精密单点定位
- 格式:docx
- 大小:34.33 KB
- 文档页数:5
单频精密单点定位计算流程1.收集观测数据:使用全球定位系统(GPS)接收机收集卫星信号,并记录下每颗卫星的伪距观测值和卫星的位置信息。
观测时长通常为几分钟到几小时。
2.解算接收机钟差:由于GPS接收机的时钟可能存在误差,需要通过解算来确定实际的时钟偏差。
这可以通过比较接收机观测到的卫星信号和卫星的真实发射时间来实现。
3.接收机位置初始化:利用至少四颗卫星的伪距观测值和已知的卫星位置信息,可以通过迭代计算来确定接收机的位置。
初始位置可以通过接收机的初始估计位置或之前的测量结果来获得。
4.卫星位置计算:利用卫星的伪距观测值和接收机的位置信息,可以通过几何关系计算每颗卫星的位置。
这是通过伪距观测方程和卫星位置方程的迭代求解来实现的。
5.修改接收机位置:计算得到的卫星位置可能存在误差,可能会导致接收机位置的不准确。
因此,需要对接收机位置进行修改,以改进计算结果。
这可以通过比较计算得到的接收机位置与卫星位置的残差来实现。
6.伪距残差计算:将计算得到的接收机位置与卫星位置代入伪距观测方程,可以计算实际观测值与预测值之间的残差。
这些残差可以用来评估定位的准确性,并作为接下来计算的参考。
7.接收机和卫星钟差修正:除了时钟误差外,卫星和接收机的时钟还可能存在其他误差。
这些误差可以通过对伪距观测值进行修正来减小。
这可以通过比较计算得到的伪距和观测伪距的差异来实现。
8.运行迭代算法:使用以上步骤得到的结果,可以运行迭代算法来不断优化接收机的位置和钟差。
这些迭代算法通常采用最小二乘法来估计未知参数,并使残差最小化。
9.位置和时钟误差估计:在迭代算法收敛后,可以使用得到的结果来估计接收机的位置和时钟误差。
这可以通过计算接收机位置和钟差的标准差来实现。
10.定位结果验证:为了验证计算得到的接收机位置的准确性,可以与其他位置测量方法进行比较。
这可以包括使用差分GPS技术或进行实地测量。
11.结果输出:最后,将精密单点定位的计算结果输出到一个文件或者实时显示在GPS接收机的显示屏上。
精密单点定位技术的应用研究
摘要
精密单点定位技术是一种利用多普勒效应来定位和导航的技术。
它利用一种可靠的接收机,可以在远程接收GPS系统的信号并将其转换为实时位置,从而获得精确的定位和导航信息。
它可以提供更精确的定位和导航信息,为用户提供更精确的定位结果。
本文综述了现代精密单点定位技术在多个领域的应用,这些领域包括:海洋科学/防浪应用、林业应用、军事方面的应用、航空应用以及未来的应用等。
针对这些应用,进行了技术分析和技术发展预测。
本文结合实际情况,探讨了精密单点定位技术的发展趋势,以及如何发挥其在实际应用中的最大价值。
关键词:精密单点定位;多普勒效应;海洋科学;林业;航空
Research on the Application of Precision Single Point Positioning Technology
Abstract。
精密单点定位技术方法首先是全球定位系统(GPS)。
GPS是一种通过接收地球上多颗卫星发射的信号来计算接收器位置的定位技术。
GPS定位系统由一组发射星位于地球轨道上的人造卫星组成,这些卫星将信号发射到地球上的GPS接收器上。
接收器接收到多颗卫星发射的信号后,可以通过测量信号传播时间和卫星位置信息进行计算,从而确定接收器的位置坐标。
其次是惯性导航系统。
惯性导航系统是一种基于惯性测量单元(IMU)的定位技术。
IMU由加速度计和陀螺仪组成,用于测量运动物体的加速度和角速度。
通过对这些测量值进行积分,可以估计出物体的位置和姿态。
惯性导航系统具有高灵敏度、高精度和不受外部环境影响等优点,广泛应用于飞行器、导弹、船舶等领域。
另外一种常用的定位技术方法是激光测距。
激光测距技术利用激光束的传播时间和光速来计算测量目标和测量器之间的距离。
激光测距仪通过发射激光束,当激光束照射到目标上时,会发生反射并返回到测距仪上。
通过测量发射和返回的激光信号的传播时间,并结合光速,可以计算出目标与测距仪之间的距离。
此外,无线定位技术也是一种常用的精密单点定位技术。
无线定位技术利用无线信号的传播特性和接收器之间的信号强度来计算接收器的位置。
无线定位技术可以利用无线基站、Wi-Fi、蓝牙等无线设备发射的信号来进行定位。
通过对接收到的信号强度进行测量和分析,可以计算出接收器所在位置的坐标。
最后是视觉定位技术。
视觉定位技术是一种利用摄像机或摄像头拍摄目标图像,并通过图像处理和计算机视觉算法来提取特征信息,进而确定目标位置的方法。
视觉定位技术可以通过目标的特征提取和匹配,计算出目标在图像上的位置坐标。
视觉定位技术具有非接触式、实时性强、适用于各种环境等优点,并广泛应用于机器人导航、无人驾驶等领域。
总结而言,精密单点定位技术是通过对目标进行连续观测和测量,从而确定目标位置的技术方法。
GPS、惯性导航系统、激光测距、无线定位技术和视觉定位技术都是常用的精密单点定位技术方法,它们在不同的领域和应用中有着各自的优势和适用性。
精密单点定位(PPP)收敛速度的研究的开题报告一、研究背景:在航空、航天、导航等领域中,精密单点定位(PPP)技术已被广泛使用。
PPP技术是一种基于卫星导航系统(GNSS)的高精度定位方法,其定位精度可以达到数厘米级别。
但是,长时间收敛速度一直是制约PPP技术应用广泛的瓶颈之一。
虽然已有许多学者对PPP收敛速度进行了研究,但是仍然需要对PPP的收敛速度进行深入的研究,以改善PPP技术的性能和稳定性。
二、研究目的:本研究旨在研究精密单点定位技术的收敛速度,并提出相应的改进方法,以提高PPP技术的实用性和精度。
三、研究内容:1. PPP技术的原理和应用现状分析,包括PPP技术的基本概念、定位原理以及应用范围等。
2. PPP收敛速度的基本概念和计算方法研究,包括PPP信号接收时间、载波相位延迟等因素的影响,以及PPP定位参数的计算方法等方面的研究。
3. 在现有PPP技术的基础上,结合卫星导航系统几何学等相关知识,对PPP技术的收敛速度进行优化改进,提出相应的实用性解决方案。
4. 通过实验和仿真等方法,对改进方案进行验证和评估,并对PPP技术的应用前景进行探讨和展望。
四、研究意义:1. 对PPP技术的应用前景进行探讨和展望,有助于提高PPP技术的实用性和精度,增强其在各领域的应用。
2. 研究PPP技术的收敛速度,有助于解决PPP技术长时间收敛速度较慢的问题,提高PPP技术的稳定性和性能。
3. 通过本研究,可以对PPP技术的原理、应用和收敛速度等方面进行系统地研究和总结,为PPP技术的发展提供有力的支撑。
五、研究方法:1. 文献综述法:通过对PPP技术相关文献的收集和综述,确定PPP技术的原理、应用和收敛速度等方面的研究方向和方法。
2. 数学建模法:建立PPP技术的数学模型,分析PPP信号接收时间、载波相位延迟等因素的影响,探讨PPP定位参数的计算方法和收敛速度的优化改进方案。
3. 实验仿真法:通过实验和仿真等方法,验证改进方案的可行性和有效性,并对PPP技术的性能和稳定性进行评估。
精密单点定位ppp精密单点定位(precise point positioning ,缩写PPP,指的是利用全球若干地面跟踪站的GPS观测数据计算出的精密卫星轨道和卫星钟差对单台GPS接收机所采集的相位和伪距观测值进行定位解算。
在卫星导航应用之中,GPS作为定位的意义越来越重要,不论是军事上还是工程等方面上,导航定位的研究依然是一个不老的研究主题。
精密单点定位更是导航定位中的一个很值得研究的问题。
PPP根本上讲属于单点定位范畴,那么单点定位又是怎样进行测量定位的呢?单点定位是利用卫星星历和一台接收机确定待定点在地固坐标系中绝对位置的方法,其优点:一台接收机单独定位,观测组织和实施方便,数据处理简单;缺点:精度主要受系统性偏差(卫星轨道、卫星钟差、大气传播延迟等)的影响,定位精度低。
应用领域:低精度导航、资源普查、军事等。
对于单点定位的几何描述,三个站星距离,作三个球面三个球面两两相交于两点,如下图所示:站星距离的测定:保持GPS卫星钟同GPS接收机钟同步;GPS卫星和接收机同时产生相同的信号;采用相关技术获得信号传播时间;GPS卫星钟和GPS接收机钟难以保持严格同步,用相关技术获得的信号传播时间含有卫星钟和接收机钟同步误差的影响。
单点定位虽然是只需要一台接收机即可,但是单点定位的结果受卫星星历误差、卫星钟差以及卫星信号传播过程中的大气延迟误差的影响较为显著,故定位精度一般较差。
PPP针对单点定位中的影响,采用了精密星历和精密卫星钟差、高精度的载波相位观测值以及较严密的数学模型的技术,如用户利用单台GPS双频双码接收机的观测数据在数千万平方公里乃至全球范围内,点位平面位置精度可达1~3cm,咼程精度可达2~4cm,实时定位的精度可达分米级。
精密单点定位的数学模型,对于伪距:—(X -X)2 (y i -Y)2 (z -Z)2 -V ion -V trop c V t S -C V t R误差方程为:V i =Ti dX —m i dY—ndz+c V t S —c V t R+(P°)i — (V i。
简介精密单点定位--precise point positioning(PPP)所谓的精密单点定位指的是利用全球若干地面跟踪站的GPS 观测数据计算出的精密卫星轨道和卫星钟差, 对单台GPS 接收机所采集的相位和伪距观测值进行定位解算。
利用这种预报的GPS 卫星的精密星历或事后的精密星历作为已知坐标起算数据; 同时利用某种方式得到的精密卫星钟差来替代用户GPS 定位观测值方程中的卫星钟差参数; 用户利用单台GPS 双频双码接收机的观测数据在数千万平方公里乃至全球范围内的任意位置都可以2- 4dm级的精度, 进行实时动态定位或2- 4cm级的精度进行较快速的静态定位, 精密单点定位技术是实现全球精密实时动态定位与导航的关键技术,也是GPS 定位方面的前沿研究方向。
编辑本段精密单点定位基本原理GPS 精密单点定位一般采用单台双频GPS 接收机, 利用IGS 提供的精密星历和卫星钟差,基于载波相位观测值进行的高精度定位。
所解算出来的坐标和使用的IGS 精密星历的坐标框架即ITRF 框架系列一致, 而不是常用的WGS- 84 坐标系统下的坐标,因此IGS 精密星历与GPS 广播星历所对应的参考框架不同。
编辑本段密单点定位的主要误差及其改正模型在精密单点定位中, 影响其定位结果的主要的误差包括:与卫星有关的误差(卫星钟差、卫星轨道误差、相对论效应);与接收机和测站有关的误差(接收机钟差、接收机天线相位误差、地球潮汐、地球自转等);与信号传播有关的误差(对流层延迟误差、电离层延迟误差和多路径效应)。
由于精密单点定位没有使用双差分观测值, 所有很多的误差没有消除或削弱,所以必须组成各项误差估计方程来消除粗差。
有两种方法来解决:a.对于可以精确模型化的误差,采用模型改正。
b.对于不可以精确模型化的误差,加入参数估计或者使用组合观测值。
如双频观测值组合,消除电离层延迟;不同类型观测值的组合,不但消除电离层延迟,也消除了卫星钟差、接收机钟差;不同类型的单频观测值之间的线性组合消除了伪距测量的噪声,当然观测时间要足够的长,才能保证精度。
工程测量中的精密单点定位技术分析摘要:精密单点定位(PPP)是一种可以精确地测定观测点位置的定位方法,在工程测量方面应用比较广泛。
本文根据笔者多年工作实践,对控制测量工程中的精密单点定位技术的应用进行分析,供同行借鉴参考。
关键词:测量工程;精密单点;定位技术前言精密单点定位技术较于传统的定位技术灵活及精度高等特点,能够的有效解决首级控制网坐标问题。
其原理是应用IGS地面跟踪站的GNSS观测数据计算出卫星轨道和卫星钟差,在卫星定位测量中主要的误差在于轨道误差、卫星钟差和电离层延时,这些误差均可以精确的数学模型进行改正。
而IGS目前提供的卫星钟差精度已优于0.02 纳秒,卫星轨道精度可达2~3 cm,此精度的卫星钟差和轨道,可以保证精密单点定位解算获得厘米级精度。
一、精密单点定位技术数据的处理及精度的确定(1)外业观测采用单台GNSS双频接收机进行外业观测,选取控制网中一个点进行观测,最少观测一个时段,时段长度可选6~12h,也可与控制网中其它点一起进行同步观测。
(2)数据处理精密单点定位的数据处理主要有两种方式:一是单机版精密单点定位软件解算;二是网络在线提供PPP定位解算服务。
数据处理步骤一般有数据准备观测数据转为Rinex格式,下载精密星历和钟差文件;然后进行数据预处理,包括粗差剔除、周跳的探测及修复、相位平滑伪距、近似位置坐标计算、初始整周模糊度的确定等;并进行各项误差的改正,包括对流层、天线相位中心、相对论效应、固体潮等;观测模型、随机模型的建立,进行参数估计,选择IGS站点解算出观测点的坐标成果。
在对数据进行采集与处理时需要注意以下几个方面:①仪器选取及设置虽然很多学者专家已经对单频接收机用于精密单点定位测量的精度做了较高的评价,但是在工程运用上,存在着很多不稳定的因素,单频接收机数据解算的精度不是很可靠,一般选用双频且可靠性能比较高的接收机,在高度角、采样率等设置上要根据实际情况而定,一般采用的高度角为100,采样率为1~15s的设置,特别需要注意仪器天线高的设置。
什么是PPP(精密单点定位)?GPS从投入使用以来,其相对定位的定位方式发展得很快,从最先的码相对定位到现在的RTK,使GPS 的定位精度不断升高。
而绝对定位即单点定位发展得相对缓慢,传统的GPS 单点定位是利用测码伪距观测值以及由广播星历所提供的卫星轨道参数和卫星钟改正数进行的。
其优点是数据采集和数据处理较为方便、自由、简单, 用户在任一时刻只需用一台GPS 接收机就能获得WGS284 坐标系中的三维坐标。
但由于伪距观测值的精度一般为数分米至数米;用广播星历所求得的卫星位置的误差可达数米至数十米, 卫星钟改正数的误差为±20 ns 左右, 只能用于导航及资源调查、勘探等一些低精度的领域中。
随着我国海洋战略的实施,海洋科研、海洋开发、海洋工程等海上活动日益增加,对定位精度的要求也呈现出多样化,如精密的海洋划界、精密海洋工程测量等,要求能够达到十几或几十厘米的定位精度,而采用伪距差分定位只能提供米级的定位精度,如果使用RTK功能,作用距离又不能达到;对于这部分定位需求,现有的定位手段无法满足要求,需要寻求新的定位方式或技术。
精密单点定位(Precise Point Positioning, PPP)技术由美国喷气推进实验室( JPL ) 的Zumberge 于1997年提出。
20世纪90年代末,由于全球GPS跟踪站的数量急剧上升,全球GPS数据处理工作量不断增加,计算时间呈指数上升。
为了解决这个问题,作为国际GPS服务组( IGS)的一个数据分析中心, JPL提出了这一方法,用于非核心GPS站的数据处理。
该技术的思路非常简单,在GPS定位中,主要的误差来源于三类,即轨道误差、卫星钟差和电离层延时。
如果采用双频接收机,
可以利用LC相位组合,消除电离层延时的影响。
如果选择地心地固系表示卫星轨道,计算的参考框架同为地心地固系,可以消去观测方程中的地球自转参数。
于是,只要给定卫星的轨道和精密钟差,采用精密的观测模型,就能像伪距一样,单站计算出接收机的精确位置、钟差、模糊度以及对流层延时参数。
根据PPP技术的要求,定位中需要系统提供卫星的精密轨道和钟差。
目前,国际GPS服务组织( IGS)的几个数据分析中心具备这个能力提供卫星的精密轨道和钟差,但是,这些都是后处理结果。
根据IGS的产品报告, IGS提供的卫星轨道精度能够达到2~3cm,卫星钟差的精度优于0. 02ns,这种精度的卫星钟差和轨道,能够满足任何精度的定位要求。
近10年,由于IGS的努力, GPS卫星预报轨道的精度已经达到十几厘米,预报轨道的时间也由24h预报缩短到3h预报,卫星轨道的精度已经能够满足一般定位的要求。
由于IGS现在不能提供实时和外推的精密卫星钟差,制约了实时PPP技术的应用;精密的卫星钟差仍然是PPP技术实时应用瓶颈,目前IGS只有后处理卫星钟差, JPL和GFZ已经有能力提供快速卫星钟差。
实时PPP网络介绍---StarFire
StarFire 是一个全球GPS差分网络,能为世界上任何位置的用户提供可靠的,史无前例的分米级定位精度。
由于广域差分GPS修正系统通过Inmarsat地球同步通信卫星作为通信链路,所以用户不用搭建本地参考站或数据后处理,就可获得很高的精度。
此外,由于采
用覆盖全球的地球同步卫星作为差分通信链路,则可以在地球表面从北纬75°到南纬75°都可获得相同的精度。
StarFire系统由GPS卫星星座,L波段通信卫星,和一个分布在世界各地的参考站网络组成,并由该系统提供实时的高精度定位信息。
为提供这一独特定位服务,StarFire搭建了一个全球双频参考站网络,这些参考站不断地接收来自GPS卫星信号。
参考站接收的信号被传
送到分别位于California,Torrance和位于Illinois,Moline的网络处
理中心,并在这两处生成差分改正信息。
上述两处网络处理中心的差分信息,通过独立的通信链路,被传送到卫星上行链路站。
这些站分别位于加拿大的Laurentides,英格兰的Goonhilly和新西兰的Aucklang。
在这些卫信上行链路站,修正信号被上传给地球同步通信卫星。
实时PPP工作流程
StarFire TM系统之所以方便地实现高精度定位,关键在于GPS 修正源。
GPS卫星在两个L波段上传输导航数据。
各个参考站都装有测量级的双频接收机。
这些参考站的接收机解码GPS信号并将高质量的双频伪距和载波相位测量数据,连同所有GPS卫星都广播的数据信息,发送回网络处理中心。
在网络处理中心,利用NavCom的专有差分处理技术,生成实时GPS卫星星座的精密轨道信息和星种改正数据。
该专有广域DGPS算法,优化了双频系统。
在双频系统中,参考站接收机和用户接收机都能使用双频电离层测量数据。
正因为在参考站和用户端都使用双频接收机,连同先进的数据处理算法,才使系统实现高精度成为可能。
计算出改正数据只是第一步。
而后需要将网络处理中心的差分改正数据传送致陆地地球站(LES),以便在那里将数据上传给L波段通信卫星。
上行站装配有NavCom的调制设备,该调制设备作为卫星发射器的接口,将改正数据流上传给通信卫星,并由通信卫星广播给覆盖地区。
每个L波段卫星覆盖地球面积,都超过三分之一。
用户的C-Nav精确GPS接收机,事实上有两个接收机,一个GPS接收机和一个L波段通信接收机,两接收机都是由NavCom为该系统设计的。
系统中,GPS接收机跟踪所有的在视卫星,并计算伪距测量数据。
与此同时,L波段接收机接收由L波段通信卫信播发的改正信息。
将改正信息应用于GPS测量数据,就生成了精确的定位测量。