22第1课时算术平方根
- 格式:ppt
- 大小:1.22 MB
- 文档页数:12
第六章实数6.1 平方根第1课时算术平方根1.理解并掌握算术平方根的概念,会用根号表示一个正数的算术平方根,并了解算术平方根的非负性,会求一个非负数的算术平方根.2.能用夹值法求一个数的算术平方根.3.会用计算器求一个数的算术平方根.自学指导:阅读教材第40至44页,独立完成下列问题.知识探究一般地,如果一个非负数的平方等于a,那么这个非负数叫做a的算术平方根.a的算术平方根记为a,a叫做被开方数.规定:0的算术平方根是0.自学反馈(1)25的算术平方根是5,3是9的算术平方根,16的算术平方根是2.(2)切一块面积为16 cm2的正方形钢板,它的边长是多少?解:4 cm.(3)3表示3的算术平方根;如果-x2有平方根,那么x的值为0.(4)一个数的算术平方根是a,则比这个数大8的数是(D)A.a+8B.a-4C.a2-8D.a2+8(5)若81=9,那么0.0081=0.09,810000=900.(6)用计算器求下列各数的算术平方根.①625; ②101.203 6; ③5(精确到0.01).对于实际问题可以转化成数学问题来解决,如题(2),就是求平方等于16的正数.若被开方数的小数点向左或向右移2n位,则其算术平方根的小数点向相同的方向移动n位.活动1 学生独立完成例1求下列各式的值:(1)3·25; (2)81+36; (3)0.04-124; (4)0.36·4121.解:(1)原式=3×5=15;(2)原式=9+6=15;(3)原式=0.2-1.5=-1.3;(4)原式=35×211=655.1.求一个数a(a>0)的算术平方根就是确定一个正数x,使得x2=a.2.求一个代分数的算术平方根,应先将代分数化成假分数,再求其算术平方根.例2试比较下列各对数的大小:(1)123与112; (2)412与25.解:(1)∵112=94,而213=73>94,∴123>112.(2)∵412=814,25=20,而814>20,∴814>20,即412>25.要比较两个数的大小,可以由算术平方根的意义,去比较它们的被开方数的大小.本题就是用“转化”的数学思想,将其“转化”成比较根号下被开方数的大小.例3试估算7的取值范围是2<7<3.活动2 跟踪训练1.一个自然数的算术平方根是a,则下一个自然数的算术平方根是(D)A.a+1B.a2+1C.a+1D.21a 注意审题,先确定这个自然数,再确定下一个自然数的算术平方根.2.估算31-2的值(C)A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间31.3.9a b,则a+b=900.000 009.活动3 课堂小结1.算术平方根的意义是求一个正数的算术平方根的基本方法.2.运用“转化”的数学思想方法,并通过恒等变形达到求解目的是对能力的一种考察.教学至此,敬请使用学案当堂训练部分.。
加比赛,这块正方形画布的边长应取多少?2、面积为16、9、4的正方形的边长分别是多少?3、上述两个问题的实质是什么?4、阅读课本P68-69页,并回答下列问题(1)如果一个________的______等于a ,那么_________就叫做______的算术平方根(2)正数a 的算术平方根表示 读作_______规定:0的算术平方根为0。
(3)因为( )2=100,所以100的算术平方根是_______,即__________; (4)仿照(3)格式探求下列各数的算术平方根:0.0025;121;32;0.0001 (5)求算术平方根的运算与求平方运算有什么关系?上是已知一个正数的平方求这个证书的问题,其中问题1中的5叫做25的算术平方根,问题2中的4就叫做16的算术平方根,一般情况下,什么叫算术平方根?怎样表示一个数的算术平方根?怎样求一个数的算术平方根?算术平方根有哪些性质?(2)出示问题组织自学,提两名学生回答,关注学困生的表现,教师进行点拨引导评价。
(3)板书算术平方根的概念、符号表示,强调:(1)被开方数、根指数的意义。
(2)0的算术平方根是0是算术平方根的重要组成部分。
1-3,参与对同伴表现情况的评价。
(2)自学教科书相关内容,独立解决问题4,配合教师检查,对照同伴表现,检查自己的自学情况。
(3)学生讨论 思考并回答,师生共同总结。
足的时间和空间,理解和感知算术平方根概念,通过小组间的讨论、交流,释疑解难,提出共同的问题,使学生的自主性和合作性得到很好的发展,教学目标得到很好的落实。
活动三 例题讲解 理解新知 例1:求下列各数的算术平方根(1)121 (2)0.0064例2:计算下列各式的值【教师活动】 教师出示题目 引导学生思考并解答,巡视学生完成情况 适时指导点拨【学生活动】两名同学板演,学生独立完成后,共同完善解题过程【设计意图】规范解题格式,帮助理解新知活动四 应用迁移,巩固提高 一、判断下列说法是否正确,若不正确,请改正:(1)5是25的算术平方根; (2)-6是 36 的算术平方根; (3)0的算术平方根是0;【教师活动】 (1)出示问题1,提出答题要求,根据学生回答,适时评价学生的表现,用PPT 展示确认。
八年级数学上册2.2平方根第1课时算术平方根教案新版北师大版一. 教材分析平方根是八年级数学上册第2.2节的内容,主要介绍平方根的定义、性质和运算方法。
本节课的内容是学生进一步学习数学的基础,对于培养学生的逻辑思维和运算能力具有重要意义。
二. 学情分析学生在学习本节课之前,已经学习了有理数的乘方和二次根式,对于根式的概念和性质有一定的了解。
但平方根的概念和性质较为抽象,需要学生通过实例和练习来理解和掌握。
三. 教学目标1.理解平方根的定义和性质;2.掌握求一个数的平方根的方法;3.能够运用平方根的概念解决实际问题。
四. 教学重难点1.平方根的定义和性质;2.求一个数的平方根的方法。
五. 教学方法采用问题驱动法和案例教学法,通过引导学生自主探究和合作交流,让学生在实际问题中感受平方根的概念和性质,提高学生的数学思维和解决问题的能力。
六. 教学准备3.练习题。
七. 教学过程1.导入(5分钟)利用PPT展示一些生活中的实例,如测量身高、计算面积等,引导学生思考这些实例中是否涉及到平方根的概念。
通过讨论和回答问题,引出平方根的概念。
2.呈现(10分钟)讲解平方根的定义和性质,通过PPT展示相关的例题和解释,让学生理解和掌握平方根的概念。
3.操练(10分钟)让学生独立完成PPT上的练习题,教师巡回指导,解答学生的疑问。
4.巩固(10分钟)让学生分组讨论,互相提问,巩固对平方根的理解。
教师可以提出一些问题,引导学生深入思考。
5.拓展(10分钟)讲解求一个数的平方根的方法,并通过PPT展示相关的例题和解释,让学生掌握求平方根的技巧。
6.小结(5分钟)让学生总结本节课所学的内容,教师进行补充和讲解。
7.家庭作业(5分钟)布置一些有关平方根的练习题,让学生回家巩固所学知识。
8.板书(5分钟)板书本节课的重点内容,方便学生复习和记忆。
教学过程每个环节所用的时间如上所示,供您参考。
希望这份教案能够帮助您更好地进行教学。
2.2.1 算术平方根一、学生起点分析学生的知识技能基础:学生刚学完《勾股定理》,通过本章第一节的学习,已具备了对无理数的认识,知道只有有理数是不够的.学生还具备了乘方运算的基础,并且有计算正方形等几何图形面积的技能.学生活动经验基础:在前面的学习过程中,学生已经经历了很多合作学习的过程,具备了一定的合作学习的经验,具备了一定的合作与交流的能力.二、教学任务分析本节课是义务教育课程标准实验教科书北师大版八年级(上)第二章《实数》的第二节《平方根》.本节内容计2个课时,本节课是第1课时,主要是算术平方根的概念和性质的教学.课程标准要求,对于数学概念的教学,要关注概念的实际背景与形成过程,力求从学生实际出发,以他们熟悉的问题情景引入学习主题,在关注现实生活的同时,更加关注数学知识内部的挑战性,因此确定本节的教学目标如下:①了解算术平方根的概念,会用根号表示一个数的算术平方根;了解求一个正数的算术平方根与平方是互逆的运算,会利用这个互逆运算关系求非负数的算术平方根;了解算术平方根的性质.②在概念形成过程中,让学生体会知识的来源与发展,提高学生的思维能力;在合作交流等活动中,培养他们的合作精神和创新意识.③让学生积极参与教学活动,培养他们对数学的好奇心和求知欲.三、教学过程设计本课时设计六个环节:第一环节:问题情境;第二环节:初步探究;第三环节:深入探究;第四环节:反馈练习;第五环节:学习小结;第六环节:作业布置.本节课教学流程为:第一环节:问题情境方法一:问题导入内容:上节课学习了无理数,了解到无理数产生的实际背景和引入的必要性,掌握了无理数的概念,知道有理数和无理数的区别是:有理数是有限小数或无限循环小数,无理数是无限不循环小数.比如上一节课我们做过的:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a 的大的正方形,那么有22=a ,a = ,2是有理数,而a 是无理数.在前面我们学过若a x =2,则a 叫x 的平方,反过来x 叫a 的什么呢?本节课我们一起来学习.方法二:问题导入内容:前面我们学习了勾股定理,请大家根据勾股定理,结合图形完成填空:问题情境 初步探究 反馈练习 学习小结 作业布置 深入探究=2x ,=2y ,=2z ,=2w .目的:方法一和二都是带着问题进入到这节课的学习,让学生体会到学习算术平方根的必要性.效果:能表示22=x ,32=y ,42=z ,52=w ;能求得2=z ,但不能求得x ,y ,w 的值.说明:方法一的引入是由上节课“数怎么又不够用了”的例子,起到了承前启后的作用,方法二的引入是由学生学习了第一章“勾股定理”后的应用,说明学习这节课的必要性.相对而言,建议选用方法二.第二环节:初步探究内容1:情境引出新概念22=x ,32=y ,42=z ,52=w ,已知幂和指数,求底数x ,你能求出来吗? 目的:让学生体验概念形成过程,感受到概念引入的必要性.效果:学生可以估算出x ,y 是1到2之间的数,w 是2到3之间的数但无法表示x ,y ,w ,从而激发学生继续往下学习的兴趣,进而引入新的运算——开方.说明:无论是用方法一引入,还是方法二引入,都是激发学生继续往下学习的兴趣,都可以提出同样的问题“已知幂和指数,求底数x ,你能求出来吗?”内容2:在上面思考的基础上,明晰概念:一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 就叫做a 的算术平方根,记为“a ”,读作“根号a ”.特别地,我们规定0的算术平方根是0,即00=.目的:对算术平方根概念的认识.效果:了解算术平方根的概念,知道平方运算和求正数的算术平方根是互逆的. 内容3:简单运用 巩固概念例1 求下列各数的算术平方根:(1) 900; (2) 1; (3) 6449; (4) 14. 目的:体验求一个正数的算术平方根的过程,利用平方运算求一个正数的算术平方根的方法,让学生明白有的正数的算术平方根可以开出来,有的正数的算术平方根只能用根号表示,如14的算术平方根是14.效果:会求一个正数的算术平方根,更进一步了解算术平方根的性质:一个正数的算术平方根是正数,0的算术平方根是0,负数没有算术平方根.答案:解:(1)因为900302=,所以900的算术平方根是30,即30900=;(2)因为112=,所以1的算术平方根是1,即11=;(3)因为6449)87(2=,所以 6449的算术平方根是87, 即876449=;(4)14的算术平方根是14. 内容4:回解课堂引入问题 22=x ,32=y ,52=w ,那么2=x ,3=y ,5=w .第三环节:深入探究内容1:例2 自由下落物体的高度h (米)与下落时间t (秒)的关系为29.4t h =.有一铁球从19.6米高的建筑物上自由下落,到达地面需要多长时间?目的:用算术平方根的知识解决实际问题.效果:学生多能利用等式的性质将29.4t h =进行变形,再用求算术平方根的方法求得题目的解.解:将6.19=h 代入公式29.4t h =,得42=t ,所以正数24==t (秒).即铁球到达地面需要2秒.说明:强调实际问题t 是正数,用的是算术平方根,此题是为得出下面的结论作铺垫的. 内容2:观察我们刚才求出的算术平方根有什么特点.目的:让学生认识到算术平方根定义中的两层含义:a 中的a 是一个非负数,a 的算术平方根a 也是一个非负数,负数没有算术平方根.这也是算术平方根的性质——双重非负性.效果:再一次深入地认识算术平方根的概念,明确只有非负数才有算术平方根. 第四环节:反馈练习一、填空题:1.若一个数的算术平方根是7,那么这个数是 ;2.9的算术平方根是 ;3.2)32(的算术平方根是 ;4.若22=+m ,则=+2)2(m . 二、求下列各数的算术平方根:36,144121,15,0.64,410-,225,0)65(. 三、如图,从帐篷支撑竿AB 的顶部A 向地面拉一根绳子AC 固定帐篷.若绳子的长度为5.5米,地面固定点C 到帐篷支撑竿底部B 的距离是4.5米,则帐篷支撑竿的高是多少米?答案:一、1.7;2.3;3.32;4.16;二、6;1211;15;0.8;210-;15;1. 三、解:由题意得 AC =5.5米,BC =4.5米,∠ABC =90°,在R t △ABC 中,由勾股定理得105.45.52222=-=-=BC AC AB (米).所以帐篷支撑竿的高是10米.目的:旨在检测学生对算术平方根的概念和性质的掌握情况,以便根据学生情况调整教学进程.效果:练习注意了问题的梯度性,由浅入深,一步步加深对算术平方根的概念以及性质的认识.对学生的回答,教师要给予评价和点评.第五环节:学习小结内容:这节课学习的算术平方根是本章的基本概念,是为以后的学习做铺垫的.通过这节课的学习,我们要掌握以下的内容:(1)算术平方根的概念,式子a 中的双重非负性:一是a ≥0,二是a ≥0.(2)算术平方根的性质:一个正数的算术平方根是一个正数;0的算术平方根是0;负数没有算术平方根.(3)求一个正数的算术平方根的运算与平方运算是互逆的运算,利用这个互逆运算关系求非负数的算术平方根.目的:依照本节课的教学目标引导学生自己小结本节课的知识要点,强化算术平方根的概念和性质.第六环节:作业布置习题2.3四、教学设计反思1.细讲概念、强化训练要想让学生正确、牢固地树立起算术平方根的概念,需要由浅入深、不断深化的过程.概念是由具体到抽象、由特殊到一般,经过分析、综合去掉非本质特征,保持本质属性而形成的.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有必要的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.“讲清概念”就是通过具体实例揭露算术平方根的本质特征.算术平方根的本质特征就是定义中指出的:“如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 就叫做a 的算术平方根,”的“正数x ”,即被开方数是正的,由平方的意义,a 也是正数,因此算术平方根也必须是正的.当然零的算术平方根是零.“加强训练”不但指要加强求算术平方根的基本训练,使练习题达到一定的质和量,也包括书写格式的训练,如在求正数的算术平方根时,不是直接写出算术平方根,而是通过平方运算来求算术平方根,非平方数的算术平方根只能用根号来表示.“逐步深化”是指利用算术平方根的概念和性质的题目按不同的“梯度”组成题组,在教学的不同阶段按由浅入深的原则加以使用.2.发展思维、适度拓展 在教学中,根据学生的实际情况,在学有余力的情况下,可以对a 的双重非负性的知识进行适当的拓展.。