天然气计量技术—气体超声波流量计
- 格式:ppt
- 大小:3.06 MB
- 文档页数:43
天然气超声波流量计的工作原理
天然气超声波流量计通过发送和接收超声波信号来测量天然气的流量。
其工作原理如下:
1. 发送超声波信号:流量计中的传感器发出超声波信号(通常是由压电晶体产生的声波),通常有两个传感器,一个充当发送器,另一个充当接收器。
2. 超声波通过天然气:发送的超声波信号穿过天然气管道,传输到另一个传感器接收器。
3. 检测接收的超声波:接收器接收到传输过来的超声波信号,并记录传输过程中的时间差和信号强度。
4. 测量流速:根据超声波在天然气中的传播速度以及时间差,计算出天然气的流速。
5. 计算流量:将测得的流速与流量计的截面积进行计算,得到天然气的流量。
需要注意的是,超声波在物质介质中的传播速度受到多种因素的影响,包括介质的密度、温度、湿度、气体成分等。
因此,在实际应用中,需要对这些因素进行校正,以保证测量结果的准确性。
天然气超声波流量计检定规程
近10年我国天然气工业得到飞速发展,建成天然气长输管道总里程近10×104 km,初步形成“横跨东西、纵贯南北、联通境外”贯穿全国主要地区与城市的输送管网。
伴随着天然气的发展,天然气计量技术也有了突破性进展,超声波流量计以其高精度、大量程、低压损等优势,逐步替代了传统孔板流量计成为大宗天然气计量的主要用表。
按照GB/T 18603—2014《天然气计量系统技术要求》,用于A级交接站点的超声波流量计须进行实流检定,要拆卸后送国家石油天然气大流量计量站,用天然气作为介质检定。
目前,国内建设或正在建设的有9座检定站,分布在成都、南京、武汉、广州、乌鲁木齐、北京、榆林、塔里木。
其中,成都、南京分站建有原级、次级及工作级计量标准,武汉分站建有原级、工作级计量标准,广州、乌鲁木齐、榆林分站建有次级、工作级计量标准,北京、塔里木分站建有工作级计量标准。
目前,主要用工作级计量标准检定/校准超声波流量计,工作级计量标准的不确定度在0.25%~0.33%。
JJG 1030—2007《超声波流量计检定规程》7.1.1.2中的规定:装置测量结果的不确定度应不大于被检流量计最大允许误差绝对值的⅓。
A级站点计量系统的最大允许误差为1.0%,流量计不确定度为0.75%,检定该等级超声波流量计,标准装置的不确定度应达到0.25%。
按该规定,部分工作级计量标准不能满足检定规程的要求,但工作计量标准的不确定度的提高受多种因素影响也存在较大难度,而建立次级标准检定超声波流量计又存在建设投资大、流量范围小不能覆盖大口径流量计的问题。
因此,进行等精度量传是解决天然气超声波流量计检定切实可行的方法。
气体超声波流量计原理
气体超声波流量计是一种使用超声波技术来测量气体流动速度和体积流量的设备。
它通过将超声波传感器安装在流体管道中,利用超声波在气体中传播的特性来实现流量测量。
超声波流量计的原理基于多普勒效应和声速消声理论。
当超声波传感器发送一个高频信号进入流体中时,其中的气体颗粒会对超声波产生频率偏移。
这个频率偏移被称为多普勒频移,它与气体颗粒在流体中的速度成正比。
超声波流量计的传感器能够测量到这个多普勒频移,从而计算出气体的流动速度。
通过将流速与管道横截面积相乘,可以得到气体的体积流量。
为了提高测量的准确性,超声波流量计通常使用双超声波传感器布置在管道的对角位置。
一个传感器作为发送器发送超声波信号,另一个作为接收器接收反射回来的信号。
通过比较两个传感器接收到的信号,可以消除流体中的干扰,获得准确的流速和体积流量测量结果。
除了多普勒频移的测量外,超声波流量计还可以通过测量超声波在气体中传播的时间差来实现流速的测量。
这种方法被称为时间差测量法,它利用超声波在气体中传播的速度很高,可以忽略不计的特点来测量流速。
总之,气体超声波流量计利用超声波在气体中传播的特性,通过测量多普勒频移或时间差来实现气体的流速和体积流量的测
量。
它具有非侵入式、准确性高、无可动部件等优点,广泛应用于石油、化工、能源等行业的流量计量中。
浅谈天然气计量中气体超声波流量计的应用随着天然气需求的增加,天然气计量已成为关键问题。
为了保证天然气的计量准确性,需要使用能够精确测量天然气流量的仪器设备。
其中,气体超声波流量计,这种利用声波测量气体流量的设备,具有精度高、安装、维护简单等特点,成为天然气计量中不可缺少的一种技术手段。
本文将浅谈天然气计量中气体超声波流量计的应用。
一、气体超声波流量计基本原理在应用于天然气计量中,气体超声波流量计主要根据声速、声程、声压等参数来测量气体流量。
气体在管道中通过时,流速与声速之比称为马赫数。
当流速较小时,马赫数也较小,它的变化可以对应成声波的频率变化。
因此,气体超声波流量计利用声波测量气体流速,进而计算出气体流量。
气体超声波流量计是由发射器和接收器两部分组成。
发射器将高频声波信号发射到气体中,这些信号会受到气体的阻碍、反射等作用,一部分会向下流方向传递,与接收器接收到的信号相比较,计算出气体的流速。
然后,根据管道的截面积和流速计算出气体的流量。
1.液化天然气计量液化天然气(LNG)作为天然气储存和运输的主要形式之一,因其高压、低温等特点,对气体流量测量提出了更高的要求。
而气体超声波流量计解决了其他计量方式受温度、压力影响较大的问题,具有高精度、可靠性和精确度等优点。
因此,气体超声波流量计被广泛应用于液化天然气的计量中。
2.管道输送在天然气输送中,由于管道的特殊形式和不断变化的工况,其流量测量需求都比较高。
在此情况下,气体超声波流量计的应用颇具优势。
它能够实现同一计量设备适应不同管道、不同流量范围的要求,节省设备、维护费用。
3.液体储罐除了在天然气管道输送中,气体超声波流量计也常常被用于液体储罐中气体流量的测量。
储罐中的气体流量测量具有一定难度,但使用气体超声波流量计可最大程度保证测量的精确性和准确性。
1.测量精度高气体超声波流量计的计量精度达到了0.5% ~ 1.0%,远远高于其他计量方式,同时其还能适应不同管径、流量范围等要求,具有很强的可靠性。
天然气计量中超声波、涡轮和罗茨气体流量计的区别超声波、涡轮和罗茨气体流量计在天然气计量中的使用有哪些区别?目前在天然气流量计测量中,被广泛使用的流量计是:气体涡轮流量计,气体超声波流量计,气体罗茨流量计等。
这几种流量计各有各的优缺点。
气体涡轮流量计是速度式流量测量仪表。
当流体流入流量计时,在前导流体(或整流器)的作用下得到整流并加速,由于涡轮叶片与流体流向成一定角度,此时涡轮产生转动力矩,在克服摩擦力矩和流体阻力矩后,涡轮开始旋转。
在一定的流量范围内,涡轮旋转的角速度与流体体积流量成正比。
根据电磁感应原理,利用磁敏传感器从同步转动的参考轮上感应出与流体体积流量成正比的脉冲信号,该信号经放大、滤波、整形后送入智能体积修正仪,与温度、压力等信号一起进行运算处理,分别显示于LCD 屏上。
精度高,测量简单。
但是,因为有叶轮,使得流量计上下端有压差的存在,叶轮一直承受的压力,对叶轮的轴承的要求很高。
这也是为什么2-3 年,涡轮流量计要更换的原因。
其价格比较适中。
被大量使用在城市燃气站等地方。
气体超声波流量计是最近几年兴起的新的流量测量方式,其设计比较复杂,故价格也比较高。
目前能生产的厂家比较少,使用范围也仅是在天然气输送管道比较多。
基本都是大型企业在使用。
测量精度高,维护少。
气体罗茨流量计是一种容积式流量仪表。
当气体通过流量计时,在入口和出口间产生的压差,作用在与高精密同步齿轮联结在一起的一对罗茨轮上,从而驱动罗茨轮旋转。
在这期间,罗茨轮与壳体内壁和压盖之间形成的密闭空间——计量腔周期地充气和排气。
罗茨轮的转数与通过流量计的气体体积量成正比。
罗茨轮的旋转经磁耦合器传递给机械计数器(或输出流量脉冲信号),从而累积流经计量腔的体积量实现计量的目的。
气体罗茨流量计始动流量小,量程比宽,适用于计量负荷变动大的气体流量。
且计量精确度不受。
超声波流量计在气体计量中的应用探究摘要:本文提出了超声波流量计在气体计量中的应用的意义,然后对其在天然气计量中的应用进行了探讨,提出了一些看法,希望能够对天然气体积流量计量方法的研究提供一些参考,进而促进我国天然气的发展。
关键词:超声波流量计;气体;计量;应用1、引言随着石油、天然气等能源在我国社会经济发展中的地位日益突出,天然气等能源的计量越来越受到人们的重视。
目前,我国已建成了天然气输配管网,并将逐步扩大到城市配电网。
气体计量是保障国家能源安全、能源管理的重要手段,其准确与否关系到国家的能源政策和宏观经济决策。
因此,气体计量装置在天然气、石油等能源供应领域发挥着越来越重要的作用。
2、超声波流量计在气体计量中的应用的意义天然气具有气体密度较小、气体流动速度较低、气体密度与温度有密切关系等特点,是一种特殊的流体。
目前,在天然气计量过程中,仍以体积法和质量法为主,对天然气体积流量的计量有一定的误差。
在实际工作中,采用体积法和质量法进行测量时,往往会受到外界因素的影响,如管道中有大量的杂质、温度、压力等不稳定因素,而且在实际应用中,还会受到环境条件的影响。
在进行气体计量时,由于存在气体密度与温度等方面的差异,所以当气体流速过低或过高时,都会使气体流量计流速和体积产生较大差异,进而影响到气体流量测量的准确性。
3、超声波流量计在气体计量中的应用分析3.1噪声在采用超声流量计进行天然气计量的过程中,因为所处的环境不同,最后的计量结果也会有一些差别,所发射出来的超声会针对管内气体的特定条件,产生一种超声束的反射效应,因此需要对这种影响进行进一步的分析,以获得流量计所显示的有关数据,从而获得流量计的最终测量结果。
特别是,在进行气体流量检测时,超声波会通过阀门、弯头等管件,这就导致了在测量过程中,超声会有一些噪声,这会导致超声波所接收到的数据出现错误,从而降低了流量计的测量精度。
针对这种情况,在正式进行超声流量测量时,必须把噪声因素纳入到测量过程中,并据此对测量结果进行分析。
天然气超声波流量计操作维护规程中国石油西部管道兰州输气分公司年月签字职务日期编制人:审核人:批准人:目录1 范围 (1)2 规范性引用文件 (1)3 术语和定义 (1)4 操作内容 (2)5 风险提示 (5)6 应急处置 (5)7 附件 (5)1 范围本标准规定了涩宁兰超声波流量计的现场操作方法。
本标准适用于涩宁兰气体超声流量计。
2 规范性引用文件2.1《中华人民共和国国家标准天然气计量系统技术要求》GB/T 18603一20012.2《用气体超声波流量计测量天然气流量》GB/T 18604-20013 术语和定义3.1气体超声流量计ultrassonic gas flow meter安装在流动气体的管道上,并用超声原理测量气体流量的流量计。
以下简称流量计。
3.2超声换能器ultrassonic transducer把声能转化成电信号和反过来把电信号转化成声能的元件。
3.3信号处理单元signal processing unit是流量计的一部分,由电子元件和微处理器系统组成。
3.4零流量测试zero-flow measure在无流动介质的情况下,检查流量计的读数是否为零或在流量计本身规定的允许范围内。
3.5分界流量transition gas flow rate低于该流量要采用扩展误差限的流量值。
3.6实流校准系数flow calibration factor将流量计进行实流校准测试,并将测试结果按照一定修正方法得出的流量计系数。
3.7最大瞬时压力maximum incidental pressures在短时间内,计量系统能够承受安全装置极限内的最大工作压力。
3.8流量计算机flow computer计算和指示标准参比条件下的流量等参数的装置。
3.9转换装置conversion device由一台流量计算机和各个传感器组成的装置。
用于以压力、温度和气体组成或以密度或以发热量为参数进行标准参比条件下体积流量和质量流量及能量流量的转换。
燃气超声波流量计执行标准
燃气超声波流量计的执行标准可以根据不同的国家或地区的规定而有所差异。
以下是一些常见的燃气超声波流量计执行标准的例子:
1. GB/T 18604-2018《扩散压缩气体流量计准确度试验方法》(中国标准)
该标准主要规定了燃气超声波流量计的准确度试验方法和要求,包括测试设备、测试条件、试验程序和结果的评定等内容。
2. ISO 17089-1:2018《Gas meters -- Rotary displacement meters for gas》(国际标准)
这个标准适用于燃气超声波流量计中使用的旋转位移式流量计。
它规定了测试方法和准确度要求。
3. AGA Report No. 9《Measurement of Gas by Multipath Ultrasonic Meters》(美国标准)
这个标准由美国天然气协会(AGA)制定,详细介绍了燃气
超声波流量计的安装、操作、维护和准确度验证等内容。
需要注意的是,以上只是一些例子,并不是燃气超声波流量计执行标准的详尽列表。
具体的执行标准应根据使用国家或地区的相关规定来确定。
天然气自动计量组成原理1.计量系统:计量系统是指整个天然气自动计量的集成系统,由以下几个部分组成:(1)流量传感器:用于测量天然气的流量。
常见的流量传感器有差压流量计、超声波流量计和涡轮流量计等。
流量传感器将流经管道的天然气转化为电信号,并传输给计量设备进行数据处理。
(2)温度传感器:用于测量天然气的温度。
温度传感器通常安装在流量传感器的进口处,测量进口天然气的温度,并将数据传输给计量设备。
(3)压力传感器:用于测量天然气的压力。
压力传感器通常安装在流量传感器的进口和出口处,测量天然气的进口和出口压力,并将数据传输给计量设备。
(4)流量计算器:用于根据流量传感器、温度传感器和压力传感器测量到的数据,计算天然气的实时流量,并进行数据处理和存储。
(5)数据采集与处理设备:负责采集流量计算器的数据,并进行处理、存储和传输。
数据采集与处理设备通常包括数据采集模块、处理单元和通信模块等。
(6)信号输出设备:用于将计量结果输出为标准化的电信号,以便进行显示和传输。
2.计量仪表:计量仪表是计量系统中的关键部分,主要包括以下几种类型:(1)差压流量计:利用流经差压流量计的天然气流动产生的差压来测量天然气的流量。
差压流量计根据孔板、喷嘴、或ifice等构成,通过测量进口和出口的差压,计算天然气的流量。
(2)超声波流量计:利用超声波在流体中的传播速度与流体速度成正比的原理,通过测量超声波通过天然气的时间来计算天然气的流量。
超声波流量计通常有单通道和双通道两种类型,分别用于测量单相和多相流体。
(3)涡轮流量计:利用涡轮在天然气流动中的转速来测量天然气的流量。
涡轮流量计通过测量涡轮的转速,并与涡轮的特性曲线相匹配,从而计算天然气的流量。
总的来说,天然气自动计量的主要原理是通过合理的计量系统和计量仪表,利用流量、温度和压力等参数来测量天然气的流量,实现对天然气的实时计量。
通过这种方式,可以准确地监测天然气的使用量,提高天然气资源的利用效率。
超声波计量技术在燃气表流量计中的应用摘要:由于日益激烈的全球变暖和人类对清洁饮食的日益依赖,对天然气的消费量也急剧攀升,这对计量技术的要求也越来越高。
为此,采用超声波流量计技术,可以有效地检测和控制天然气的流量,它利用一对或几对超声换能器,将其传输到另一对,并将其传输到另一个传输口,以此计算出流量,以此满足当前对清洁饮食的日益迫切的消费需求。
然而,仅凭此方法获取的信息仍然有待改善,必须将其与温度、压力以及其他外部环境参数相互协调,以获取更为精细的流量信息。
关键词:超声波流量计;天然气计量;应用随着科技的进步,流体流量的监测与管控已经被认识到,它对于保证天然气计量的精确性、稳健性、高效性、安全性、可操作性等都具有至关重要的意义。
因此,近年来,专家们积极投入,开展多种多样的流量计的开发,从而实现对流体流量的有效监测与有序运行。
按照其所依赖的测量原理,流量计被划分为四类:质量型、差压型、速率型、容积型。
它们各具特色,但又存在着一定的共性,因而,每种类型的流量仪器均具备其特定的功能,但仍然存在一定的局限性。
通过精心挑选,可以获得更准确的测量结果,因此,在实践操作时,必须针对各种使用环境及其相关的工程项目,采取适当的种族、品种、尺寸等多种方式。
1超声波流量计种类1.1涡流流量计设备在天然气物质计量技术和设备应用中,涡轮流量计是一种高效率、高速度模式流量计方式,其首先将流速转化为涡轮基础转速,随后将转速有效转化为与基础流量成正比的电源信号,同时根据单位时间内的脉冲数量以及累积脉冲数量相互结合,进而获取瞬间流量数据以及累积流量数据。
在天然气计量运转过程中,涡轮流量计技术测量精准程度相对较高,并且技术流通能力较大,所以被广泛的使用在天然气物质计量中,然而该技术在实际操作时,对于检测气体的洁净度要求相对较高,流量计内部轴承为可动部件,颗粒杂质容易对流量计造成损坏1.2孔板流量计设备在天然径流量计量实施过程中,孔板流量计属于压力差流量计模式,该技术主要通过有效测量天然气物质测量前与测量后之间的压力差距,进一步根据流量与压力差的正方向比较管理进一步测量介质流量。
UFG210型气体超声波流量计1、产品描述UFG210系列超声波流量计采用了最前沿的超声波传感器技术,专注于城市小型天然气工商用户贸易交接领域的流量测量。
采用时差式原理,利用了当前先进的信号处理技术和高速采样技术,UFG210型气体超声流量计可以满足城市小型天然气工商用户计量行业的高精度要求。
由于没有任何可移动部件,同时带有自诊断功能,降低了维护成本,可在完成高精度计量的同时实现对用气状态及过程的实时监测。
UFG210兼容了当前国内外天然气计量相关的标准,上位监控软件可实现对设备全方面的数据采集及诊断分析,同时可根据权限对设备进行参数设定,操作简单。
2、产品特点采用最先进的超声波传感器技术,安全可靠;计量精度高,可达1.5%;量程范围宽,在1.5%精度内量程比可达1:100;分界流量低,分界流量Q t低至0.1Q max;始动流量低,G6口径低至0.01m3/h;内置控制阀,压损最大为0.375kpa;集成温度、压力检测,一体化温压修正;计量部分+7.2V锂电池组供电,电池寿命不小于8年;无任何可移动部件,几乎免维护;集成数据无线远传,具有自诊断及在线监测功能;3、性能指标产品型号UFG210型气体超声波流量计测量原理超声波时差法声道数单声道测量精度 1.5级量程比1:100工作温度-15℃~50℃工作压力0.05kpa~30kpa防爆等级Ex d IIB T6防护等级IP65测量值工况流量、工况累积量、标况流量、标况累计量、温度、压力测量介质天然气、空气、氮气、氧气等多种气体输出信号红色LED灯,默认每10L闪烁一次显示方式液晶显示表接头螺纹G2〃接头中心距180mm供电方式计量电源:7.2V锂电池(2节ER34615电池串联)无线电源:6V碱电池(4节5号电池串联)4、技术参数规格型号计量范围(m3/h)始动流量(m3/h)过载流量(kpa)最大压损(kpa)工作压力(kpa)计量精度(%)UFG210-G60.1~100.01120.350.05~30(表压)Q min~Q t:≤±3% Q t~Q max:≤±1.5% Q t=0.1Q maxUFG210-G100.16~160.01619.20.32 UFG210-G160.25~250.025300.30 UFG210-G250.4~400.04480.26注:最大压损数据测试条件为:常压、介质为干空气、流量计工作于最大流量下。
天然气场站常用流量计-全球百科当前,天然气长输管道和场站的贸易计量主要采用超声波流量计、普通孔板流量计、涡轮流量计。
1、超声波流量计传播时间差法是国内外超声波流量计的主要检测方法。
该方法是用一对传感器相向收发超声波,当一个传感器发射声波脉冲时,另外一个传感器以一定的角度接收声波脉冲信号,这对传感器交替收发脉冲,通过检测并计算该脉冲在介质中顺流和逆流的传播时间差来测量管道介质的流速,从而计算出介质的流量。
目前国内外的超声波流量计多采用4、6或8声道传感器,即2对、3对或4对传感器进行工作,以提高测量的准确性。
超声波流量计虽然具有测量管径大、测量范围宽,支持双向计量等特性。
但因其工作中收发声波的原理,使其容易受到周边噪声和其它环境的干扰,影响计量的精度。
2、涡轮流量计涡轮流量计是一种流量计量器具,具有温度和压力补偿功能,属于速度式流量计。
其工作原理为:具有一定压力的天然气沿流动方向驱动涡轮流量计内的叶片旋转,通过电涡流传感器检测叶片的旋转速度,旋转速度与体积流量成正比,即可计算出通过流量计的天然气体积流量。
涡轮流量计具有稳定性高、量程范围宽、对流量变化反应迅速、抗干扰能力强、信号便于传输等特点,广泛应用于石油、化工、电力、城市燃气管网等领域的贸易结算,特别是在欧美等国家应用也极为普遍。
涡轮流量计具有较高的精度和量程比,有着较好的重复性。
但由于其自身的旋转机构长时间运转,会出现连杆断裂、或旋转异常等现象。
3、涡街流量计“卡门涡街”原理是涡街流量计的核心理论。
测量前在管道中垂直插入一段非流线型阻流体(旋涡发生体),当介质流动,管道内雷诺数达到一定值时,在发生体下游两侧会交替分离出规则排列的旋涡。
当发生体两侧产生旋涡时,流体对旋涡发生体会产生一个周期性的交变横向作用力,压电传感器将作用力的变化转换为可以测量的频率信号,通过信号放大和整形,得出流速和流量,并进行累积计算。
4、孔板流量计孔板流量计是基于差压测量的方法,以流动连续性定律和能量守衡定律为基准的,以AGA3或GB/T21446为计算依据。
超声流量计在天然气计量中的应用摘要:对超声流量计的工作与阿尼,安装要求,使用及其检定方式进行细致研研究,目的在于提高对该仪器设备的使用效率,以及其在使用过程中的准确性与可靠性,同时就如何对该仪器进行检定进行较为详细的介绍。
关键词:天然气;超声流量计;检定越重要,精确地计量对于天然气贸易具有十分重要的影响,超声波流量计是一种新型的气体流量统计仪,测量范围大、具有准确度高、不易压损、重复性好、部件固定、适合于口径较大的气体管道测量工作,因此广泛适用于天然气长输管道的计量工作中。
1 工作原理超声流量计是一种利用声波对流管内流体流速进行测定的计量仪器,气体测量现场主要的设备是超声传感器,传感器一般被安装在管壁上,传感器与传感器之间以几何形的方式排列。
目前,所使用的超神波流量计有多个不同的形式,这种形式上的差异主要是由不同的几何形排列所导致的。
超声波流量计所使用的是时间差法,在具体操作中,将一对斜角超声流量计算安装早管道的一侧,而将一对换能器装在管道的另一头,这样当气体通过后,则可以同时,或是在设定的时间上获得对方的超声信号。
具体操作如下:现在管道两头安装超声波流量计的转换器,转换器A与转换器B,两个转换器之间的距离假设为L,流体在管道内的声速为C,且流体自身速度为V,声波传播方向与流体在管道内的流动方向夹角为θ,声波在流体中顺流的传播时间,在流体中逆流传播时间为,则可以通过如下联立解方程(1)式和方程(2)式可得从式(3)求出被测气体的流速后,与超声波流量计的截面积相乘,得到的就为流体在管道中的工况流量;利用压缩因子及温度、压力信号对工况流量进行修正,从而得到标准状况下的体积流量,进行贸易计量交接。
2 超声流量计在使用中的注意事项超声波流量计在高压环境下,以及长距离输送管道的气体计量中具有明显的优势,但是由于现场环境随时可能会发生变化,因此超声波流量计必须达到GB/T 18604标准,也就是2001所颁布的《用气体超声流量计测量天然气流量》中所规定的技术标准,并且在温度、振动以及电气噪声等问题上达到厂家标准。