二次函数中的三角形面积 ppt课件
- 格式:ppt
- 大小:794.00 KB
- 文档页数:15
二次函数中三角形面积问题【典型例题】:如图,二次函数y=-x²+2x+3与y轴,x轴交于点A ,B,点C是直线AB上方抛物线上的一个动点(不与点A ,B重合),求△ABC面积的最大值.【方法一】竖割法:过点C作CD⊥x轴,垂足为D,交AB于点E,S△ABC=S△ACE +S△BCE =1/2CE·(xc--xA)+1/2CE·(xB-xC)=1/2OB·CE解:令x=0, y=3 点C的坐标为(0,3);令y=0, 则-x²+2x+3=0 ,解得:x1=-1 x2=3 点B的坐标为(3,0),设AB所在直线的解析式为y=kx+b.求出直线AB所在直线的解析式为y=-x+3.设点E的坐标为(m,-m+3) ,则点C的坐标为(m, -m2+2m+3)CE=y C-y E= -m2+2m+3-(-m+3)= -m2+3mS△ABC=S△ACE +S△BCE =1/2CE·(xc--xA)+1/2CE·(xB-xC)=1/2OB·CE=1/2×3( -m2+3m)=--3m2/2+9m/2S△ABC最大值=4ac-b2/4a=27/8【方法二】割补法:连接OC,S△ABC=S△OAC +S△OBC-S△OAB解:S△ABC=S△OAC+S△OBC-S△OAB=1/2×OA·X C+1/2×OB·Y C-1/2×OA×OB=1/2×3×m+1/2×3×(-m2+2m+3)-1/2×3×3=-3m2/2+9m/2S△ABC最大值=4ac-b2/4a=27/8【方法三】平移法:平移直线AB,当直线AB与抛物线只有一个交点时,此时三角形ABC的面积最大。
解:设和y=-x+3平行的动直线的解析式为y=-x+b,用y=-x+b和y=-x²+2x+3联立方程组得:-x+b=-x²+2x+3,整理得:x²-3x+b-3=0当Δ=0时,b=21/4,此时的点C的坐标为(3/2,9/2)。
二次函数中不规则图形的面积
直接求解
1、如图,已知抛物线的顶点为M(2,-4),且过点A(-1,5),连结AM交x轴于点B.
(1)求这条抛物线的解析株式;
(2)求点B的坐标;
(3)设点P(x,y)是抛物线在x轴下方、顶点M左方一段上的动点,连结PO,以P为顶点、PQ为腰的等腰三角形的另一顶点Q在x轴上,过Q作x轴的垂线交直线AM于点R,连结PR.设三角形PQR的面积为s.求s与x之间的函数解析株式;
(4)在上述动点p(x,y)中,是否存在使S△POR=2的点?若存在,求点P 的坐标;若不存在,说明理由.
割补法
方法:如图,过ΔABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫ΔABC的“水平宽”(a),中间的这条直线在ΔABC 内部线段的长度叫ΔABC的“铅垂高(h)”,我们可得
1ah,即三角形面积等于水出一种计算三角形面积的新方法:SΔABC=
2
平宽与铅垂高乘积的一半.
1.已知:如图,二次函数y=a2x+bx+c的图象与x轴交于A,B两点,其中点A的坐标(-1,0),点C的坐标为(0,5),且抛物线经过(1,8),M为它的顶点
(1)求抛物线的解析式;
(2)求ΔMCB的面积
2、已知二次函数y=a2x+bx+c与X轴交于A(-1,0),B(3,0)两点,与y 轴交于点C(0,-3),顶点为P.
(1)求抛物线对应的函数解析式.
(2)在抛物线上(除点c外),是否存在点N,使得S NAB∆=S ABC∆若存在,请写出点N的坐标;若不存在,请说明理由。
补充:周长问题。
二次函数之“铅垂法”求三角形面积求三角形面积往往用公式12S a h∆=或1sin2S ab C∆=进行计算。
在二次函数里,有时用公式求三角形面积有一定的难度,我们不妨考虑用“铅垂法”来解决。
图1 图2作法:1、作铅直线PM交线段AB于点M;2、分别过A、B两点作PM的垂线段。
计算:如图1:S△PAB= S△PMA+S△PMB=12×PM×h2+12×PM×h1=12×PM×(h2+h1);①如图2:S△PAB= S△PMA﹣S△PMB=12×PM×h2-12×PM×h1=12×PM×(h2-h1)。
②理解:我们把公式中的PM称为三角形的“铅直高度”,把(h2+h1)或(h2-h1)称为三角形的“水平宽度”,则三角形的面积等于“铅直高度”与“水平宽度”积的一半。
特别地,在二次函数中,三角形的“铅直高度”就是动点P和铅直线PM与线段AB交点M的纵坐标之差(y P -y M),“水平宽度”就是两定点A与B的横坐标之差(x B-x A),即S△=12×(y P-y M)×(x B-x A)。
我们把这种求三角形面积的方法叫做“铅垂法”。
运用:例:如图,直线l:y=−x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2−2ax+a+4(a<0)经过点B。
(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M 的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值及此时动点M的坐标。
解答:(1)y=-x 2+2x+3;(2)过点M 作MC ⊥x 轴交直线AB 于点C 。
设M (t ,-t 2+2t+3),则C (t ,-t+3)。
∵A (3,0),B (0,3)∴S=12×〖(-t2+2t+3)-(-t+3)〗×(3-0)化简整理得:23327()224S t =--+。