第二章 时频分析与连续小波变换
- 格式:ppt
- 大小:1.33 MB
- 文档页数:137
2.2 连续小波变换的概念与性质2.2. l 连续小波变换的概念将任意)(2R L 空间中的函数)(t f 在小波基下进行展开,称这种展开为函数)(t f 的连续小波变换(CWT ),其表达式为 ()⎰⎪⎭⎫⎝⎛-==-R 2/1,d )()(),(,t a t t f a t t f a WT a f τψψττ (2.9)由CWT 定义可知,小波变换与傅里叶变换的相同之处:(1) 一种积分变换。
(2) 称()τ,a WT f 为小波变换系数。
小波变换与傅里叶变换的不同之处:(1) 小波基具有尺度和平移两个参数。
(2) 函数在小波基下展开,意味着将一个时间函数投影到二维的时间—尺度相平面上。
由于小波基本身所具有的特点,将函数投影到小波变换域后,有利于提取函数的某些本质特征。
从时频分析角度来看,小波变换具有如下特点:若令tj a e t g t a t a ωττψτψ)()(,21-==⎪⎭⎫ ⎝⎛--则CWT 可视作STFT 。
CWT :任意函数在某一尺度a 、平移点τ上的小波变换系数,实质上表征的是在τ位置处,时间段t a ∆上包含在中心频率为a0ω、带宽为aω∆频窗内的频率分量大小。
随着尺度a 的变化,对应窗口中心频率a0ω、窗口宽度aω∆也发生变化(根据式(2.6),(2.7))。
STFT :窗口固定不变(即不随ω的变化而变化)。
二者不同之处:CWT 是一种变分辨率的时频联合分析方法。
低频(大尺度),对应大时窗;高频(小尺度),对应小时窗。
举例说明。
信号)207(5.1)165(5.1)10002sin()5002sin()(-+-+⨯+⨯=t t t t t f δδππ,在不同时窗下的STFT 和CWT 的展开系数图,如图2.1所示。
与傅里叶基不同,尺度和位移均连续变化的连续小波基函数形成了一组非正交的过度完全基。
这意味着其任意函数的小波展开系数之间有一个相关关系。
若用),;,(ττψ''a a K 描述两个基函数)(,t a τψ和)(,t a τψ''的相关度的大小,则dt t t C a a K a Ra )()(),;,(,,1ττψψψψττ''-⎰⋅='' (2.11)ψK 表征了连续尺度、时移半平面),(τa (由于0>a 所以称半平面)的两个不同点之间的CWT 系数的相关关系,也称它为再生核或重建核(再生和重建的含义是指由尺度—平移相平面上的已知点,根据再生核公式可再生和重构出某一点),其结构取决于小波选取。
MATLAB中的时频分析方法与小波变换引言时频分析是一种将信号在时间和频率域上进行联合分析的方法。
在很多实际应用中,信号的频谱随时间的变化是非常重要的信息。
为了从信号中获得这种信息,人们已经开发了许多时频分析方法。
在MATLAB中,有许多工具和函数可以用于实现时频分析,其中小波变换是最常用和有效的方法之一。
本文将介绍MATLAB 中的时频分析方法和小波变换的原理以及如何在MATLAB中实现时频分析。
一、时频分析的概述时频分析是一种联合分析信号在时间和频率域上的方法。
传统的傅里叶变换只能提供信号的频谱信息,不能提供信号的时间信息。
而时频分析方法可以通过将信号分解为一系列窄带频率分量,在时间和频率上进行联合分析,从而获得信号的时频信息。
时频分析主要用途包括:信号处理、通信系统、音乐分析和地震学等领域。
在信号处理领域中,时频分析可以用来分析非平稳信号,在图像处理领域中,可以用于提取图像的纹理特征。
在音频处理领域中,时频分析可以用来分析不同乐器的音色特征。
在地震学领域中,时频分析可以用来分析地震信号的频谱和震级。
二、时频分析的方法时频分析方法有很多种。
常用的时频分析方法包括:短时傅里叶变换(STFT)、维纳-辛钦(Wigner-Ville)分布、光谱平均、希尔伯特-黄变换(HHT)等。
这些方法在不同的应用场景中有不同的适用性和性能。
在MATLAB中,有许多工具和函数可以用于实现时频分析。
其中,smallft函数可以用于计算信号的短时傅里叶变换。
spectrogram函数可以用于计算信号的谱图。
wvd函数可以用于计算信号的维纳-辛钦分布。
这些函数都可以通过设置一些参数来调整分析的精度和效果。
三、小波变换的原理小波变换是一种将信号分解为一系列小波基函数的方法。
小波基函数是带有局部特征的小波函数,通常在时域上具有紧凑支持和带通特性。
小波变换可以将信号分解为不同频率、不同时间的小波系数,从而实现时频分析。
小波变换具有许多优点,例如可以提供更好的时频局部化能力、提取信号中的瞬态特征和边缘信息等。
小波变换的数学基础及原理解析小波变换是一种信号分析方法,可以将信号分解成不同频率的小波成分,从而揭示信号的局部特征。
它在信号处理、图像处理、数据压缩等领域有着广泛的应用。
本文将从数学基础和原理解析两个方面来介绍小波变换。
一、数学基础小波变换的数学基础主要包括信号的时频分析和小波函数的定义。
在时频分析中,我们希望能够同时观察到信号的时域特征和频域特征。
然而,传统的傅里叶变换只能提供信号的频域信息,无法提供时域信息。
小波变换通过引入尺度参数,可以在时频域上同时进行分析。
小波函数是小波变换的基础,它是一种特殊的函数形式。
与傅里叶变换中的正弦函数和余弦函数不同,小波函数具有局部化的特点,即在时域上具有有限长度。
这种局部化的特性使得小波函数能够更好地描述信号的局部特征。
二、原理解析小波变换的原理可以通过连续小波变换和离散小波变换来解析。
连续小波变换是将信号与小波函数进行内积运算,得到信号在不同尺度和位置上的小波系数。
离散小波变换是连续小波变换的离散形式,通过对信号进行采样和离散化,得到离散的小波系数。
在连续小波变换中,小波函数是一个连续的函数,可以用于对连续信号的分析。
而在离散小波变换中,小波函数是一个离散的序列,可以用于对离散信号的分析。
离散小波变换通过多级滤波和下采样的方式来实现信号的分解和重构。
小波变换的核心思想是多尺度分析,即对信号进行多次分解,每次分解都将信号分解成低频部分和高频部分。
低频部分包含信号的整体特征,高频部分包含信号的细节特征。
通过不断分解和重构,可以得到信号在不同尺度上的小波系数,从而揭示信号的局部特征。
小波变换还具有一些重要的性质,如平移不变性、尺度不变性和能量守恒性。
平移不变性表示信号的平移对小波系数没有影响;尺度不变性表示信号的尺度变化对小波系数的影响是可逆的;能量守恒性表示信号的能量在小波分解和重构过程中是守恒的。
三、应用领域小波变换在信号处理、图像处理、数据压缩等领域有着广泛的应用。
小波变换与时频分析的关系与比较时频分析是一种常用的信号处理方法,用于研究信号在时间和频率上的特性变化。
而小波变换则是一种数学工具,可以将信号分解成不同尺度的成分,从而更好地理解信号的局部特性。
本文将探讨小波变换与时频分析之间的关系与比较。
一、小波变换的基本原理小波变换是一种基于多尺度分析的信号处理方法。
它采用一组称为小波基函数的函数族,通过与信号进行内积运算,将信号分解成不同频率和时间尺度的成分。
小波基函数具有局部性和可调节性的特点,可以更好地适应信号的局部特性。
二、时频分析的基本原理时频分析是一种通过研究信号在时间和频率上的特性变化,来揭示信号的时域和频域特性的方法。
时频分析方法有很多种,常见的有短时傅里叶变换(STFT)、Wigner-Ville分布(WVD)和Cohen类分布等。
这些方法都是通过对信号进行时域和频域的联合分析,来得到信号的时频特性。
三、小波变换与时频分析的关系小波变换与时频分析都是用来研究信号的时域和频域特性的方法,它们之间存在一定的关系。
小波变换可以看作是时频分析的一种特殊形式,它通过将信号分解成不同尺度的成分,实现了对信号的时频分析。
而时频分析方法则是通过对信号在时间和频率上的特性变化进行联合分析,来得到信号的时频特性。
可以说,小波变换是一种更加灵活和可调节的时频分析方法。
四、小波变换与时频分析的比较虽然小波变换和时频分析都可以用来研究信号的时频特性,但它们在某些方面有所不同。
1. 分辨率:小波变换具有可调节的分辨率,可以根据需要选择不同的小波基函数,从而实现对信号的局部特性进行更精细的分析。
而时频分析方法的分辨率通常是固定的,无法根据需要进行调节。
2. 窗宽效应:时频分析方法通常采用窗函数来实现对信号的局部分析,但窗函数的选择会引入窗宽效应,导致时频分辨率的折衷。
而小波变换通过选择不同尺度的小波基函数,可以避免窗宽效应的问题。
3. 计算复杂度:小波变换的计算复杂度较高,特别是在高分辨率时频分析中,计算量更大。