小波分析第二次作业——分解重构算法的实现
- 格式:pdf
- 大小:260.61 KB
- 文档页数:4
小波分解与重构我理解的小波分解是将一个多频率组成的波通过小波分解将所有频率分解出来,重构就是将这些分频率加起来得到最后的重构结果,于是写了个这样的程序clcclose all;clear all;clc;fs=612;[reg,sta,data]=readmydata('beijing08.dat');data{1:end};A=ans(2:end);for i=1:609;if A(i)>50.0;A(i)=(A(i-12)+A(i+12))/2;endendfor i=609:612;if A(i)>50.0;A(i)=(A(i-12)+A(i-24))/2;endend%信号时域波形figure(1);plot(1:612,A);%使用db5小波进行尺度为7时的分解[c,l]=wavedec(A,9,'db5');%从小波分解结构[c,l]重构信号xdataa0=waverec(c,l,'db5');%检查重构效果figure(2);subplot(3,1,1);plot(A);title('原始信号')subplot(3,1,2);plot(a0);title('重构信号')subplot(3,1,3);plot(A-a0);title('误差信号')err=max(abs(A-a0))%重构第1~5层高频细节信号d9=wrcoef('d',c,l,'db5',9); d8=wrcoef('d',c,l,'db5',8); d7=wrcoef('d',c,l,'db5',7); d6=wrcoef('d',c,l,'db5',6); d5=wrcoef('d',c,l,'db5',5); d4=wrcoef('d',c,l,'db5',4); d3=wrcoef('d',c,l,'db5',3); d2=wrcoef('d',c,l,'db5',2); d1=wrcoef('d',c,l,'db5',1); %显示高频细节信号figure(3);subplot(9,1,1);plot(d9,'LineWidth',2); ylabel('d9');subplot(9,1,2);plot(d8,'LineWidth',2); ylabel('d8');subplot(9,1,3);plot(d7,'LineWidth',2);ylabel('d7');subplot(9,1,4);plot(d6,'LineWidth',2);ylabel('d6');subplot(9,1,5);plot(d5,'LineWidth',2);ylabel('d5');subplot(9,1,6);plot(d4,'LineWidth',2);ylabel('d4');subplot(9,1,7);plot(d3,'LineWidth',2);ylabel('d3');subplot(9,1,8);plot(d2,'LineWidth',2);ylabel('d2');xlabel('时间 t/s');subplot(9,1,9);plot(d1,'LineWidth',2);ylabel('d1');%第1层高频细节信号的包络谱y=hilbert(d1);ydata=abs(y);y=y-mean(y);nfft=1024;p=abs(fft(ydata,nfft));figure(4);plot((0:nfft/2-1)/nfft*fs,p(1:nfft/2));xlabel('频率 f/Hz');ylabel('功率谱 P/W');小波分解与重构程序>> clearI=imread('C:\Documents and Settings\Administrator\桌面\暑期/cidian.bmp');I=rgb2gray(I);[X,map]=gray2ind(I);subplot(2,2,1);imshow(X,map);title('原始图像');X=double(X);sX=size(X);[cA,cH,cV,cD]=dwt2(X,'db4');A0=idwt2(cA,cH,cV,cD,' db4', sX);subplot(2,2,2);imshow(A0,map);title('db4小波重构');error1=max(max(abs(X-A0)))程序很简单,也很基础。
小波包分解变换重组方法下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help yousolve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts,other materials and so on, want to know different data formats and writing methods, please pay attention!小波包分解变换重组方法是一种在信号处理领域广泛应用的技术,在分析处理非平稳信号方面具有重要意义。
小波分解与重构原理小波分解与重构是一种信号处理技术,它可以将信号分解成不同尺度和频率的成分,从而更好地理解和分析信号的特性。
在本文中,我们将介绍小波分解与重构的原理,以及它在信号处理领域的应用。
首先,让我们来看一下小波分解的原理。
小波分解是通过一组小波基函数对信号进行分解的过程。
这组小波基函数具有不同的尺度和频率特性,可以将信号分解成不同频率成分的系数。
在小波分解中,我们通常使用离散小波变换(DWT)来实现信号的分解。
DWT 是通过一系列的滤波器和下采样操作来实现信号的分解,具体过程是将信号通过低通滤波器和高通滤波器进行滤波,并对滤波后的信号进行下采样,最终得到近似系数和细节系数。
接下来,我们来谈谈小波重构的原理。
小波重构是将分解得到的近似系数和细节系数通过逆小波变换(IDWT)合成为原始信号的过程。
在小波重构中,我们需要使用逆小波变换来将近似系数和细节系数合成为原始信号。
逆小波变换的过程是通过一系列的滤波器和上采样操作来实现信号的合成,具体过程是将近似系数和细节系数通过上采样和滤波器进行滤波,并将滤波后的信号相加得到重构的信号。
小波分解与重构的原理虽然看起来比较复杂,但是它在信号处理领域有着广泛的应用。
首先,小波分解与重构可以用于信号的压缩和去噪。
通过保留重要的近似系数和细节系数,可以实现对信号的高效压缩;同时,通过去除不重要的近似系数和细节系数,可以实现对信号的去噪。
其次,小波分解与重构还可以用于信号的特征提取和模式识别。
通过分析不同尺度和频率的小波系数,可以提取信号的特征并进行模式识别。
此外,小波分解与重构还可以用于信号的分析和合成,例如音频信号的压缩和图像信号的处理等。
综上所述,小波分解与重构是一种重要的信号处理技术,它通过一组小波基函数对信号进行分解和重构,可以实现对信号的压缩、去噪、特征提取、模式识别、分析和合成等功能。
在实际应用中,我们可以根据具体的需求选择合适的小波基函数和分解层数,从而实现对不同类型信号的有效处理和分析。
小波的分解和重构算法小波分解是将一个多频率组成的波通过小波分解将所有频率分解出来,重构就是将这些分频率加起来得到最后的重构结果。
小波变换的一级分解过程是,原始信号分别进行低通、高通滤波,再分别进行二元下采样,就得到低频、高频两部分系数;而多级分解则是对上一级分解得到的低频系数再进行小波分解,是一个递归过程。
分解过程:function [cA,cD] = mydwt(x,lpd,hpd,dim)%函数[cA,cD]=MYDWT(X,LPD,HPD,DIM) 对输入序列x进行一维离散小波分解,输出分解序列[cA,cD] ;%输入参数:x——输入序列;% lpd——低通滤波器;% hpd——高通滤波器;% dim——小波分解级数;% 输出参数:cA——平均部分的小波分解系数;% cD——细节部分的小波分解系数;cA=x; % 初始化cA,cDcD=[ ];for i=1:dimcvl=conv(cA,lpd); % 低通滤波,为了提高运行速度,调用MATLAB 提供的卷积函数conv()dnl=downspl(cvl); % 通过下采样求出平均部分的分解系数cvh=conv(cA,hpd); % 高通滤波dnh=downspl(cvh); %通过下采样求出本层分解后的细节部分系数cA=dnl; % 下采样后的平均部分系数进入下一层分解cD=[cD,dnh]; % 将本层分解所得的细节部分系数存入序列cDendfunction y=downspl(x);% 函数Y=DOWMSPL(X) 对输入序列进行下采样,输出序列Y。
% 下采样是对输入序列取其偶数位,舍弃奇数位。
N=length(x); % 读取输入序列长度M=floor(N/2); % 输出序列的长度是输入序列长度的一半i=1:M;y(i)=x(2*i);而重构则是分解的逆过程,对低频系数、高频系数分别进行上采样和低通、高通滤波处理。
重构过程:function y = myidwt(cA,cD,lpr,hpr);% 函数MYIDWT() 对输入的小波分解系数进行逆离散小波变换,重构出信号序列y% 输入参数:cA ——平均部分的小波分解系数;% cD ——细节部分的小波分解系数;% lpr、hpr ——重构所用的低通、高通滤波器。
“小波工程应用”实验报告一维信号离散小波分解与重构(去噪)的VC实现一、目的在理解了离散小波变换的基本原理和算法的基础上,通过设计VC程序对简单的一维信号在加上了高斯白噪声之后进行Daubechies小波、Morlet小波和Haar小波变换,从而得到小波分解系数;再通过改变分解得到的各层高频系数进行信号的小波重构达到消噪的目的。
在这一程序实现的过程中能直观地理解信号小波分解重构的过程和在信号消噪中的重要作用,以及在对各层高频系数进行权重处理时系数的选取对信号消噪效果的影响。
二、基本原理1、信号的小波分解与重构原理在离散小波变换(DWT)中,我们在空间上表示信号,也就是说对于每一个在上表示的信号能用在上面提到的两个空间中的基函数来表示。
Where and are the coefficients of the scale metric space (j-1) which are obtained after the Decomposing the coefficient of the scale metric space j . Analogously we could reconstruct theby and .我们在尺度度量空间对系数进行分解得到在尺度度量空间的两个系数和。
同样的,我们也能从两个系数和通过重构得到系数。
如上图中的分解与重构我们可以通过一定的滤波器组来实现(也就是小波变换算法)。
当小波和尺度在空间内是正交的,我们就可以用内积公式计算得到系数和:下面是内积计算方法的具体公式:具体的系数计算过程如下:对于上面的小波分解过程,通过分别设计高通滤波器和低通滤波器两组滤波器的系数(数组g[]和h[])即可实现,特别是对于离散小波变换,程序算法相对简单。
而重构也只是分解的逆过程,重构算法和分解的算法是相对应而互逆的。
2、小波去噪原理一般来说,噪声信号多包含在具有较高频率细节中,在对信号进行了小波分解之后,再利用门限阈值等形式对所分解的小波系数进行权重处理,然后对小信号再进行重构即可达到信号去噪的目的。
小波变换是一种时频分析方法,将信号分解为不同频率的子信号。
它可以用于信号处理、数据压缩、模式识别等领域。
小波变换的分解和重构过程如下:
1. 分解(Decomposition):
a. 选择合适的小波基函数(例如哈尔小波、Daubechies小波等)。
小波基函数是具有局部性质的函数,能够反映不同频率成分的特征。
b. 将原始信号通过小波基函数与尺度函数进行卷积运算得到一组低频信号(approximation,A)和高频信号(detail,D)。
c. 将低频信号进一步分解,得到更低频的近似信号和更高频的细节信号。
这个过程可以迭代多次,形成小波分解的多个层次。
2. 重构(Reconstruction):
a. 从最低频的近似信号(A)开始,通过逆小波变换(inverse wavelet transform)将近似信号和各层的细节信号进行重构。
b. 每次重构时,使用相应的小波基函数逆向卷积
运算,将低频信号和高频信号进行合并,得到上一层的近似信号。
c. 重复上述步骤,直到最终得到重构的原始信号。
小波分解和重构的过程在频域上实现了信号的分离,将时域与频域信息结合起来,能够更好地描述信号的局部特征和瞬态特性。
小波变换的应用广泛,例如图像压缩领域中的JPEG2000标准就使用了小波变换方法。
此外,小波分析还可以用于信号降噪、信号特征提取、边缘检测、图像增强等多个领域,具有很高的实用价值。
图像小波分解1 一级分解及重构1.1程序a=imread('lena.jpg');x=rgb2gray(a);[cA,cH,cV,cD]=dwt2(x,'haar');subplot(2,2,1);imshow(cA,[]);subplot(2,2,2);imshow(cH,[]);subplot(2,2,3);imshow(cV,[]);subplot(2,2,4);imshow(cD,[]);x_idwt=idwt2(cA,cH,cV,cD,'haar');figure(2);imshow(x_idwt,[]);1.2 结果图1 小波一级分解图2一级分解重构2 小波二级分解2.1 思路一我们在一级分解的基础上,对低频分量进行再次一级分解,即可得到小波二级分解。
程序:[cA2,cH2,cV2,cD2]=dwt2(cA,'haar');figure(3);subplot(2,2,1);imshow(cA2,[]);subplot(2,2,2);imshow(cH2,[]);subplot(2,2,3);imshow(cV2,[]);subplot(2,2,4);imshow(cD2,[]);图3 小波一级分解图4 小波二级分解通过上面两张图片对比,我们可以看出,二级小波分解的低频分量和一级小波分解的低频分量相差不大,说明图像经过一级分解已经将大部分的水平,垂直,斜向分量提取,所以两个低频分量相差不大。
2.2 思路二我们使用函数waverec2函数进行小波变换,其格式为:[c,s]=wavedec2(X,N,'wname')我们用它对图像X用wname小波基函数实现N层分解,将结果储存在一个行向量c里。
程序:[c,s]=wavedec2(x,2,'haar');cA2=reshape(c(1,1:125^2),125,125);figure(4);subplot(2,2,1);imshow(cA2,[]);cH2=reshape(c(1,125^2+1:125*250),125,125);subplot(2,2,2);imshow(cH2,[]);cV2=reshape(c(1,125*250+1:125*250+125^2),125,125);subplot(2,2,3);imshow(cV2,[]);cD2=reshape(c(1,250*375+1:250*375+125^2),125,125);subplot(2,2,4);imshow(cD2,[]);图5 思路二的小波二级分解(有误)但是,通过观察上图的第四幅图即斜向分量明显有误,于是我又查阅了函数waverec2的结构:c=[A(N)|H(N)|V(N)|D(N)|H(N-1)|V(N-1)|D(N-1)|H(N-2)|V(N-2)|D(N-2)|...|H(1)|V(1) |D(1)];所以,取数的顺序是正确的。
8.2信号分解与合成的Mallat算法一、一维信号的分解与合成1. 正交镜像滤波器2. 一维信号的小波分解与重构算法(Mallat’s herringbone算法)二、二维信号的分解与重构三、用Matlab实现图像的分解与合成1.dwt2与idwt2dwt2为一层二维离散小波分解函数,调用格式:[cA,cH,cV,cD]=dwt2(X,’wname’)% 用指定小波基对图像X进行一层二维离散小波变换分解。
’wname’为小波基的名称,cA为近似(低频)图像矩阵,cH, cV, cD分别为小波分解的水平方向细节系数,垂直方向细节系数,对角线方向细节系数。
[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D) % 用指定的低通分解滤波器Lo_D和高通分解滤波器Hi_D对图像X进行二维离散小波分解。
Lo_D与Hi_D的长度必须一致。
idwt2为一层二维离散小波重构函数,调用格式为:X=idwt2(cA,cH,cV,cD,’wname’)% 用指定小波重构图像X,wname为小波基的名称。
X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R)% 用指定低通重构滤波器Lo_R和高通重构滤波器Hi_R重构图像X,Lo_R与Hi_R的长度必须一致。
2.wavedec2与vaverec2wavedec2为多层二维离散小波分解函数,其调用格式为:[C,S]=wavedec2(X,N,’wname’)% 用指定小波基对图像X进行N层二维离散小波分解。
N为正整数,C为小波分解矢量,S为相应的标记矩阵。
C = [ A(N) | H(N) | V(N) | D(N) | ...H(N-1) | V(N-1) | D(N-1) | ... | H(1) | V(1) | D(1) ].A = approximation coefficientsH = horizontal detail coefficientsV = vertical detail coefficientsD = diagonal detail coefficients矩阵S形如S(1,:) = size of approximation coefficients(N)S(i,:) = size of detail coefficients(N-i+2) for i = 2, ...N+1 S(N+2,:) = size(X).wavwrec2为多层二维离散小波重构函数,其调用格式为:X=waverec2(C,S,’wname’) %利用指定小波基由矢量C和标记矩阵S重构图像X。
小波分解与重构原理小波分解与重构是一种信号处理和数据分析的方法,它可以将信号分解成不同尺度和频率的成分,从而更好地理解和处理信号。
小波分解与重构原理是基于小波变换的,小波变换是一种时频分析方法,它可以在不同时间尺度上观察信号的频率特性,从而更好地理解信号的局部特征。
本文将介绍小波分解与重构的原理和应用,帮助读者更好地理解和应用这一方法。
小波分解与重构的原理是基于小波变换的,小波变换是一种基于尺度函数和小波函数的变换方法。
在小波分解中,信号可以分解成不同尺度和频率的小波系数,从而更好地理解信号的频率和局部特征。
小波变换可以将信号分解成低频部分和高频部分,低频部分反映信号的整体特征,高频部分反映信号的局部特征。
通过小波分解,可以更好地理解信号的频率特性和局部特征,从而更好地处理和分析信号。
小波分解与重构的过程包括分解和重构两个步骤。
在分解过程中,信号经过小波变换,可以得到不同尺度和频率的小波系数。
小波系数反映了信号在不同尺度和频率上的特性,可以帮助我们更好地理解信号的频率特性和局部特征。
在重构过程中,可以根据小波系数重构原始信号,从而实现信号的分解和重构。
通过小波分解与重构,可以更好地理解和处理信号,从而更好地分析和应用信号。
小波分解与重构在信号处理和数据分析中有着广泛的应用。
在信号处理中,可以利用小波分解与重构方法对信号进行分析和处理,从而更好地理解信号的频率特性和局部特征。
在数据分析中,可以利用小波分解与重构方法对数据进行分解和重构,从而更好地理解数据的结构和特征。
小波分解与重构方法在图像处理、语音处理、生物医学信号分析等领域有着重要的应用,可以帮助我们更好地理解和处理信号和数据。
总之,小波分解与重构是一种重要的信号处理和数据分析方法,它可以帮助我们更好地理解和处理信号,从而更好地分析和应用信号。
通过小波分解与重构,可以更好地理解信号的频率特性和局部特征,从而更好地处理和分析信号。
希望本文能够帮助读者更好地理解小波分解与重构的原理和应用,从而更好地应用这一方法。
小波的分解和重构小波分析第二次作业在实际操作中,一般我们是应用matlab在计算机上处理小波变换。
信号总是离散的。
一般包括单层分解重构,多层分解重构等方法。
下面探讨一维离散小波变换在matlab中的应用。
1.单层小波分解%读入信号load leleccum;s=leleccum(1:4000);%通过db4小波基进行离散小波变换[cA1,cD1]=dwt(s,'db4');figure(1), subplot(311);plot(s)title('Original signal');subplot(323); plot(cA1);title('Approx.coef.for db4');subplot(324); plot(cD1);title('Detail coef.for db4');上图我们可以看到经过db4小波一层分解之后的高频信息和低频信息。
2.单尺度一维小波的重构%用小波函数db4进行信号重构ss=idwt(cA1,cD1,'db4');err=norm(s-ss);figure(2),plot(ss);重构完成后的误差为3.53e-10。
重构完成后的函数与分解前的函数相同,仅仅存在很小很小可以忽略为0的误差。
3.多层小波分解上文是使用单层小波分解,下面使用wavedec函数进行多层小波分解,并显示分解后的低频高频信息。
%通过db4小波基进行三尺度小波分解[c,l]=wavedec(s,3,'db4');a1=appcoef(c,l,'db4',1);%提取尺度1的低频系数a2=appcoef(c,l,'db4',2);%提取尺度2的低频系数a3=appcoef(c,l,'db4',3);%提取尺度3的低频系数figure(3);subplot(321);plot(a1);title('尺度1的低频系数');subplot(323);plot(a2);title('尺度2的低频系数');subplot(325):plot(a3):title('尺度3的低频系数');d1=detcoef(c,l,1);d2=detcoef(c,l,2);d3=detcoef(c,l,3);figure(3);subplot(322);plot(d1);title('尺度1的高频系数');figure(3);subplot(324);plot(d2);title('尺度2的高频系数');figure(3);subplot(326);plot(d2);title('尺度3的高频系数');由上图可以清晰的看出低频的信息和高频的信息。
如何进行小波分解和重构小波分解与重构是信号处理领域中重要的技术手段之一。
它可以将复杂的信号分解为不同频率的子信号,并且能够保留信号的时频特性。
本文将介绍小波分解与重构的基本原理和步骤,并探讨其在实际应用中的一些技巧和注意事项。
一、小波分解的基本原理小波分解是一种多尺度分析方法,它通过将信号与一组基函数进行卷积运算来实现信号的频域分解。
这组基函数称为小波函数,它具有时频局部化的特性,可以有效地捕捉信号的瞬时特征。
小波分解的基本原理可以用数学公式表示为:\[x(t) = \sum_{k=0}^{N-1} c_{j,k} \phi_{j,k}(t) + \sum_{j=1}^{J}\sum_{k=0}^{N-1} d_{j,k} \psi_{j,k}(t)\]其中,\(x(t)\)为原始信号,\(c_{j,k}\)和\(d_{j,k}\)分别表示近似系数和细节系数,\(\phi_{j,k}(t)\)和\(\psi_{j,k}(t)\)为小波基函数。
二、小波分解的步骤小波分解的具体步骤如下:1. 选择小波基函数:根据信号的特性和需要,选择合适的小波基函数。
常用的小波基函数有Haar小波、Daubechies小波、Morlet小波等。
2. 信号预处理:对原始信号进行必要的预处理,如去除噪声、归一化等。
3. 小波分解:将预处理后的信号与小波基函数进行卷积运算,得到近似系数和细节系数。
4. 选择分解层数:根据需要,确定分解的层数。
分解层数越多,分解的频带越多,但计算量也增加。
5. 重构信号:根据近似系数和细节系数,利用小波基函数进行逆变换,得到重构后的信号。
三、小波重构的技巧和注意事项小波重构是将分解后的信号恢复到原始信号的过程,下面介绍一些技巧和注意事项:1. 选择适当的重构滤波器:在小波重构中,需要选择适当的重构滤波器。
常用的重构滤波器有低通滤波器和高通滤波器,它们与小波基函数相对应。
2. 选择合适的重构层数:重构层数决定了重构信号的频带范围和精度。
小波分解与重构原理1. 选择适当的小波函数:小波函数是用来描述信号或图像在不同尺度上的变化的函数。
小波函数具有时频局部性的特性,可以将信号或图像在时间和频率上进行精细刻画。
常用的小波函数有Haar小波、Daubechies小波和Morlet小波等。
2.分解过程:将原始信号或图像通过小波函数进行分解,得到一组不同尺度上的近似和细节信息。
分解过程可以看作是对信号或图像在不同频段的频率分量进行提取。
3.分解系数的计算:在分解过程中,需要计算每个尺度的近似和细节系数。
近似系数表示信号或图像在该尺度上的低频成分,细节系数表示信号或图像在该尺度上的高频成分。
通常采用小波变换或离散小波变换来计算分解系数。
4.选择截断阈值:为了降低分解系数的维数和噪声的影响,需要选择合适的截断阈值。
截断阈值用于将小于阈值的分解系数置为零,从而实现信号或图像的稀疏表示。
5.重构过程:将经过截断阈值处理后的分解系数进行逆变换,得到重构信号或图像。
重构过程可以看作是对近似和细节信息进行合并和拼接,从而实现对信号或图像的还原。
1.多分辨率分析能力:小波分解与重构可以将信号或图像在不同尺度上进行分解和重构,从而实现对信号或图像的多尺度分析和描述。
利用不同尺度上的近似和细节信息,可以更全面地描述信号或图像的特征和结构。
2.时频局部性特性:小波分解与重构的小波函数具有时频局部性的特性,可以更精确地描述信号或图像在时间和频率上的变化。
相比于傅里叶变换和小波包分解,小波分解与重构可以更好地捕捉信号或图像的局部特征。
3.自适应性:小波分解与重构可以根据不同应用的需求,选择合适的小波函数和尺度参数。
通过调整小波函数和尺度参数,可以实现对不同类型信号或图像的自适应分析和处理。
4.稀疏性表示:小波分解与重构可以将信号或图像的分解系数进行截断和稀疏表示,从而实现对信号或图像的压缩和降噪。
通过选择适当的截断阈值,可以抑制噪声对信号或图像的影响,提高信号或图像的质量和可读性。
引言小波分解重构算法的实践天津大学建筑工程学院岩土工程专业1015205008 林澍小波是一种震荡形式,具有正负相间的振幅。
这种震荡形式因为具有衰减性,长度有限,均值为0,且具有波动性,所以称为小波。
小波分析是通过选取适合的小波作为空间基底来对信号进行处理,能够通过伸缩平移运算将信号的细部信息体现出来。
小波分析不仅在时域上将信号进行了局部化处理,而且能够在频率上进行调节。
信号的小波分解是利用小波作为基底,将信号依照不同频率段分解为若干层。
小波重构是分解的逆过程,是将若干层信号重新组合成一个信号。
本次实践仅将信号做分解重构处理,不进行其他处理。
二、小波基选取可供选择的小波基非常多,常用的有Haar小波,Daubechies小波,Biorthogonal小波,Symlets小波等。
不同小波各有优缺点,应根据信号特征选取适合的小波。
本次实践不对信号进行其他处理,因此仅选用一种小波对信号进行分解重构处理。
选用db1小波,即Haar小波。
Haar小波是一个正交函数系,其表达式为b 其它Haar小波函数的一般形式为j,k(t)-- (2j t—k),k=0,1,2, ••丿-2A=CAl+roipCAI=CA2+CD2A-CAS+CD 3+CD2+CD 1亠三、实践结果本次实践通过MATLAB 进行,对地震波信号进行三层分解,再重构回原信号,并将原是新号和重构信号进行对比。
信号的分解和重构过程示意图如图 1所示。
图1信号分解和重构示意图所使用的MATLAB 程序代码如下:clear all;clc;A=textread('NS.txt');%提取地震波信号N=le ngth(1:1024);Time=(0:(N-1))*0.02;figure(1)plot(Time,A); title('原始地震波信号');[c,l]=wavedec(A,3,'db1');%用db1小波对地震波信号A 进行3层小波分解 cd1= detcoef(c,l,1);%提取第一层细节系数 cd2=detcoef(c,l,2);%提取第二层细节系数 cd3=detcoef(c,l,3);%提取第三层细节系数 ca3=appcoef(c,l,'db1',3); %使用小波分解框架[c,l ]计算第三层小波系数近似值ca2=appcoef(c,l,'db1',2); %使用小波分解框架[c,l]计算第二层小波系数近似值ca1=appcoef(c,l,'db1',1); %使用小波分解框架[c,l]计算第一层小波系数近似值figure(2);subplot(3,2,1);plot(ca3); title('a3');title('第3 层低频分解');ylabel('ca3');subplot(3,2,3);plot(ca2); title('a2'); title('第2 层低频分解');ylabel('ca2');subplot(3,2,5);plot(ca1); title('al'); title('第1 层低频分解');ylabel('ca1');subplot(3,2,2);plot(cd3); title('h3'); title('第3 层高频分解');ylabel('cd3');subplot(3,2,4);plot(cd2); title('h2'); title('第2 层高频分解');ylabel('cd2');subplot(3,2,6);plot(cd1); title('h1'); title('第1 层高频分解');ylabel('cd1');%进行重构计算figure(3);A2=waverec(c,l,'db1'); % 将信号重构subplot(2,1,1),plot(Time,A);title('原始地震波信号');subplot(2,1,2),plot(Time,A2);title('重构地震波信号');通过运行上述代码,可以得到如下结果。
python小波包分解与重构小波包分解与重构是一种常用的信号分析和处理方法,通过将信号分解为不同频率的子信号,并根据需要对子信号进行处理和重构,以实现对信号的分析和提取感兴趣的信息。
本文将介绍小波包分解与重构的基本原理和步骤,并通过Python编程实现。
一、小波包分解小波包分解是指将信号通过小波包变换分解为不同频率的子信号。
小波包变换是在小波变换的基础上进行的,其基本思想是将信号分解为低频和高频成分,然后再将高频成分进行进一步的分解。
这种多层次的分解方式可以更好地揭示信号的频率特征。
小波包分解的步骤如下:1. 选择合适的小波基函数和分解层数。
小波基函数是小波变换的基础,不同的小波基函数具有不同的特性,选择合适的小波基函数可以更好地适应信号的特点。
分解层数表示对信号进行多少次的分解。
2. 对信号进行小波包分解。
首先将信号进行小波变换得到低频和高频成分,然后对高频成分进行进一步的分解,重复这个过程直到达到设定的分解层数。
3. 对分解得到的子信号进行处理。
根据需要可以对分解得到的子信号进行滤波、去噪、特征提取等操作,以实现对信号的分析和提取感兴趣的信息。
二、小波包重构小波包重构是指根据分解得到的子信号,通过逆小波包变换将其重构为原始信号。
小波包重构的过程与小波包分解相反,首先将分解得到的子信号进行逆小波变换得到高频成分,然后将高频成分与低频成分进行逆小波变换得到原始信号。
小波包重构的步骤如下:1. 对分解得到的子信号进行逆小波变换,得到高频成分。
2. 将高频成分与低频成分进行逆小波变换,得到重构后的信号。
三、Python实现小波包分解与重构在Python中,可以使用PyWavelets库来实现小波包分解与重构。
PyWavelets是一个开源的小波变换库,提供了丰富的小波基函数和变换方法。
需要安装PyWavelets库。
可以使用pip命令进行安装:```pip install PyWavelets```然后,可以使用以下代码实现小波包分解与重构:```pythonimport pywt# 选择小波基函数wavelet = 'db4'# 选择分解层数level = 3def wavelet_packet_decomposition(signal, wavelet, level):# 进行小波包分解wp = pywt.WaveletPacket(data=signal, wavelet=wavelet, mode='symmetric', maxlevel=level)return wpdef wavelet_packet_reconstruction(wp, wavelet):# 进行小波包重构signal = wp.reconstruct(update=False)return signal# 原始信号signal = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]# 进行小波包分解wp = wavelet_packet_decomposition(signal, wavelet, level)# 进行小波包重构reconstructed_signal = wavelet_packet_reconstruction(wp,wavelet)print("原始信号:", signal)print("重构信号:", reconstructed_signal)```在上述代码中,首先选择了小波基函数和分解层数,然后定义了小波包分解和重构的函数。
小波变换分解与重构小波变换(Wavelet Transform)是信号分析的一种重要工具,以其优良的时频局部性特性,被广泛应用于信号处理、图像处理、音频压缩等领域。
小波变换既可以对信号进行分解,也可以进行重构,实现从时域到频域的转换。
小波分解是指将信号分解为不同尺度、不同频率的子信号,以便对信号的各个频段分别进行分析。
在小波分解中,采用不同长度的小波基函数(Wavelet)对信号进行卷积运算,得到小波系数,其代表了信号在不同频率和尺度下的能量分布。
常用的小波函数有Haar小波、Daubechies小波等,选择不同的小波函数可以适应不同的信号特性。
小波变换的分解过程可以看作是一个多分辨率分析的过程。
通过多级分解,可以分解出信号的低频分量和高频分量。
低频分量代表了信号的整体趋势,而高频分量代表了信号的细节信息。
分解直到最后一层,得到的低频部分就是信号的近似部分,而高频部分则代表了信号的细节信息,也称为细节系数。
通过不同的分解层数,可以得到不同尺度上的细节系数,从而实现对信号的多尺度分析。
小波重构是指根据分解得到的低频部分和高频部分,重新合成原始信号的过程。
通过逆向的小波变换,可以从小波系数中恢复出原始信号。
重构的过程可以分为逐层重构和全局重构两种方法。
逐层重构是指从最高频率的细节系数开始逐步重构,直到最后得到完整的信号。
全局重构是指直接从低频部分开始重构,将所有细节系数一次性加回来,得到完整的信号。
重构的结果与原始信号相比,通常存在一定的误差,但可以通过调整小波系数的阈值或适当选择小波基函数来减小误差。
小波变换的分解与重构在信号处理中具有广泛的应用。
在图像处理中,可以利用小波变换将图像分解为不同频带的子图像,以实现图像增强、去噪、压缩等功能。
在音频处理中,可以利用小波变换对音频信号进行分析,实现音频特征提取、语音识别等任务。
在通信领域,小波变换可以用于信号的压缩和解压缩,以提高信号传输效率。
总之,小波变换的分解与重构是信号分析的一种有效方法,在各个领域都有广泛的应用。
小波分析第二次作业——分解重构算法的实现
郭欣仪
精仪学院2015级仪器科学与技术一班(博)学号:1015202034
1 理论分析
本次分解重构算法的演示将采用MATLAB中的小波工具实现。
分解与重构算法是小波分析中最重要的工具之一,几乎大部分的工程应用,如信号去噪、图像处理等,都离不开这一算法。
这里,我们使用的是MATLAB中的离散小波变换wavedec函数。
下图1介绍了这一函数进行小波分解重构的原理:
图1 离散小波变换wavedec分解过程
图中所示的过程解释如下:原始信号S进行低通、高通滤波和下抽样,得到两部分结果:低频近似系数CA1和高频细节系数CD1,这是小波变换的一级分解过程。
在此基础上,对一级分解的近似系数CA1进一步分解成CA2和CD2,以此类推,就得到了小波变换的多级分解。
图中所示为三级分解,最终得到了近似系数CA3和三个细节系数CD1、CD2、CD3。
信号的重构则是一个逆过程,对获得的近似系数和细节分量进行上抽样、低通和高通滤波处理,得到重构后的函数。
MATLAB中的wavedec函数与dwt函数功能类似,只不过一个是多层分解,一个是单层分解,wavedec函数就是dwt函数的叠加。
所以,直接使用wavedec函数,和多次使用dwt函数结果是一样的。
各自的函数参量表示如下:
[CA,CD]=dwt(S,'wavename'):dwt函数,使用小波'wavename'对信号S进行单层分解,求得的近似系数存放在CA中,细节系数存放在CD中。
[C,L]=wavedec(S,N,' wavename '):wavedec函数,使用小波' wavename '对信号S进行N层分解,所得的近似系数存放在数组C中,细节系数存放在数组L中。
在我们的程序中,还会用到以下几个函数:
A=appcoef(C,L,'wavename',N):利用小波'wavename'从分解系数[C,L]中提取第N层近似系数。
D=detcoef(C,L,N):从分解系数[C,L]中提取第N层细节系数。
S=waverec(C,L, 'wavename'):利用小波'wavename'进行小波重构。
本次演示使用的信号是一个构造的简单一维信号。
此信号带有信号突变的边界和高斯白噪声,模拟了工程应用中常见的信号类型。
分解层数采用了三层,以db1小波作为分解基底。
具体的程序和仿真结果会在后面介绍。
2 仿真程序及语句含义
具体程序如下:
clear all
s=zeros(256,1);
s(41:216)=1;
s(70:90)=1.5;
s(170:185)=1.2; %构造一个带有突变边界的原始信号
n=wgn(256,1,-20);%-20dbm的高斯白噪声
s=s+n;%加入噪声后的信号
figure(1),plot(s);grid on;xlabel('原始信号'); %出图,显示此信号
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[c,l]=wavedec(s,3,'db1'); %使用db1小波对信号进行三层分解
[cd1,cd2,cd3]=detcoef(c,l,[1 2 3]); %提取分解后的各层细节信息
ca1=appcoef(c,l,'db1',1);
ca2=appcoef(c,l,'db1',2);
ca3=appcoef(c,l,'db1',3); %提取分解后的各层近似系数
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure(2),subplot(325);
grid on;plot(cd3);title('第3层高频分解');
figure(2),subplot(323);
grid on;plot(cd2);title('第2层高频分解');
figure(2),subplot(321);
grid on;plot(cd1);title('第1层高频分解');
figure(2),subplot(326);
grid on;plot(ca3);title('第3层低频分解');
figure(2),subplot(324);
grid on;plot(ca2);title('第2层低频分解');
figure(2),subplot(322);
grid on;plot(ca1);title('第1层低频分解'); %显示分解后各层的高频低频分量
X=waverec(c,l,'db1') ;%利用db1小波进行重构
figure(3),plot(X);title('重构信号') ; %显示重构后的信号
3 仿真结果
以下三幅图是分解前的信号、分解结果和重构后的信号。
图2 分解前的原始信号
图3 分解结果
图4 重构后的信号
4 体会与认识
通过以上分解与重构算法的仿真过程,可以看到,分解后的结果当中,低频近似系数基本反映了信号的原貌,而高频分量则反映出细节信息。
越低的分解层数,对应的是频率越高的信号细节。
这样,就把信号从小的细节到大的轮廓分解成了不同的层面,对于后续的运算处理有很大的优势。
由于此次仿真只运用了分解和重构,中间没有添加其他的运算过程,因此重构以后的结果与原始信号完全相同,连噪声细节也没有变化,体现了这一重构过程的可靠性。