好的摩擦学性能,与光滑表面相比,其摩擦因数最高可降低40%,且波动明显降低;摩擦温度最高也降低15%㊂周后明等[18]通过特殊材质的布料将MoS2基复合固体润滑剂机械涂覆在具有微织构的硬质合金刀具前刀面上㊂结果发现,填充有MoS2/Sb2O3复合固体润滑剂的微织构刀具在高㊁低速切削时都表现出较低的切削力,且切削温度比传统刀具下降11%~25%㊂另外,Li等[19]试验了具有微织构的不锈钢表面与MoS2润滑剂复合后在600ħ条件下的摩擦学性能㊂结果表明在高温条件下,复合表面具有较低的摩擦因数和磨损率㊂还有研究者在机械涂覆固体润滑材料之前,对基体试样进行了预处理㊂Rapoport等[20]在机械涂覆MoS2润滑剂之前,先对钢基体表面抛磨一层硫化物或硒化物的微纳颗粒用以增加MoS2与钢基体之间的结合强度,通过多功能摩擦磨损试验机对钢表面激光微织构内填充固体润滑剂的粘附力和使用寿命进行了研究㊂结果证明, CdZnSe作为粘结层时,所制备的复合表面具有最佳的摩擦因数,此时表面MoS2润滑膜层的磨损寿命是单独涂覆MoS2润滑膜层的两倍㊂Li 等[21]试验了将MoS2微纳粉末机械涂覆在含银镍基合金表面微织构内,并通过环盘式摩擦磨损试验机检验其在室温至600ħ条件下的摩擦学性能㊂结果表明,试样摩擦因数会随着温度的增加而增加;填充MoS2粉末试样在室温至400ħ条件下,其摩擦因数稍低于未织构合金试样,高于400ħ时,其摩擦因数仍维持在较低的水平,而未织构合金试样的摩擦因数则上升较快㊂机械涂覆法因操作简单,易于达到填充效果,是目前应用较为广泛的复合方法之一,但对固体润滑剂的填充效果一般,结合强度不高㊂1.2㊀热压填充法热压填充法是采用加热和加压的方法将固61㊀第2期付景国,等:表面微织构复合固体润滑材料的摩擦学性能研究进展体润滑材料填充于微织构表面内的处理过程㊂首先将填充的固体润滑材料过量的涂覆于已微织构加工试样表面,在一定温度和压力下利用热压机进行热压成形,制成试样毛坯㊂毛坯试样经砂纸抛光去除表面多余的固体润滑材料,最终制备复合表面,具体过程如图1所示[16]㊂图1㊀热压加工过程[16]Fig.1㊀Process of hot pressingHu等[16]对比了热压填充法与机械涂覆法对试样摩擦学性能的影响㊂结果发现,在表面微坑内热压MoS2固体润滑剂所制备的涂层具有极低的摩擦因数和长的磨损寿命,比机械涂覆固体润滑剂的摩擦因数降低约1倍,磨损寿命提高约35倍㊂其分析原因是,热压使微坑中的润滑剂涂层密度增加,其固体润滑剂的储存量大约是机械涂覆的20倍;另外,热压处理还可增强固体润滑剂与基材的粘结强度㊂华希俊等[22-23]采用热压的方法对表面微织构复合固体润滑材料做了一系列研究㊂他先将微纳MoS2粉末热压填充至45钢表面激光微织构内,在销盘线接触摩擦磨损试验机上考察了其作为复合固体润滑剂在干摩擦条件下的摩擦学性能㊂研究结果发现微织构中填充的MoS2在摩擦过程中转移至试样接触表面,并形成稳定可靠的固体润滑膜,提高摩擦表面的减摩耐磨性能㊂除此之外,他还发现在油润滑状态下的表面激光微织构填充固体润滑剂仍能对摩擦副表面起到减摩耐磨作用㊂孙友松等[24]则将微织构填充方法应用在传动螺母上,首先通过3D纺织技术编织出具有纹理结构的螺旋面状碳纤维,并采用半干法将微纳固体润滑剂复合在碳纤维上研究其摩擦磨损性能,经与高性能青铜ZCuSn10Pb1螺母对比,复合材料螺母摩擦因数降低了21.2%,传动效率也相对提高了10.6%㊂由此看出,采用热压填充法可增加固体润滑材料在微织构内的存储量和粘结强度,所得的摩擦学效果要好于机械涂覆法,但热压夹具的形状对其应用范围影响较大,平面试样可较容易得到加工效果,对于非平面试样的加工难度较大㊂1.3㊀有机树脂粘结法表面微织构内的固体润滑材料的填充方式直接影响着其使用寿命,尽管热压填充方法在一定程度上增加了其使用寿命,降低其释放速率,但研究发现有机树脂粘结法,即将环氧树脂或其他树脂类有机物作为粘接剂与固体润滑材料混合后填充于微织构表面的方法,表现更佳的作用时效,使用寿命也有所提高㊂通常,粘结法先将粘接剂与固体润滑材料按不同质量比混合均匀,涂覆于已加工试样表面,之后经过一定时间的冷凝压制或热压成形,制成试样毛坯,最后经砂纸研磨㊁抛光,加工成摩擦磨损试样㊂或者将试样浸入到经丙酮稀释的粘接剂与固体润滑材料的悬浮液中,静置一段时间,取出后放入干燥箱依次进行低温保温固化,高温保温固化,制成试样㊂因此,有学者把树脂类材料与固体润滑材料混合在一起封装在表面微织构内,研究其协同作用下的摩擦学性能,并取得了一定的成果㊂表1总结了部分不同树脂与固体润滑材料在微织构内的协同作用效果㊂尹延国[25],乔姣飞[26],秦永坤[27]等研究了环氧树脂与MoS2的混合物对试样的摩擦学性能影响,发现环氧树脂粘接剂可有效地填充在表面微织构内,形成复合润滑膜层,并且表面微织构内填充混合固体润滑膜有着更优异的摩擦学性能,其摩擦因数的降低和膜层寿命的提高与环氧树脂的含量有一定的关系㊂黄仲佳等[28]则使用5%酚醇树脂粘结剂改善固体润滑剂的粘结性能,并通过机械涂覆的方法将混合润滑材料填充在45钢表面电解加工的微织构内,发现微织构中填充的固体润滑材料在摩擦过程可转移至接触表面并能形成稳定可靠的固体润滑膜,提高摩71中㊀国㊀表㊀面㊀工㊀程2020年㊀㊀㊀表1㊀树脂与固体润滑材料协同作用下的摩擦学性能Table 1㊀Tribological properties under the synergistic effect of resin and solid lubricantsComposite materialsMatrixProcessing methodWorking conditionPropertiesRefE54epoxy resin +graphite +MoS 245steelSpraying and curing under 160ħDry sliding on Pin-on-disk tribometerThe addition of MoS 2can improve anti-friction and wear-resisting performance than one-component solid lubrication[25]E51epoxy resin +MoS 245steelSprayingandcuring under 200ħDry sliding on ring-on-disk tribometerThe sample with texture density of 20%hasthe smallest COF and 2.25times wear life.[26]epoxy resin +MoS 2Ti6Al4ValloyPEO +Impregnation Dry sliding on pin-on-disk tribometerThe COF reduces from 0.135to 0.25.Wear life increases from 50min to 80min.[27]5%phenolicresin +MoS 245steelSmearing andcuring under 60ħDry sliding on ring-on-disk tribometerThe COF reduces from 0.3to 0.08.[28]AB adhesive +MoS 245steelSmearing and curing under room temperature Dry sliding on pin-on-disk tribometerThe COF is the smallest,about 0.12,whenthe quality content of AB adhesive is 50%.[29]Polyimide (PI)+MoS 245steelSmearing andhot pressingDry sliding on pin-on-disk tribometerThe COF is the smallest,about 0.11,when the quality content of PI is 20%.[30]擦表面的减摩耐磨性能㊂华希俊等也先后研究了AB 胶[29]㊁聚酰亚胺(PI)[30]与MoS 2微纳粉体合后形成黏结型混合固体润滑剂填充在表面微织构内的摩擦学性能㊂研究结果都显示混合固体润滑剂填充的微织构表面的摩擦因数均随着载荷和转速的增大而减小,且高速重载更有利于润滑膜的形成;并且粘接剂含量存在一个最优值,AB 胶质量含量为50%时,摩擦因数最低,约为0.12;聚酰亚胺质量分数为20%时,摩擦因数最低,约为0.11㊂尽管目前缺少有机树脂粘结法与上述两种加工方法在同一条件下的对比,但从现有的试验数据来看,有机树脂粘结法仍能较大的改善试样的摩擦学性能㊂1.4㊀气相沉积法气相沉积法是利用气相中发生的物理㊁化学反应,在工件表面形成功能性或装饰性的金属㊁非金属或化合物涂层㊂气相沉积法按照成膜机理,可分为化学气相沉积㊁物理气相沉积和等离子体气相沉积㊂表2总结了使用物理气相沉积法在表面微织构内填充固体润滑材料的作用效果㊂表2㊀物理气相沉积法在表面微织构内填充固体润滑剂的摩擦学性能Table 2㊀Tribological properties of textured surface filled with solid lubricants through physical vapour depositionComposite materials Matrix Working conditionPropertiesRefWS 2WC /TiC /Coce-mented carbideDry cutting testCutting force reduces by 44%,cutting temperature reduces by 16%,COF reduces by 16%under high cutting speed of 250m/min[31]TiAlN WC +6%Co ce-mented carbideDry cutting testThe texture increases the adhesion strength between the coatingsand substrate,reduces the wear rate of rake face and reduces the roughness of the machined surfaces.[32]WS 2+Zr Al 2O 3/TiC ceram-ic surfaceDry sliding on ball-on-disk tribometerNano-textures increases the adhesion strength between the coat-ings and substrate,and the COF reduces from 0.5to 0.06.[33]W-S-CWC +8%Co ce-mented carbide Dry sliding on ball-on-disk tribometer The reduction percentage of average COF of the textured surfaceis up to 80%when the density is in the range from 0%to 9%.[35]81㊀第2期付景国,等:表面微织构复合固体润滑材料的摩擦学性能研究进展㊀㊀Deng [31],Liu [32]等采用物理气相沉积的方法在具有微织构的WC /Co 硬质合金刀具前刀面沉积固体润滑材料,通过车床切削试验检验其切削性能㊂结果表面微织构复合固体润滑材料可以降低切削力,切削温度和摩擦因数,并且微织构的存在还可以增加沉积涂层与基体的粘结强度㊂Xing 等[33-34]则对Al 2O 3/TiC 陶瓷微织构表面上沉积WS 2/Zr 复合涂层在湿切削和干切削工况下的摩擦学性能进行了研究㊂结果表明微织构与WS 2/Zr 复合涂层均能表现出较好的摩擦学性能,并且表面微织构可以改变切刀应力分布,进而增加涂层与基体的结合强度,延长涂层的使用寿命㊂另外,W-S-C 涂层[35]㊁TiAlN 涂层[36]也通过气相沉积的方法沉积在具有微织构的硬质合金表面,测试结果都表明表面微织构与润滑材料的协同作用可以极大地改善其摩擦学性能㊂除此之外,还有学者研究了具有微织构的气相沉积涂层的摩擦学性能㊂Waldemar 等[37]利用气相沉积的方法在发动机气缸套内表面沉积DLC 涂层,然后采用机械加工的方法在其上加工出直径为0.25~0.35mm,深度为4~6μm 的微坑,测试结果表明,在同样运转工况条件下,由于摩擦功耗的减少,使用微织构DLC 涂层气缸套的发动机比原始发动机输出的功率增加约5.8%,转速约增加1000r /min㊂Pakula 等[38]在塞隆陶瓷表面上气相沉积Al 2O 3+TiN 涂层后进行微织构,测试结果表明,复合润滑结构的摩擦因数可降低15%㊂气相沉积技术在基体表面得到的润滑涂层细致㊁紧密,与表面微织构复合之后,微织构对涂层的锚定作用,使得涂层与基体的结合强度也进一步提高㊂由此看出,此种复合工艺对工作于重载条件下的摩擦副具有较好的指导意义㊂1.5㊀其他处理方法除上述复合工艺方法之外,还有一些其他的处理方法,不过针对这些处理方法的文献相对较少㊂Li 等[39]在45钢上对电沉积镍过渡层进行微织构,再采用电沉积方法在有微织构的镍层上沉积银涂层,并利用球盘试验机在干摩擦条件下检验复合涂层从室温至700ħ下的摩擦磨损性能㊂结果表明,所制备的复合涂层试样在适当的织构密度下表现出比无织构镍层和无镍层微织构试样低且稳定的摩擦因数,在700ħ下摩擦因数约为0.2㊂Li 等[40]采用电流体动力学雾化技术在微织构表面沉积WS 2涂层,通过球盘往复式滑动摩擦试验机来评估其摩擦学性能,结果显示表面微织构可以增强涂层与基体的粘结强度,延长WS 2膜层的磨损寿命㊂2㊀影响复合膜层摩擦学性能的因素表面微织构内填充固体润滑材料比单一的处理方法达到更优的摩擦学性能,并可针对不同的工况发挥不同的作用㊂摩擦学性能的改善主要取决于表面微织构的参数以及所填充的固体润滑材料的种类㊂2.1㊀表面微织构参数对摩擦学性能的影响表面微织构参数,如微织构的形状㊁尺寸㊁微织构底面形状以及微织构的密度等[10-12],对摩擦学性能的影响已经被许多学者通过理论和试验证明㊂在此基础上,不同表面微织构参数对复合润滑结构的摩擦学性能影响也逐渐开始被研究㊂2.1.1㊀微织构几何形状参数的影响㊀㊀图2展示了部分微织构的几何形状参数㊂表3总结了部分微织构几何形状参数对复合润滑结构的摩擦学性能影响㊂图2㊀表面微织构几何形状Fig.2㊀Geometric shapes of surface texture91中㊀国㊀表㊀面㊀工㊀程2020年表3 不同微织构几何形状复合固体润滑材料的摩擦学性能Table 3㊀Tribological properties of different geometric shapes of texture filled with solid LubricantsGeometric shape Matrix Composite material Processing methodWorking conditionProperties RefMicro-grooves WC /Co cemented carbidMoS 2Smearing and pressingDry sliding on ball-on-disk tribometerThe average COF reduces by 20%-25%,and average friction temperature reduces by 8%-15%.[41]Ellipticmi-crotextures WCcemen-ted carbid MoS 2SmearingDry cutting test on latheThe cutting force reduces by 10%-15%,㊀and the cutting temperature reduces by 10%-20%.[42]Circular-arcmicrotextures WCcemen-ted carbidMoS 2Smearing Dry cutting testThe cutting force reduces by8%-16%,㊀and the cutting temperature reduces by 15%-24%.[43]Dimples Ti6Al4V al-loyMoS 2burnishing Dry sliding on pin-on-disk tribometerSliding distance increases from 500m to1200m at a low COF.[44]Dimple /line /four-leaf clo-ver arrayYS8cemen-ted carbideWS 2electrohydro-dynamicat-omizationDry sliding on ball-on-disk tribometer,scratch testsTextured surface with four-leaf clover hasa higher adhesive strength and shows a better tribological properties.[40]㊀㊀Wu [41],吴泽[42],龙远强[43],Qin [44]等分别研究了具有沟槽性㊁椭圆形㊁圆弧形㊁圆形微织构的试样在涂覆固体润滑材料后对摩擦学或切削性能的影响,结果都发现微织构填充固体润滑材料比单微织构试样表现出更佳的摩擦学性能或切削性能㊂Li 等[40]还对比了不同的表面微织构形状对复合涂层的减摩效果的影响㊂试验采用激光刻蚀技术在硬质合金表面加工出微坑阵列㊁线阵列㊁四叶草阵列的微织构,然后在微织构表面沉积WS 2涂层,通过球盘往复式滑动摩擦试验机来评估其摩擦学性能㊂试验结果表明四叶草阵列的微织构与WS 2涂层之间的协同作用对硬质合金的摩擦磨损性能改善最为明显㊂2.1.2㊀微织构尺寸的影响㊀㊀表4总结了部分微织构尺寸和密度对复合润滑结构的摩擦学性能影响㊂黄仲佳[28],Zim-merman [45]等对不同尺寸的微织构对填充固体润滑材料后的摩擦学性能进行研究,结果发现较大尺寸的微织构表现出较好的摩擦学性能,摩擦因数较小,低摩擦因数寿命也相对较长㊂Zhang 等[46-49]则对比了微米和纳米级的微织构填充固体润滑剂的摩擦学性能,结果表明具有纳米织构的刀具试样,其磨损寿命显著增加㊂织构化TiAlN 涂层刀具在切削力㊁刀-屑间平均摩擦因数㊁刀具的磨损量以及工件的加工质量方面均得到不同程度的改善,其中同时具有微米和纳米织构的TiAlN 涂层刀具具有最优的切削性能㊂在此基础上,Zhang 等[50-51]在具有微米和纳米织构的TiAlN 涂层上磁控溅射沉积WS 2,并在干切削试验机上检验其切削性能㊂结果表明TiAlN 涂层上的微纳织构可以改善WS 2膜的初始使用寿命,并对其切削力㊁切削温度㊁摩擦因数和刀具磨损等性能上都有明显改善,其认为WS 2与织构化涂层之间粘结强度的提高主要是由于表面微织构为涂层提供机械锚定的作用㊂除微织构尺寸外,微织构的密度也对复合润滑结构的摩擦学性能有较大的影响㊂Meng 等[35]通过球盘式摩擦磨损试验机检验硬质合金不同密度的沟槽型微织构表面沉积W-S-C 涂层的干摩擦性能,结果发现当微沟槽面密度为9%时,对摩擦性能改善效果最佳,此时平均摩擦因数的降幅相比于未微织构表面可达80%㊂Hu 等[52]则研究了圆形微织构密度对钛合金摩擦学性能的影响㊂试验在干摩擦和涂覆MoS 2固体润滑剂条件下,研究了织构密度为13%㊁23%和44%的微坑表面对钛合金摩擦学性能的影响,结果表明,织构密度为23%的微坑表面具有最低的摩擦因数,但织构密度的增加可以获得更长的磨损寿命㊂乔姣飞[26]和Guleryuz [53]等对微织构的尺寸和密度对填充固体润滑剂的摩擦学性能同时进2㊀第2期付景国,等:表面微织构复合固体润滑材料的摩擦学性能研究进展行了研究,结果发现微织构尺寸越大对摩擦因数的影响越大,而微织构密度对摩擦因数而言存在一个最优值㊂Arenas 等[54]则对菱形微织构的交叉角度和织构密度对摩擦学性能的影响进行研究㊂利用布抛光的方法在Ti6Al4V 合金菱形图案织构表面涂覆微纳石墨烯和MoS 2颗粒,并通过往复滑动摩擦磨损试验机对不同试样的摩擦磨损性能进行评价,当交叉角为60ʎ,织构密度为64%时具有最佳的摩擦磨损性能,并且当织构密度ɤ40%时,石墨烯涂层的使用寿命高于MoS 2㊂上述研究结果表明织构密度对试样表面的减摩性能存在一个最优值,但Qin 等[44]通过对微弧氧化的织构钛合金表面进行涂覆MoS 2固体润滑剂,通过摩擦磨损试验发现,钛合金表面织构密度越高(织构密度试验范围8%~55%),所制备织构化钛合金微弧氧化复合MoS 2涂层的减摩性能越好㊂其研究结果与上述直接在基体表面微织构复合固体润滑剂的研究结果有所不同,原因可能与钛合金微弧氧化后形成的硬质耐磨陶瓷表面有关㊂表4 不同微织构尺寸和密度复合固体自润滑材料的摩擦学性能Table 4㊀Tribological properties of different size and density of textures filled with solid lubricantsTexture parameterMatrixComposite material Processing methodWorking conditionPropertiesRefDimple diameter100μm and 500μm45steel 5%Phe-nolic res-in +MoS 2Smearing Dry sliding on ring-on-disk tribometerThe COF of samples with dimple diam-eter of 500μm and 100μm are 0.08and 0.3,respectively.[28]Dimple diameter of1.5μm,3μm,5μm and 10μm440C stain-less steelGraphite SprayingDry slidingonpin-on-disk tribometerSample with dimple diameter of 10μmexhibits lower COF and longer life[45]Groove size of 50μm and 150nmWC /Cosubstrates TiAlNPhysical va-por deposi-tion Cutting test with cutting fluids scratch tests Micro /nano-scale texture on rake faceshowes the best anti-adhesive proper-ties and adhesion strength.[47]Groove size of 50μm and 150nm WC /CosubstratesTiAlN +MoS 2Physical va-por deposi-tion +Bur-nishingDry sliding onball-on-disk tribometer scratch testsMicro-scale texture improves the effec-tive life of the MoS 2layer for a longer period.[50]Groove density of2%,4%,9%,18%and 35%WC +8wt.%CocementedcarbideW-S-C Physical va-por deposi-tionDry sliding onball-on-disktribometer The sample with groove density of 9%shows the best tribological properties.[35]Dimple density of13%,23%and44%Ti -6Al -4V alloyMoS 2Burnishing Dry sliding on ball-on-disk tri-bometer Sample with dimple density of 23%showsthe smallest COF,and the increase of density can prolong the wear life.[52]Dimple density of8%,12%,20%,33%and 55%Ti6Al4V al-loyMoS 2BurnishingDry sliding on pin-on-disk tribometerThe low COF life increases with the in-crease of textured dimple densities from 8%to 55%.[44]Grooves size of 100μm,200μm,300μm,and density of 10%,20%,30%45steelE51ep-oxy resin +MoS 2Smearing Dry sliding onblock-on-ring tribometerSample with groove density of 20%shows the smallest COF,and the in-crease of size can prolong the wear life.[26]Dimple diameter of4μm and 9μm,and space of 11μm and 25μmSilicon wa-fersGraphite+indiumMist sprayer +sputter deposition Dry sliding on pin-on-disk tri-bometer Sample with diameter of 9μm and space of 25μm shows the best tribo-logical performance.[53]Crossing angles of45ʎand 60ʎ;densi-ty of 18%,40%and 64%Ti -6Al -4V alloy Graphene +MoS 2Cloth bur-nishingDry sliding on ball-on-disk tri-bometer The best COF results are found for64%of density and 60ʎof crossing an-gle.[54]12。
第四章激光微造型表面摩擦特性的实验研究4.1实验条件与试样参数介绍物体的摩擦性能主要指的是摩擦力(摩擦力矩)、承载能力、抗磨损能力等。
本章主要是实验结果进行分析,考察具有不同几何参数的规则微凹坑对表面摩擦特性的影响。
与第二章的模拟分析结果相对照,试图找到不同尺寸微凹坑对面接触摩擦副间摩擦性能的改变与表面功能形貌之间的联系,为表面功能形貌的分析与设计提供参考。
虽然规则凹坑只占摩擦副表面的很小一部分面积,但是由于凹坑微单元分布的规则性,承载区域内部的各个微单元附近的油膜厚度和压力分布会随着凹坑的大小及分布规律而变化,反映出来就是凹坑对表面摩擦特性的影响有一定的规律。
目前,过内外学者对这种规则凹坑表面的研究主要考虑以下几个参数:凹坑深度、凹坑直径、凹坑的深径比、凹坑间距和凹坑的表面积占有率。
这些参数不是独立的,例如知道凹坑直径和凹坑深度就可以算出凹坑的深径比。
由于加工与检测仪器的功能和精度有限,本次实验主要考察凹坑直径和凹坑间距对缸套表面摩擦学性能的影响。
由于对比实验时缸套试样表面加工的凹坑比较浅,磨损实验结束后,表面的规则凹坑已经变的非常的模糊,不便于观察和测量。
比较实验时使用的激光加工功率为9瓦,是对比实验的3倍。
试样的具体参数如表4-1所示,凹坑直径加工了4个系列,每个系列加工5种凹坑间距,总共20个试样。
为了保证结果的准确性,选择十个不同参数的试样作了重复实验。
表4-1比较实验的激光微结构参数本次实验的条件和操作过程与对比实验时的基本一样,有两个地方需要说明:一是载荷的变化,由对比实验结果所画出的曲线可以看出,各个尺寸的凹坑表面在摩擦学特性上区别不是很明显。
本次实验严格了操作和外界温度情况,在实验进行的最后70分钟将载荷增加到350牛顿,使得实验结果的差别更加明显。
二是增加了摩擦力的测量,采用前面所述的检测设备,直接保存了摩擦力曲线和对应的数值,使得实验结果更加成分。
4.2对表面形貌的影响为了考察凹坑对表面摩擦性能的影响与表面形貌变化之间的联系,对实验前后的规则凹坑缸套表面进行了形貌测量和凹坑区域附近的图像信息采集。
摩擦副表面损伤的磨损机理分析与优化设计引言摩擦副表面损伤是机械设备长期使用后常见的问题,会使机械设备的性能下降、寿命缩短,甚至导致机械故障发生。
因此,分析摩擦副表面损伤的磨损机理,提出优化设计方案,具有重要的理论和实践意义。
本文将从摩擦副表面损伤的机理入手,探讨优化设计的方法。
第一章摩擦副表面损伤的机理1.1 磨损的种类磨损主要包括三种类型:磨粒磨损、疲劳磨损和腐蚀磨损。
1.2 磨损的机理摩擦副表面损伤的主要原因是磨损。
当两个表面相互摩擦时,就会产生磨损。
当摩擦面两端的应力超过材料的强度时,就会发生裂纹、疲劳、塑性变形等损伤。
另外,环境因素也会影响磨损,例如腐蚀、高温等。
第二章优化设计的方法2.1 材料选择为避免摩擦副表面损伤,首先需要选择合适的材料。
摩擦副表面材料需要具有良好的摩擦性能,强度和硬度等性质,以抵抗磨损的发生。
常见的材料选择包括化学合成材料、金属材料等。
2.2 配合设计在进行配合设计时需要注意两个方面:一是合理的配合间隙;二是表面形状的改善。
合理的配合间隙能够使摩擦副之间产生必要的压力,表面形状的改善(如抛光)可以减少表面粗糙度,从而降低磨损。
2.3 润滑设计采用润滑设计能够在一定程度上降低摩擦副表面损伤的磨损。
润滑能够减少表面之间的接触,从而减少磨损,同时润滑还有散热的作用。
有利于摩擦面温度的降低,从而减少磨损。
2.4 表面处理有些表面处理方法能够提高摩擦副表面的耐磨性。
如化学镀铬,即在零件表面镀覆一层铬层;电化学镀铬,在零件表面电镀一层铬层;化学氮化,即在零件表面氮化形成一层三氮化铁层等等。
结论本文从摩擦副表面损伤的机理入手,探讨了优化设计的方法,包括材料选择、配合设计、润滑设计和表面处理等方面。
优化设计能够有效地减少摩擦副表面的磨损,提高机械设备的性能和寿命,具有极高的实际应用价值。