第二章 时频分析与连续小波变换
- 格式:ppt
- 大小:1.33 MB
- 文档页数:137
2.2 连续小波变换的概念与性质2.2. l 连续小波变换的概念将任意)(2R L 空间中的函数)(t f 在小波基下进行展开,称这种展开为函数)(t f 的连续小波变换(CWT ),其表达式为 ()⎰⎪⎭⎫⎝⎛-==-R 2/1,d )()(),(,t a t t f a t t f a WT a f τψψττ (2.9)由CWT 定义可知,小波变换与傅里叶变换的相同之处:(1) 一种积分变换。
(2) 称()τ,a WT f 为小波变换系数。
小波变换与傅里叶变换的不同之处:(1) 小波基具有尺度和平移两个参数。
(2) 函数在小波基下展开,意味着将一个时间函数投影到二维的时间—尺度相平面上。
由于小波基本身所具有的特点,将函数投影到小波变换域后,有利于提取函数的某些本质特征。
从时频分析角度来看,小波变换具有如下特点:若令tj a e t g t a t a ωττψτψ)()(,21-==⎪⎭⎫ ⎝⎛--则CWT 可视作STFT 。
CWT :任意函数在某一尺度a 、平移点τ上的小波变换系数,实质上表征的是在τ位置处,时间段t a ∆上包含在中心频率为a0ω、带宽为aω∆频窗内的频率分量大小。
随着尺度a 的变化,对应窗口中心频率a0ω、窗口宽度aω∆也发生变化(根据式(2.6),(2.7))。
STFT :窗口固定不变(即不随ω的变化而变化)。
二者不同之处:CWT 是一种变分辨率的时频联合分析方法。
低频(大尺度),对应大时窗;高频(小尺度),对应小时窗。
举例说明。
信号)207(5.1)165(5.1)10002sin()5002sin()(-+-+⨯+⨯=t t t t t f δδππ,在不同时窗下的STFT 和CWT 的展开系数图,如图2.1所示。
与傅里叶基不同,尺度和位移均连续变化的连续小波基函数形成了一组非正交的过度完全基。
这意味着其任意函数的小波展开系数之间有一个相关关系。
若用),;,(ττψ''a a K 描述两个基函数)(,t a τψ和)(,t a τψ''的相关度的大小,则dt t t C a a K a Ra )()(),;,(,,1ττψψψψττ''-⎰⋅='' (2.11)ψK 表征了连续尺度、时移半平面),(τa (由于0>a 所以称半平面)的两个不同点之间的CWT 系数的相关关系,也称它为再生核或重建核(再生和重建的含义是指由尺度—平移相平面上的已知点,根据再生核公式可再生和重构出某一点),其结构取决于小波选取。
MATLAB中的时频分析方法与小波变换引言时频分析是一种将信号在时间和频率域上进行联合分析的方法。
在很多实际应用中,信号的频谱随时间的变化是非常重要的信息。
为了从信号中获得这种信息,人们已经开发了许多时频分析方法。
在MATLAB中,有许多工具和函数可以用于实现时频分析,其中小波变换是最常用和有效的方法之一。
本文将介绍MATLAB 中的时频分析方法和小波变换的原理以及如何在MATLAB中实现时频分析。
一、时频分析的概述时频分析是一种联合分析信号在时间和频率域上的方法。
传统的傅里叶变换只能提供信号的频谱信息,不能提供信号的时间信息。
而时频分析方法可以通过将信号分解为一系列窄带频率分量,在时间和频率上进行联合分析,从而获得信号的时频信息。
时频分析主要用途包括:信号处理、通信系统、音乐分析和地震学等领域。
在信号处理领域中,时频分析可以用来分析非平稳信号,在图像处理领域中,可以用于提取图像的纹理特征。
在音频处理领域中,时频分析可以用来分析不同乐器的音色特征。
在地震学领域中,时频分析可以用来分析地震信号的频谱和震级。
二、时频分析的方法时频分析方法有很多种。
常用的时频分析方法包括:短时傅里叶变换(STFT)、维纳-辛钦(Wigner-Ville)分布、光谱平均、希尔伯特-黄变换(HHT)等。
这些方法在不同的应用场景中有不同的适用性和性能。
在MATLAB中,有许多工具和函数可以用于实现时频分析。
其中,smallft函数可以用于计算信号的短时傅里叶变换。
spectrogram函数可以用于计算信号的谱图。
wvd函数可以用于计算信号的维纳-辛钦分布。
这些函数都可以通过设置一些参数来调整分析的精度和效果。
三、小波变换的原理小波变换是一种将信号分解为一系列小波基函数的方法。
小波基函数是带有局部特征的小波函数,通常在时域上具有紧凑支持和带通特性。
小波变换可以将信号分解为不同频率、不同时间的小波系数,从而实现时频分析。
小波变换具有许多优点,例如可以提供更好的时频局部化能力、提取信号中的瞬态特征和边缘信息等。
小波变换的数学基础及原理解析小波变换是一种信号分析方法,可以将信号分解成不同频率的小波成分,从而揭示信号的局部特征。
它在信号处理、图像处理、数据压缩等领域有着广泛的应用。
本文将从数学基础和原理解析两个方面来介绍小波变换。
一、数学基础小波变换的数学基础主要包括信号的时频分析和小波函数的定义。
在时频分析中,我们希望能够同时观察到信号的时域特征和频域特征。
然而,传统的傅里叶变换只能提供信号的频域信息,无法提供时域信息。
小波变换通过引入尺度参数,可以在时频域上同时进行分析。
小波函数是小波变换的基础,它是一种特殊的函数形式。
与傅里叶变换中的正弦函数和余弦函数不同,小波函数具有局部化的特点,即在时域上具有有限长度。
这种局部化的特性使得小波函数能够更好地描述信号的局部特征。
二、原理解析小波变换的原理可以通过连续小波变换和离散小波变换来解析。
连续小波变换是将信号与小波函数进行内积运算,得到信号在不同尺度和位置上的小波系数。
离散小波变换是连续小波变换的离散形式,通过对信号进行采样和离散化,得到离散的小波系数。
在连续小波变换中,小波函数是一个连续的函数,可以用于对连续信号的分析。
而在离散小波变换中,小波函数是一个离散的序列,可以用于对离散信号的分析。
离散小波变换通过多级滤波和下采样的方式来实现信号的分解和重构。
小波变换的核心思想是多尺度分析,即对信号进行多次分解,每次分解都将信号分解成低频部分和高频部分。
低频部分包含信号的整体特征,高频部分包含信号的细节特征。
通过不断分解和重构,可以得到信号在不同尺度上的小波系数,从而揭示信号的局部特征。
小波变换还具有一些重要的性质,如平移不变性、尺度不变性和能量守恒性。
平移不变性表示信号的平移对小波系数没有影响;尺度不变性表示信号的尺度变化对小波系数的影响是可逆的;能量守恒性表示信号的能量在小波分解和重构过程中是守恒的。
三、应用领域小波变换在信号处理、图像处理、数据压缩等领域有着广泛的应用。
小波变换与时频分析的关系与比较时频分析是一种常用的信号处理方法,用于研究信号在时间和频率上的特性变化。
而小波变换则是一种数学工具,可以将信号分解成不同尺度的成分,从而更好地理解信号的局部特性。
本文将探讨小波变换与时频分析之间的关系与比较。
一、小波变换的基本原理小波变换是一种基于多尺度分析的信号处理方法。
它采用一组称为小波基函数的函数族,通过与信号进行内积运算,将信号分解成不同频率和时间尺度的成分。
小波基函数具有局部性和可调节性的特点,可以更好地适应信号的局部特性。
二、时频分析的基本原理时频分析是一种通过研究信号在时间和频率上的特性变化,来揭示信号的时域和频域特性的方法。
时频分析方法有很多种,常见的有短时傅里叶变换(STFT)、Wigner-Ville分布(WVD)和Cohen类分布等。
这些方法都是通过对信号进行时域和频域的联合分析,来得到信号的时频特性。
三、小波变换与时频分析的关系小波变换与时频分析都是用来研究信号的时域和频域特性的方法,它们之间存在一定的关系。
小波变换可以看作是时频分析的一种特殊形式,它通过将信号分解成不同尺度的成分,实现了对信号的时频分析。
而时频分析方法则是通过对信号在时间和频率上的特性变化进行联合分析,来得到信号的时频特性。
可以说,小波变换是一种更加灵活和可调节的时频分析方法。
四、小波变换与时频分析的比较虽然小波变换和时频分析都可以用来研究信号的时频特性,但它们在某些方面有所不同。
1. 分辨率:小波变换具有可调节的分辨率,可以根据需要选择不同的小波基函数,从而实现对信号的局部特性进行更精细的分析。
而时频分析方法的分辨率通常是固定的,无法根据需要进行调节。
2. 窗宽效应:时频分析方法通常采用窗函数来实现对信号的局部分析,但窗函数的选择会引入窗宽效应,导致时频分辨率的折衷。
而小波变换通过选择不同尺度的小波基函数,可以避免窗宽效应的问题。
3. 计算复杂度:小波变换的计算复杂度较高,特别是在高分辨率时频分析中,计算量更大。
小波变换在信号处理中的时频分析方法随着现代科技的不断发展,信号处理成为了一门重要的学科。
信号处理的目标是从原始信号中提取有用的信息。
而信号的时频分析是信号处理中的一个重要分支,它可以帮助我们更好地理解信号的特性和变化规律。
在时频分析中,小波变换是一种常用的方法,它能够同时提供信号的时域和频域信息,为信号处理提供了一种有效的工具。
小波变换是一种基于小波函数的变换方法,它将信号分解成不同尺度和频率的成分。
与傅里叶变换相比,小波变换具有更好的时频局部化特性,能够更准确地描述信号的瞬时特性。
在信号处理中,我们常常遇到一些非平稳信号,即信号的频率和振幅随时间变化。
而小波变换能够很好地处理这种非平稳信号,提供更准确的时频信息。
小波变换的基本原理是将信号与一组小波基函数进行卷积运算。
小波基函数是一组具有不同尺度和频率的波形,它们可以用来描述信号的不同特性。
通过与信号进行卷积运算,我们可以得到信号在不同尺度和频率下的分量。
而小波变换的逆变换则是将这些分量进行线性组合,得到原始信号的近似重构。
在实际应用中,小波变换有多种变体,如离散小波变换(DWT)和连续小波变换(CWT)。
离散小波变换是一种离散的变换方法,它将信号分解成不同尺度的近似系数和细节系数。
近似系数描述信号的低频成分,细节系数描述信号的高频成分。
而连续小波变换则是一种连续的变换方法,它将信号分解成不同尺度和频率的小波系数。
通过对这些系数进行分析,我们可以得到信号的时频信息。
小波变换在信号处理中有广泛的应用。
其中一个重要的应用领域是信号压缩。
由于小波变换具有较好的时频局部化特性,它能够更有效地压缩信号。
在信号压缩中,我们可以通过保留较大的小波系数,去除较小的小波系数,来实现信号的压缩。
这种方法可以在保持较高信号质量的同时,减少信号的存储空间和传输带宽。
另一个重要的应用领域是信号分析和特征提取。
通过对信号的小波变换,我们可以得到信号的时频谱图,从而更好地理解信号的频率和振幅变化。
第二章连续小波变换13小波母函数(及小波函数)特点:,0)(∫∞∞−=dt t ψ语言描述为:(1)小波具有“小”,具有时、频域紧支集,包络衰减快;(2)小波具有“波动性”,正负交替,与水平轴上下围成的面积相等,直流分量为零;(3)小波具有带通滤波器特性,ψ(t )可理解为一个带通滤波器的冲激响应。
(小波的Fourier 变换是带通),0)0(ˆ=ψ示。
图2-3ω∆2ω∆2/ω∆ωt 0ω02ω2/0ω)(ˆωψa )(ˆωψa )(ˆωψa19母小波可以是实函数,也可以是复函数。
•具有带通特性,即在频域,围绕着中心频率是有限支撑的也将反映在窗口中心频率处的局部性质,从而实现所期望的频率定位功能。
)(ˆ,ωψb a )(ˆ,ωψb aMorlet小波ψ (t ) = e− t 2 / 2 iω0teˆ (ω ) = 2π e− (ω −ω0 ) ψ2/2(a)小波母函数;(b)Fourier变换Morlet小波不存在尺度函数; 快速衰减但非紧支撑. Morlet小波是Gabor 小波的特例。
g (t ) =(σ π )211/ 4e−t2 2σ 2σ = 1,η = 5Gabor 小波 Morlet小波21ψ ( t ) = g ( t ) eiηtMorlet小波morl(x) = exp(-x^2/2) * cos(5x) No Orthogonal, No Biorthogonal,No Compact Support Effective support=[-4 4], SymmetryM orlet W avelet 1 0.8 12 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 2 -0.8 -1 -5 0 -5 6 10 14 FFT of M orlet W avelet84-4-3-2-1012345-4-3-2-1012345Morlet小波是一种复数小波,时频均具有很好的局部性。
小波变换基本方法小波变换是一种时频分析方法,它将信号分解为不同频率的组成部分。
它有很多基本方法,以下是其中几种常用的方法。
1.离散小波变换(DWT):离散小波变换是小波变换最常用的方法之一、它将信号分解为不同的频带。
首先,信号经过低通滤波器和高通滤波器,并下采样。
然后,重复这个过程,直到得到所需的频带数。
这样就得到了信号在不同频带上的分解系数。
这种方法的好处是可以高效地处理长时间序列信号。
2.连续小波变换(CWT):连续小波变换是在时间和尺度两个域上进行分析的方法。
它使用小波函数和尺度来描述信号的局部变化。
CWT得到的结果是连续的,可以提供非常详细的时频信息。
然而,CWT的计算复杂度较高,不适用于处理长时间序列信号。
3.基于小波包的变换:小波包变换是一种对信号进行更细粒度分解的方法。
它通过在每个频带上进行进一步的分解,得到更详细的时频信息。
小波包变换比DWT提供更多的频带选择,因此可以更准确地描述信号的时频特征。
4.奇异谱分析(SSA):奇异谱分析是一种基于小波变换的信号分析方法,它主要用于非平稳信号的时频分析。
它通过将信号分解成一组奇异函数,然后通过对奇异函数进行小波变换得到奇异谱。
奇异谱可以用于描述信号在频域上的变化。
5.小波包压缩:小波包压缩是一种利用小波变换进行信号压缩的方法。
它通过选择一个适当的小波基函数和分解层次来减少信号的冗余信息。
小波包压缩可以用于信号压缩、特征提取和数据降维等应用。
以上是小波变换的几种基本方法,每种方法都有其适用的领域和特点。
在实际应用中,可以根据需求选择合适的方法来进行信号分析和处理。
连续小波时频分析实验-、实验目的通过实验理解小波时频关系,认识小波时频分析的特点,掌握小波时频分析matlab 实现,为小波分析应用打下基础。
二、连续小波变换原理()()R L t f 2∈∀,()t f 的连续小波变换(有时也称为积分小波变换)定义为:()()0,,2/1≠⎪⎭⎫⎝⎛-=⎰∞∞--a dt a b t t f ab a WT f ψ (1) 或用内积形式:()ba f fb a WT ,,,ψ= (2)式中()⎪⎭⎫ ⎝⎛-=-a b t at b a ψψ2/1,。
要使逆变换存在,()t ψ要满足允许性条件:()∞<=⎰∞∞-ωωωψψd C 2ˆ (3)式中()ωψˆ是()t ψ的傅里叶变换。
这时,逆变换为()()()2,1,ada dbb a WT t C t f f b a ⎰⎰∞∞-∞∞--=ψψ(4)ψC 这个常数限制了能作为“基小波(或母小波)”的属于()R L 2的函数ψ的类,尤其是若还要求ψ是一个窗函数,那么ψ还必须属于()R L 1,即()∞<⎰∞∞-dt t ψ故()ωψˆ是R 中的一个连续函数。
由式(3)可得ψˆ在原点必定为零,即()()00ˆ==⎰∞∞-dt t ψψ(5)从式(5)可以发现小波函数必然具有振荡性。
三、连续小波时频图绘制(一)连续小波时频图绘制需要用到的小波工具箱中的三个函数 COEFS = cwt(S,SCALES,'wname')说明:该函数能实现连续小波变换,其中S 为输入信号,SCALES 为尺度,wname 为小波名称。
FREQ = centfrq('wname')说明:该函数能求出以wname 命名的母小波的中心频率。
F = scal2frq(A,'wname',DELTA) 说明:该函数能将尺度转换为实际频率,其中A 为尺度,wname 为小波名称,DELTA 为采样周期。