小波分析与实例
- 格式:ppt
- 大小:13.83 MB
- 文档页数:71
小波分析及其应用小波分析是一种将信号分解成不同频率的方法,它具有时频局域性等优点,广泛应用于信号处理、模式识别、图像处理、生物医学工程等领域。
本文将从小波分析的概念、算法及其应用等方面进行详细介绍。
小波分析最早由法国数学家莫尔。
尼斯特雷(Morlet)于20世纪80年代初提出。
它可以将原始信号分解成不同频率的小波基函数,通过对小波基函数进行不同尺度的平移和伸缩来适配信号的不同频率成分。
与传统的傅里叶变换相比,小波分析可以提供更精确的时频信息,适用于非平稳信号的分析。
小波分析的算法主要有两种:连续小波变换(CWT)和离散小波变换(DWT)。
连续小波变换是将信号与连续的小波基函数进行卷积得到小波系数,然后通过小波系数的时频表示来分析信号。
离散小波变换则是通过对信号进行多级滤波和下采样得到不同频率的小波系数,然后通过小波系数的分解和重构来还原信号。
小波分析的应用非常广泛。
在信号处理领域,小波分析可用于信号的去噪、特征提取和模式分析等。
例如,在语音信号处理中,小波分析可以提取出语音信号的共振峰位置和共振器参数,从而实现语音识别和语音合成。
在图像处理领域,小波分析可用于图像的边缘检测、纹理分析和压缩等。
例如,在图像压缩中,小波变换可以将图像的低频和高频信息分开编码,从而实现更高的图像压缩比。
在模式识别领域,小波分析可以用于图案识别和模式分类。
例如,在人脸识别中,小波分析可以对人脸图像的尺度和方向进行多尺度和多方向的分析,从而提取出不同特征,进而实现人脸的识别。
在生物医学工程领域,小波分析可用于心电信号的分析和疾病检测等。
例如,在心电信号的分析中,小波分析可以提取出心电信号的不同频率成分,从而实现对心脏疾病的检测和分析。
总之,小波分析是一种重要的信号分析方法,具有时频局域性和多分辨率分析的特点,广泛应用于信号处理、模式识别、图像处理和生物医学工程等领域。
通过对小波基函数进行不同尺度的平移和伸缩,可以实现对信号不同频率成分的分解和分析,并提取出信号的时频特征,从而实现对信号的处理和分析。
时间序列-小波分析时间序列(Time Series )是地学研究中经常遇到的问题。
在时间序列研究中,时域和频域是常用的两种基本形式。
其中,时域分析具有时间定位能力,但无法得到关于时间序列变化的更多信息;频域分析(如Fourier 变换)虽具有准确的频率定位功能,但仅适合平稳时间序列分析。
然而,地学中许多现象(如河川径流、地震波、暴雨、洪水等)随时间的变化往往受到多种因素的综合影响,大都属于非平稳序列,它们不但具有趋势性、周期性等特征,还存在随机性、突变性以及“多时间尺度”结构,具有多层次演变规律。
对于这类非平稳时间序列的研究,通常需要某一频段对应的时间信息,或某一时段的频域信息。
显然,时域分析和频域分析对此均无能为力。
20世纪80年代初,由Morlet 提出的一种具有时-频多分辨功能的小波分析(Wavelet Analysis )为更好的研究时间序列问题提供了可能,它能清晰的揭示出隐藏在时间序列中的多种变化周期,充分反映系统在不同时间尺度中的变化趋势,并能对系统未来发展趋势进行定性估计。
目前,小波分析理论已在信号处理、图像压缩、模式识别、数值分析和大气科学等众多的非线性科学领域内得到了广泛的应。
在时间序列研究中,小波分析主要用于时间序列的消噪和滤波,信息量系数和分形维数的计算,突变点的监测和周期成分的识别以及多时间尺度的分析等。
一、小波分析基本原理1. 小波函数小波分析的基本思想是用一簇小波函数系来表示或逼近某一信号或函数。
因此,小波函数是小波分析的关键,它是指具有震荡性、能够迅速衰减到零的一类函数,即小波函数)R (L )t (2∈ψ且满足:⎰+∞∞-=0dt )t (ψ (1)式中,)t (ψ为基小波函数,它可通过尺度的伸缩和时间轴上的平移构成一簇函数系:)abt (a)t (2/1b ,a -=-ψψ 其中,0a R,b a,≠∈ (2) 式中,)t (b ,a ψ为子小波;a 为尺度因子,反映小波的周期长度;b 为平移因子,反应时间上的平移。
1 绪论1.1概述小波分析是近15年来发展起来的一种新的时频分析方法。
其典型应用包括齿轮变速控制,起重机的非正常噪声,自动目标所顶,物理中的间断现象等。
而频域分析的着眼点在于区分突发信号和稳定信号以及定量分析其能量,典型应用包括细胞膜的识别,金属表面的探伤,金融学中快变量的检测,INTERNET的流量控制等。
从以上的信号分析的典型应用可以看出,时频分析应用非常广泛,涵盖了物理学,工程技术,生物科学,经济学等众多领域,而且在很多情况下单单分析其时域或频域的性质是不够的,比如在电力监测系统中,即要监控稳定信号的成分,又要准确定位故障信号。
这就需要引入新的时频分析方法,小波分析正是由于这类需求发展起来的。
在传统的傅立叶分析中,信号完全是在频域展开的,不包含任何时频的信息,这对于某些应用来说是很恰当的,因为信号的频率的信息对其是非常重要的。
但其丢弃的时域信息可能对某些应用同样非常重要,所以人们对傅立叶分析进行了推广,提出了很多能表征时域和频域信息的信号分析方法,如短时傅立叶变换,Gabor变换,时频分析,小波变换等。
其中短时傅立叶变换是在傅立叶分析基础上引入时域信息的最初尝试,其基本假定在于在一定的时间窗内信号是平稳的,那么通过分割时间窗,在每个时间窗内把信号展开到频域就可以获得局部的频域信息,但是它的时域区分度只能依赖于大小不变的时间窗,对某些瞬态信号来说还是粒度太大。
换言之,短时傅立叶分析只能在一个分辨率上进行。
所以对很多应用来说不够精确,存在很大的缺陷。
而小波分析则克服了短时傅立叶变换在单分辨率上的缺陷,具有多分辨率分析的特点,在时域和频域都有表征信号局部信息的能力,时间窗和频率窗都可以根据信号的具体形态动态调整,在一般情况下,在低频部分(信号较平稳)可以采用较低的时间分辨率,而提高频率的分辨率,在高频情况下(频率变化不大)可以用较低的频率分辨率来换取精确的时间定位。
因为这些特定,小波分析可以探测正常信号中的瞬态,并展示其频率成分,被称为数学显微镜,广泛应用于各个时频分析领域。
1 绪论1.1概述小波分析是近15年来发展起来的一种新的时频分析方法。
其典型应用包括齿轮变速控制,起重机的非正常噪声,自动目标所顶,物理中的间断现象等。
而频域分析的着眼点在于区分突发信号和稳定信号以及定量分析其能量,典型应用包括细胞膜的识别,金属表面的探伤,金融学中快变量的检测,INTERNET的流量控制等。
从以上的信号分析的典型应用可以看出,时频分析应用非常广泛,涵盖了物理学,工程技术,生物科学,经济学等众多领域,而且在很多情况下单单分析其时域或频域的性质是不够的,比如在电力监测系统中,即要监控稳定信号的成分,又要准确定位故障信号。
这就需要引入新的时频分析方法,小波分析正是由于这类需求发展起来的。
在传统的傅立叶分析中,信号完全是在频域展开的,不包含任何时频的信息,这对于某些应用来说是很恰当的,因为信号的频率的信息对其是非常重要的。
但其丢弃的时域信息可能对某些应用同样非常重要,所以人们对傅立叶分析进行了推广,提出了很多能表征时域和频域信息的信号分析方法,如短时傅立叶变换,Gabor变换,时频分析,小波变换等。
其中短时傅立叶变换是在傅立叶分析基础上引入时域信息的最初尝试,其基本假定在于在一定的时间窗内信号是平稳的,那么通过分割时间窗,在每个时间窗内把信号展开到频域就可以获得局部的频域信息,但是它的时域区分度只能依赖于大小不变的时间窗,对某些瞬态信号来说还是粒度太大。
换言之,短时傅立叶分析只能在一个分辨率上进行。
所以对很多应用来说不够精确,存在很大的缺陷。
而小波分析则克服了短时傅立叶变换在单分辨率上的缺陷,具有多分辨率分析的特点,在时域和频域都有表征信号局部信息的能力,时间窗和频率窗都可以根据信号的具体形态动态调整,在一般情况下,在低频部分(信号较平稳)可以采用较低的时间分辨率,而提高频率的分辨率,在高频情况下(频率变化不大)可以用较低的频率分辨率来换取精确的时间定位。
因为这些特定,小波分析可以探测正常信号中的瞬态,并展示其频率成分,被称为数学显微镜,广泛应用于各个时频分析领域。
小波分析在信号处理中的应用随着现代通信技术和电子设备的不断发展,我们所接收到的各种信号越来越复杂。
为了更好地处理这些信号,人们就开始了对信号进行分析和处理的研究。
其中,小波分析就是一种被广泛应用的信号处理方法。
小波分析起源于上世纪70年代初,最初是为了处理地震信号而发明的。
后来,由于其可适用性和高效性,小波分析开始在其它领域得到广泛的应用,如图像处理、语音处理、金融分析等。
由于其独特的分析方式和处理方法,小波分析已经成为传统信号处理的重要组成部分。
一、小波分析的原理小波分析采用一种图形化处理的思路,把信号波形划分成不同尺度的小波,并进行分析。
这种处理可以简单地理解为把一条曲线分解成一系列不同频率的正弦曲线,进而可以对每条正弦曲线进行分析和处理。
小波分析的特点在于它不像傅里叶变换那样只能处理静态的信号,而可以处理时变的信号。
小波分析利用的是具有局部性的函数来分析信号,使得它的分析结果更加准确独特。
同时,小波分析还可以根据信号的性质、噪声情况等对信号进行有针对性的分析和处理。
二、小波分析的应用小波分析在信号处理中有着广泛的应用,下面分几个方面进行介绍。
1、音频信号处理在音频信号处理中,小波分析可以对音频信号进行分析和压缩。
例如,对于一段音频信号,可以将其分解成不同频率段的小波,并对每个小波分别进行处理。
通过这种方式,可以将音频信号进行去噪和压缩,从而获得更好的音质效果。
2、图像处理在图像处理中,小波分析可以分解图像,并进行特征提取、去噪或图像压缩等处理。
小波分析可以把图像分成不同的频率段,通过不同频率段间的差异来提取、去除图像的某些特征,从而得到更加清晰准确的图像。
3、金融分析在金融分析中,小波分析可以对股票、期货等金融数据进行分析。
例如,可以利用小波分析来捕捉股票价格过程的多尺度移动性特征,也可以用小波分析来提取金融数据的周期性和趋势性。
4、医学信号处理在医学信号处理中,小波分析可以用来分析生理信号,例如心电信号、脑电信号等。
时间序列-小波分析时间序列(Time Series )是地学研究中经常遇到的问题。
在时间序列研究中,时域和频域是常用的两种基本形式。
其中,时域分析具有时间定位能力,但无法得到关于时间序列变化的更多信息;频域分析(如Fourier 变换)虽具有准确的频率定位功能,但仅适合平稳时间序列分析。
然而,地学中许多现象(如河川径流、地震波、暴雨、洪水等)随时间的变化往往受到多种因素的综合影响,大都属于非平稳序列,它们不但具有趋势性、周期性等特征,还存在随机性、突变性以及“多时间尺度”结构,具有多层次演变规律。
对于这类非平稳时间序列的研究,通常需要某一频段对应的时间信息,或某一时段的频域信息。
显然,时域分析和频域分析对此均无能为力。
20世纪80年代初,由Morlet 提出的一种具有时-频多分辨功能的小波分析(Wavelet Analysis )为更好的研究时间序列问题提供了可能,它能清晰的揭示出隐藏在时间序列中的多种变化周期,充分反映系统在不同时间尺度中的变化趋势,并能对系统未来发展趋势进行定性估计。
目前,小波分析理论已在信号处理、图像压缩、模式识别、数值分析和大气科学等众多的非线性科学领域内得到了广泛的应。
在时间序列研究中,小波分析主要用于时间序列的消噪和滤波,信息量系数和分形维数的计算,突变点的监测和周期成分的识别以及多时间尺度的分析等。
一、小波分析基本原理1. 小波函数小波分析的基本思想是用一簇小波函数系来表示或逼近某一信号或函数。
因此,小波函数是小波分析的关键,它是指具有震荡性、能够迅速衰减到零的一类函数,即小波函数)R (L )t (2∈ψ且满足:⎰+∞∞-=0dt )t (ψ (1)式中,)t (ψ为基小波函数,它可通过尺度的伸缩和时间轴上的平移构成一簇函数系:)abt (a)t (2/1b ,a -=-ψψ 其中,0a R,b a,≠∈ (2) 式中,)t (b ,a ψ为子小波;a 为尺度因子,反映小波的周期长度;b 为平移因子,反应时间上的平移。
到小波分析1 背景传统的信号理论,是建立在Fourier分析基础上的,而Fourier变换作为一种全局性的变化,其有一定的局限性。
在实际应用中人们开始对Fourier变换进行各种改进,小波分析由此产生了。
小波分析是一种新兴的数学分支,它是泛函数、Fourier分析、调和分析、数值分析的最完美的结晶;在应用领域,特别是在信号处理、图像处理、语音处理以及众多非线性科学领域,它被认为是继Fourier分析之后的又一有效的时频分析方法。
小波变换是近年发展起来的一种基于时频域的信号分析工具,它具有良好的时频局部性、选基灵活性和去相关性等优点,可用于光谱信号的噪声滤波和基线校正等。
此后,多位物理、数学家的合作共同奠定了小波变换的理论和应用基础。
由于小波变换能够更精确地分析信号的局部特征,在很多领域得到了越来越多地应用。
小波分析的应用领域十分广泛,它包括:数学领域的许多学科;信号分析、图象处理;量子力学、理论物理;军事电子对抗与武器的智能化;计算机分类与识别;音乐与语言的人工合成;医学成像与诊断;地震勘探数据处理;大型机械的故障诊断等方面;例如,在数学方面,它已用于数值分析、构造快速数值方法、曲线曲面构造、微分方程求解、控制论等。
在信号分析方面的滤波、去噪声、压缩、传递等。
在图象处理方面的图象压缩、分类、识别与诊断,去污等。
以及在医学方面的应用,如核磁共振成像时间、提高CT 、B超等分辨率。
2 小波变换的产生及去噪的必要性我们在一维信号分析中,可知傅里叶变换将信号分解成一系列不同频率的正弦或余弦波的叠加,与之类似,小波变换也可将信号分解成一系列小波函数的叠加,这一系列小波函数都由某个母小波函数经过平移和尺度变换得来。
以不规则的小波信号来逼近局部信号显然比用光滑的正弦信号逼近程度要好,而用不同尺度小波对同一信号进行逼近又有利于对信号进行逐步细致的分析,这正是小波分析的基本思想。
小波变换采用变化的时频窗,窗口面积固定,但形状可变。
时间序列-小波分析时间序列(Time Series )是地学研究中经常遇到的问题。
在时间序列研究中,时域和频域是常用的两种基本形式。
其中,时域分析具有时间定位能力,但无法得到关于时间序列变化的更多信息;频域分析(如Fourier 变换)虽具有准确的频率定位功能,但仅适合平稳时间序列分析。
然而,地学中许多现象(如河川径流、地震波、暴雨、洪水等)随时间的变化往往受到多种因素的综合影响,大都属于非平稳序列,它们不但具有趋势性、周期性等特征,还存在随机性、突变性以及“多时间尺度”结构,具有多层次演变规律。
对于这类非平稳时间序列的研究,通常需要某一频段对应的时间信息,或某一时段的频域信息。
显然,时域分析和频域分析对此均无能为力。
20世纪80年代初,由Morlet 提出的一种具有时-频多分辨功能的小波分析(Wavelet Analysis )为更好的研究时间序列问题提供了可能,它能清晰的揭示出隐藏在时间序列中的多种变化周期,充分反映系统在不同时间尺度中的变化趋势,并能对系统未来发展趋势进行定性估计。
目前,小波分析理论已在信号处理、图像压缩、模式识别、数值分析和大气科学等众多的非线性科学领域内得到了广泛的应。
在时间序列研究中,小波分析主要用于时间序列的消噪和滤波,信息量系数和分形维数的计算,突变点的监测和周期成分的识别以及多时间尺度的分析等。
一、小波分析基本原理1. 小波函数小波分析的基本思想是用一簇小波函数系来表示或逼近某一信号或函数。
因此,小波函数是小波分析的关键,它是指具有震荡性、能够迅速衰减到零的一类函数,即小波函数)R (L )t (2∈ψ且满足:⎰+∞∞-=0dt )t (ψ (1)式中,)t (ψ为基小波函数,它可通过尺度的伸缩和时间轴上的平移构成一簇函数系:)abt (a)t (2/1b ,a -=-ψψ 其中,0a R,b a,≠∈ (2) 式中,)t (b ,a ψ为子小波;a 为尺度因子,反映小波的周期长度;b 为平移因子,反应时间上的平移。
1 绪论1.1概述小波分析是近15年来发展起来的一种新的时频分析方法。
其典型应用包括齿轮变速控制,起重机的非正常噪声,自动目标所顶,物理中的间断现象等。
而频域分析的着眼点在于区分突发信号和稳定信号以及定量分析其能量,典型应用包括细胞膜的识别,金属表面的探伤,金融学中快变量的检测,INTERNET的流量控制等。
从以上的信号分析的典型应用可以看出,时频分析应用非常广泛,涵盖了物理学,工程技术,生物科学,经济学等众多领域,而且在很多情况下单单分析其时域或频域的性质是不够的,比如在电力监测系统中,即要监控稳定信号的成分,又要准确定位故障信号。
这就需要引入新的时频分析方法,小波分析正是由于这类需求发展起来的。
在传统的傅立叶分析中,信号完全是在频域展开的,不包含任何时频的信息,这对于某些应用来说是很恰当的,因为信号的频率的信息对其是非常重要的。
但其丢弃的时域信息可能对某些应用同样非常重要,所以人们对傅立叶分析进行了推广,提出了很多能表征时域和频域信息的信号分析方法,如短时傅立叶变换,Gabor变换,时频分析,小波变换等。
其中短时傅立叶变换是在傅立叶分析基础上引入时域信息的最初尝试,其基本假定在于在一定的时间窗内信号是平稳的,那么通过分割时间窗,在每个时间窗内把信号展开到频域就可以获得局部的频域信息,但是它的时域区分度只能依赖于大小不变的时间窗,对某些瞬态信号来说还是粒度太大。
换言之,短时傅立叶分析只能在一个分辨率上进行。
所以对很多应用来说不够精确,存在很大的缺陷。
而小波分析则克服了短时傅立叶变换在单分辨率上的缺陷,具有多分辨率分析的特点,在时域和频域都有表征信号局部信息的能力,时间窗和频率窗都可以根据信号的具体形态动态调整,在一般情况下,在低频部分(信号较平稳)可以采用较低的时间分辨率,而提高频率的分辨率,在高频情况下(频率变化不大)可以用较低的频率分辨率来换取精确的时间定位。
因为这些特定,小波分析可以探测正常信号中的瞬态,并展示其频率成分,被称为数学显微镜,广泛应用于各个时频分析领域。
小波分析及其在图像处理中的应用小波分析是一种新兴的数学分析方法,它能够对非平稳信号进行分析。
与傅里叶分析相比,小波分析具有更好的局部性和多分辨率性,可以有效地处理噪声、边缘、纹理等图像特征。
因此,在图像处理中,小波分析被广泛应用。
一、小波分析原理小波分析是一种在时间和频率两个方面都具有局部性的信号分析方法。
它使用小波基函数对非平稳信号进行分解,然后把分解出来的不同频率部分表示为对应的小波系数。
通过对这些小波系数进行处理,可以还原出原始的信号。
小波基函数是一组具有局部性、正交且可变性的函数,其中比较常用的有哈尔小波、Daubechies小波、db小波等。
小波基函数在时间和频率上都是有限的,因此可以有效地处理非平稳信号。
二、小波分析在图像处理中的应用小波分析在图像处理中的应用广泛,以下为几个常见的应用:1.图像压缩小波分析可以对图像进行离散小波变换,得到图像的小波系数。
通过对这些系数进行阈值处理,可以实现图像压缩。
由于小波系数在频域上呈现出分布不均匀的特点,因此可以通过适当的阈值处理来实现图像的有损压缩。
2.图像去噪图像常常包含许多噪声,这些噪声会干扰到图像的质量。
小波分析可以对图像进行小波变换,得到图像的小波系数。
通过对这些系数进行滤波,可以去除噪声。
在滤波的过程中,可以通过设置不同的阈值来实现不同程度的去噪效果。
3.图像边缘检测小波变换可以将图像在不同频率、不同尺度上进行分解,因此可以很好地提取图像中的特征。
在边缘检测中,可以通过对图像进行小波变换,得到不同频率的小波系数,然后根据边缘提取的原理,选取合适的小波系数进行边缘检测。
4.图像增强小波分析可以把图像分解为不同尺度的频域信息,由于不同尺度的频域信息对应着图像中的不同特征,因此可以通过增强不同尺度的频域信息来实现图像增强的效果。
三、总结小波分析作为一种新兴的数学分析方法,在图像处理中有着广泛的应用。
通过对图像进行小波变换,可以得到不同频率的小波系数,使得图像的局部特征得到了更加精细的描述,并且可以用于图像压缩、去噪、边缘检测和图像增强等方面。
小波分析在故障诊断中的应用摘要:小波分析技术具有多分辨率及良好的时域特性,为机械故障诊断提供了一条有效途径,本文以齿轮故障诊断为例,简要分析了小波分析技术在故障诊断中的应用。
关键词:小波分析;故障诊断;齿轮箱小波分析由于具有良好的时频局部化性能,已经在信号分析、图像处理、语音合成、故障诊断、地质勘探等领域取得一系列重要应用。
其多分辨率分析不仅应用于数字信号处理和分析、信号检测和噪声抑制,而且各种快速有效的算法也大大促进了小波分析在实际系统中的应用,使得小波及相关技术在通信领域中的应用也得到了广泛的研究,已逐步用于通信系统中的信号波形设计、扩频特征波形设计、多载波传输系统等。
被誉为数学显微镜的小波分析技术,为机械故障诊断中的非平稳信号分析、弱信号提取、信噪分离等提供了一条有效的途径,国内外近年来应用小波分析进行机械故障诊断的研究发展十分迅速,但就目前应用现状来看,还存在一些问题,限制了小波分析优良性质的发挥[1]。
一、小波分析理论小波分析方法具有对低频信号在频域里有较高分辨率,对高频信号在时域里也有较高的分辨率的特点,具有可调窗口的时频局部分析能力,弥补了傅立叶变换和快速傅立叶变换的不足。
目前,一般认为离散小波分析、多分辨率分析、连续小波分析及后来发展的小波包分析等都是小波理论的不同方面,是在小波理论发展的过程中不断繁衍产生的,这些方面都在故障诊断的应用中得到了体现。
㈠多分辨率分析小波分解相当于一个带通滤波器和一个低通滤波器,每次分解总是把原信号分解成两个子信号,分别称为逼近信号和细节信号,每个部分还要经过一次隔点重采样,再下一层的小波分解则是对频率的逼近部分进行类似的分解。
如此分解N次即可得到第N层(尺度N上)的小波分解结果。
在工程应用中,利用多分辨率分析可以对信号进行分解重构,不仅可以达到降噪的的目的,还可以识别在含噪声信号中有用信号的发展趋势。
㈡小波包分析小波包分解是从小波分析延伸出来的一种信号进行更加细致的分析与重构的方法。
信号处理中的小波分析方法随着数学的不断发展,信号处理成为了现代通信、图像处理、音频处理等众多领域都不可或缺的重要技术。
在信号处理的各个环节中,小波分析方法是一种十分重要的工具。
小波分析是一种基于频域的分析方法,通过对信号进行小波变换,可以将信号转化为时域和频域上的小波系数,从而更加全面地了解信号的特征和性质。
在本文中,我们将介绍小波分析的基本原理、常用小波函数及其特点、小波分析在不同领域中的应用,并探讨小波分析的改进和发展方向。
一、小波分析的基本原理小波分析的基本思想是将信号分解成不同尺度下的小波分量,并通过反变换将其重构。
这一过程需要用到小波函数,即具有一定局部性和周期性的函数。
小波函数具有多分辨率分析的性质,可以将信号分解成不同的尺度和频率部分。
在小波分解的过程中,我们通常采用Mallat算法进行高效计算。
具体而言,这一算法将小波函数分别固定在不同的尺度上,并采用快速傅里叶变换(FFT)对每一层小波系数进行计算,从而实现了快速的小波分解过程。
在重构过程中,我们通过迭代地对小波系数进行逆变换,得到原始信号的近似。
由于小波分析具有采样率可变、时间尺度可变等特点,在图像处理、音频处理、信号压缩和解析等领域中被广泛应用。
二、常用小波函数及其特点小波函数具有很多种形式,其中最为常用的包括Daubechies小波、Haar小波、Symlets小波和Coiflets小波等。
这些小波函数在不同领域中应用十分广泛,具有各自的特点和应用场景。
(一)Daubechies小波Daubechies小波是最为常用的小波函数之一,其系数由Daubechies提出。
Daubechies小波可以采用不同的阶数进行选择,通常采用的是4阶、6阶、8阶和10阶Daubechies小波。
这一小波函数具有均匀的频响特性和良好的近似能力,在图像处理、语音处理、信号压缩等领域应用比较广泛。
(二)Haar小波Haar小波是最简单的小波函数之一,只有两个基本函数。