MATLAB系统辨识工具箱简介(NJUST)
- 格式:pdf
- 大小:117.97 KB
- 文档页数:6
MATLAB工具箱介绍软件Matlab由美国MathWorks, Inc.公司出品,它的前身是C1eveMoler教授(现为美国工程院院士,Mathworks公司首席科学家)为著名的数学软件包LINPACK和EISPACK所写的一个接口程序。
经过近20年的发展,目前Matlab已经发展成一个系列产品,包括它的内核及多个可供选择的工具箱。
Matlab的工具箱数目不断增加,功能不断改善,这里简要介绍其中的几个。
MATLAB 的M文件、工具箱索引和网上资源,可以从处查找。
(1)通讯工具箱 (Communication ToolboX)★提供100多个函数及150多个SIMULINK模块,用于系统的仿真和分析★可由结构图直接生成可应用的C语言源代码(2)控制系统工具箱 (Control System Too1box)★连续系统设计和离散系统设计★状态空间和传递函数★模型转换★频域响应:Bode图、Nyquist图、Nichols图★时域响应:冲击响应、阶跃响应、斜波响应等★根轨迹、极点配置、LQG(3)金融工具箱 (Financial Loo1boX)★成本、利润分析,市场灵敏度分析★业务量分析及优化★偏差分析★资金流量估算★财务报表(4)频率域系统辨识工具箱 (Frequency Domain System Identification Toolbox) ★辨识具有未知延迟的连续和离散系统★计算幅值/相位、零点/极点的置信区间★设计周期激励信号、最小峰值、最优能量谱等(5)模糊逻辑工具箱 (Fuzzy Logic Too1box)★友好的交互设计界面★自适应神经—模糊学习、聚类以及Sugeno推理★支持SIMULINK动态仿真★可生成C语言源代码用于实时应用(6)高阶谱分析工具箱 (Higher—Order Spectral Analysis Toolbox)★高阶谱估计★信号中非线性特征的检测和刻划★延时估计★幅值和相位重构★阵列信号处理★谐波重构(7)图像处理工具箱 (Image Processing Toolbox)★二维滤波器设计和滤波★图像恢复增强★色彩、集合及形态操作★二维变换★图像分析和统计(8)线性矩阵不等式控制工具箱 (LMI Control Too1boX)★LMI的基本用途★基于GUI的LMI编辑器★LMI问题的有效解法★LMI问题解决方案(9)模型预测控制工具箱 (Model Predictive Contro1 Too1box)★建模、辨识及验证★支持MISO模型和MIMO模型★阶跃响应和状态空间模型(10) μ分析与综合工具箱 (μ- Analysis and Synthesis Too1box) ★ μ分析与综合★H2和H∞最优综合★模型降阶★连续和离散系统★μ分析与综合理论(11)神经网络工具箱 (Neural Network Toolbox for MATLAB)★BP,Hopfield,Kohonen、自组织、径向基函数等网络★竞争、线性、Sigmoidal等传递函数★前馈、递归等网络结构★性能分析及反应(12)优化工具箱 (Optimization Too1box)★线性规划和二次规划★求函数的最大值和最小值★多目标优化★约束条件下的优化★非线性方程求解(13)偏微分方程工具箱 (Partial Differential Equation Toolbox) ★二维偏微方程的图形处理★几何表示★自适应曲面绘制★有限元方法(14)鲁捧控制工具箱 (Robust Contro1 Too1box)★LQG/LTR最优综合★H2和H∞最优综合★奇异值模型降阶★谱分解和建模(15)信号处理工具箱 (Signal Processing ToolboX)★数字和模拟滤波器设计、应用及仿真★谱分析和估计★FFT,DCT等变换★参数化模型(16)样条工具箱 (Spline Too1box)★分段多项式和B样条★样条的构造★曲线拟合及平滑★函数微分、积分(17)统计工具箱 (Statistics Too1box)★概率分布和随机数生成★多变量分析★回归分析★主元分析★假设检验(18)符号数学工具箱 (Symbolic Math Too1box) ★符号表达式和符号短阵的创建★符号微积分、线性代数、方程求解★因式分解、展开和简化★符号函数的二维图形★图形化函数计算器(19)系统辨识工具箱 (System Identification Toolbox) ★状态空间和传递函数模型★模型验证★ MA,AR,ARMA等★基于模型的信号处理★谱分析(20)小波工具箱 (WaveLab)★基于小波的分析和综合★图形界面和命令行接口★连续和离散小波变换及小波包★一维、二维小波★自适应去噪和压缩。
matlab中systemidentification
System Identification Toolbox是MATLAB中的一个工具箱,用于通过观察系统输入和输出之间的关系,自动地从数据中提取数学模型,并进行参数估计和模型验证。
系统辨识(System Identification)是指通过实验数据来推测未知的控制系统或物理系统的动态模型,主要包括系统的传递函数、状态空间模型或差分方程模型等。
MATLAB提供了许多函数来进行系统辨识,如:
1. iddata:用于从实验数据创建实验数据对象
2. idss:用于创建状态空间模型对象
3. idtf:用于创建传递函数模型对象
4. idpoly:用于创建基于自回归多项式的ARX模型对象
此外,MATLAB还提供了基于不同算法的辨识方法,如ARX算法、ARMAX算法、Box-Jenkins算法、OE算法、BJ算法等。
系统辨识在控制工程、机械工程、航空航天等领域有着广泛的应用,例如用于飞机或汽车的控制、传感器模型的辨识、医疗设备的建模等。
matlab system identification toolbox使用1. 引言1.1 概述本文旨在介绍如何使用Matlab系统辨识工具箱(Matlab System Identification T oolbox)进行系统辨识。
系统辨识是一种通过收集并分析数据来推断未知系统的数学模型的过程。
这个工具箱为用户提供了许多功能和方法,可以帮助他们有效地进行系统辨识任务。
1.2 文章结构本文将按照以下结构展开内容:首先,在第二部分中,我们将简要介绍Matlab 系统辨识工具箱的概念和作用。
然后,在第三部分中,我们将概述常用的系统辨识方法,包括参数辨识方法、非参数辨识方法以及模型结构选择方法。
接下来,在第四部分中,我们将详细阐述使用Matlab系统辨识工具箱的步骤,包括数据准备与预处理、模型建立与训练以及评估模型性能与调整参数。
最后,在第五部分中,我们将通过实例分析与讨论的方式来加深对这些步骤的理解,并让读者更好地掌握使用该工具箱进行实际应用的技巧和思路。
1.3 目的本文的目标是向读者全面介绍Matlab系统辨识工具箱的使用方法,帮助读者了解该工具箱的潜力和功能。
通过这篇长文,读者将能够了解系统辨识的基本概念、常用的方法以及如何利用Matlab系统辨识工具箱进行实际操作。
我们希望读者能够通过学习本文提供的知识,进一步提升在系统辨识领域的能力,并成功应用于各种实际问题中。
2. Matlab系统辨识工具箱简介2.1 工具箱概述Matlab系统辨识工具箱是Matlab软件中的一部分,用于进行系统辨识与模型建立的分析。
它提供了一系列功能强大的工具和算法,用于从实验数据中估计或推断出系统的数学模型。
通过使用系统辨识工具箱,用户可以在Matlab环境下快速、方便地进行参数辨识、非参数辨识以及模型验证等任务。
这些功能使得用户能够更好地理解和分析已有的数据,并为进一步建立、优化或控制系统提供有力支持。
2.2 工具箱功能Matlab系统辨识工具箱提供了丰富多样的功能,包括以下几个方面:- 参数辨识:通过估计线性或非线性模型的参数值来描述实际系统。
MATLAB系统辨识工具箱学习详细教程MATLAB系统辨识工具箱是MATLAB软件中的一个工具箱,用于进行系统辨识和模型建模的分析。
该工具箱提供了多种辨识算法和工具,可以对线性和非线性系统进行辨识,并生成对应的数学模型。
下面将为您详细介绍MATLAB系统辨识工具箱的学习过程。
首先,在使用MATLAB系统辨识工具箱前,需要安装MATLAB软件并具备一定的MATLAB编程基础。
如果您还没有安装MATLAB或者对MATLAB不够熟悉,建议您先进行相关的学习和了解。
1.学习基本概念:在开始学习MATLAB系统辨识工具箱之前,需要了解一些基本概念,例如系统辨识、模型建模、参数估计等。
可以通过阅读相关的系统辨识的教材或者进行在线,对相关概念有一个基本的了解。
2.熟悉MATLAB系统辨识工具箱界面:3.数据导入:在进行系统辨识之前,首先需要准备好系统辨识所需的数据。
数据可以是实验数据或者仿真数据,可以是时域数据或者频域数据。
在系统辨识工具箱界面的“数据导入”区域,可以将数据导入到MATLAB中进行后续的辨识分析。
4.选择模型类型:在进行系统辨识之前,需要选择适合的数学模型类型。
MATLAB系统辨识工具箱提供了多种常见的模型类型,包括ARX模型、ARMAX模型、OE模型、TFE模型等。
选择合适的模型类型对辨识结果的精度和准确性有重要的影响。
5.选择辨识算法:在选择模型类型后,需要选择合适的辨识算法进行参数估计和模型建模。
MATLAB系统辨识工具箱提供了多种常用的辨识算法,例如最小二乘法、极大似然法、递推最小二乘法等。
选择合适的辨识算法也对辨识结果的精度和准确性有重要的影响。
6.进行系统辨识:在选择了合适的模型类型和辨识算法后,可以在系统辨识工具箱界面中点击“辨识”按钮,开始进行系统辨识分析。
系统辨识工具箱会根据所选的模型类型和辨识算法,对输入的数据进行参数估计和模型建模,并生成相应的辨识结果。
7.结果分析和评估:在系统辨识完成后,可以在系统辨识工具箱界面中查看辨识结果和模型质量评估。
Matlab中的系统辨识和系统建模技术随着科技的发展和网络的普及,计算机科学在世界各个领域扮演着越来越重要的角色。
在工程领域,特别是在控制系统设计和信号处理方面,Matlab是一种非常强大而灵活的工具。
Matlab提供了一系列用于系统辨识和系统建模的技术,可以帮助工程师更好地分析和设计控制系统。
本文将探讨Matlab中系统辨识和系统建模的一些关键技术和应用。
系统辨识是从已知输入和输出数据中推断出系统动态特性和参数的过程。
在实际应用中,我们经常需要对系统进行建模和分析,以便设计适当的控制器或进行仿真。
Matlab中提供的系统辨识工具箱(System Identification Toolbox)可以实现这个目标。
系统辨识工具箱提供了一系列用于建立数学模型和预测系统行为的函数。
用户只需要提供输入和输出数据,系统辨识工具箱就可以根据不同的算法和模型,自动推断出最佳的系统模型。
这些模型可以是连续或离散时间的,并且可以使用不同的参数化形式,如ARX模型、ARMAX模型、Box-Jenkins模型等。
在进行系统辨识之前,我们需要确保输入和输出数据是准确和可靠的。
Matlab中的数据导入和预处理功能可以帮助我们完成这个任务。
数据导入功能可以处理各种格式的数据文件,如文本文件、Excel文件等。
通过简单的命令,我们可以加载并预览数据,确保数据的正确性。
此外,Matlab还提供了数据滤波和预处理的功能,如去除噪声、平滑曲线、截取有效数据等。
这些功能有助于减小误差,提高系统辨识的精度和可靠性。
一旦数据准备就绪,我们就可以使用系统辨识工具箱中的函数来建立系统模型。
在选择模型结构时,我们需要考虑系统的物理特性和数学适应性。
Matlab提供了多种模型结构选择方法,如最小二乘法、极大似然法、信息准则法等。
这些方法可以自动评估不同模型结构的拟合效果,并给出最佳模型的准则。
此外,Matlab还提供了模型验证和验证的工具,可以通过比较模型预测和实测数据,评估模型的准确性和适应性。
matlab中的system identification toolbox使用系统辨识工具箱(System Identification Toolbox)是MATLAB中用于进行系统辨识的工具包,它提供了一系列用于建立、分析和验证数学模型的函数和工具,并可用于模型预测控制、滤波器设计、故障检测等各种应用领域。
系统辨识是指通过给定的输入输出数据,确定系统的数学模型或者估计系统的参数。
在工程领域中,系统辨识通常用于建立数学模型的目的,然后用于分析和控制系统的行为。
系统辨识工具箱提供了各种方法和算法,使用户能够根据实验数据进行参数估计、模型建立和验证。
下面将介绍一些系统辨识工具箱的功能和使用方法。
首先是参数估计。
系统辨识通常涉及到对系统参数的估计,以获得准确的数学模型。
系统辨识工具箱中的函数可以根据给定的输入输出数据,使用最小二乘法或其他优化算法,对系统参数进行估计。
例如,使用函数`ar`可以进行自回归(AR)模型的参数估计,使用函数`armax`可以进行自回归滑动平均外部输入(ARMAX)模型的参数估计。
其次是模型建立。
系统辨识工具箱提供了多种模型结构,包括自回归(AR)、移动平均(MA)、自回归滑动平均(ARMA)以及自回归滑动平均外部输入(ARMAX)等模型。
用户可以根据实际情况选择合适的模型结构,并使用系统辨识工具箱中的函数进行模型的建立。
例如,使用函数`tfest`可以进行传递函数模型的建立,使用函数`nlarx`可以进行非线性自回归外部输入(NARX)模型的建立。
另外,系统辨识工具箱还提供了对系统辨识结果进行验证和分析的功能。
用户可以使用工具箱中的函数进行模型的预测和仿真分析,以验证模型的准确性和可靠性。
例如,可以使用函数`predict`进行模型的预测,使用函数`compare`进行模型的仿真分析。
此外,系统辨识工具箱还包含了一些用于模型结构选择和参数优化的函数和工具。
用户可以使用这些函数和工具进行模型的优化和改进。
Matlab常用工具箱介绍(英汉对照)Matlab Main Toolbox——matlab主工具箱Control System Toolbox——控制系统工具箱Communication Toolbox——通讯工具箱Financial Toolbox——财政金融工具箱System Identification Toolbox——系统辨识工具箱Fuzzy Logic Toolbox——模糊逻辑工具箱Higher-Order Spectral Analysis Toolbox——高阶谱分析工具箱Image Processing Toolbox——图象处理工具箱LMI Control Toolbox——线性矩阵不等式工具箱Model predictive Control Toolbox——模型预测控制工具箱μ-Analysis and Synthesis Toolbox——μ分析工具箱Neural Network Toolbox——神经网络工具箱Optimization Toolbox——优化工具箱Partial Differential Toolbox——偏微分方程工具箱Robust Control Toolbox——鲁棒控制工具箱Signal Processing Toolbox——信号处理工具箱Spline Toolbox——样条工具箱Statistics Toolbox——统计工具箱Symbolic Math Toolbox——符号数学工具箱Simulink Toolbox——动态仿真工具箱System Identification Toolbox——系统辨识工具箱Wavele Toolbox——小波工具箱例如:控制系统工具箱包含如下功能:连续系统设计和离散系统设计状态空间和传递函数以及模型转换时域响应(脉冲响应、阶跃响应、斜坡响应)频域响应(Bode图、Nyquist图)根轨迹、极点配置较为常见的matlab控制箱有:控制类:控制系统工具箱(control systems toolbox)系统识别工具箱(system identification toolbox)鲁棒控制工具箱(robust control toolbox)神经网络工具箱(neural network toolbox)频域系统识别工具箱(frequency domain system identification toolbox)模型预测控制工具箱(model predictive control toolbox)多变量频率设计工具箱(multivariable frequency design toolbox)信号处理类:信号处理工具箱(signal processing toolbox)滤波器设计工具箱(filter design toolbox)通信工具箱(communication toolbox)小波分析工具箱(wavelet toolbox)高阶谱分析工具箱(higher order spectral analysis toolbox)其它工具箱:统计工具箱(statistics toolbox)数学符号工具箱(symbolic math toolbox)定点工具箱(fixed-point toolbox)射频工具箱(RF toolbox)1990年,MathWorks软件公司为Matlab提供了新的控制系统模型化图形输入与仿真工具,并命名为Simulab,使得仿真软件进入了模型化图形组态阶段,1992年正式命名为Simulink,即simu(仿真)和link(连接)。
第9章控制工程类工具箱介绍MATLAB的工具箱为使用该软件的不同领域内的研究人员提供了捷径。
迄今为止,大约有30多种工具箱面世,内容涉及自动控制、信号处理、图象处理等多种领域。
这些工具箱可以用来扩充MATLAB的符号计算功能、图形建模仿真功能、文字处理功能以及与硬件实时交互功能,也可以应用于多种学科、多种领域。
与这些工具箱函数相关的使用格式可以通过Help命令得到,用户也可以针对具体系统设计自己的工具箱。
9.2系统辨识工具箱系统辨识工具箱的主要功能包括:①参数模型辨识。
主要模型有ARX、ARMAX、BJ模型,以及状态空间和输入误差等模型类的辨识。
②非参数模型辨识。
③模型的验证。
对辨识模型的仿真,将真实输出数据与模型预测数据比较,计算相应的残差。
④基于递推算法的ARX、ARMAX模型的辨识。
⑤各种模型类的建立和转换函数。
⑥集成多种功能的图形用户界面。
该界面以图形的交互方式提供模型类的选择和建立、输入输出数据的加载和预处理,以及模型的估计等。
9.2.1 系统辨识原理及辨识模型简介系统辨识的主要内容包括:实验设计,模型结构辨识,模型参数辨识,模型检验。
常用的模型类有:(1)参数模型类利用有限的参数来表示对象的模型,在系统辨识工具箱中的参数模型类有:ARX模型、ARMAX模型、BJ(Box-Jenkins)模型、状态空间模型和输入误差模型。
通常都限定为以下特殊的情形:① ARX模型:()()()()()=-+(9.8)A q y tB q u t nk e t② ARMAX模型:()()()()()()=-+(9.9)A q y tB q u t nkC q e t③ BJ模型:()[()/()]()[()/()]()=-+(9.10) y t B q F q u t nk C q D q e t=-+(9.11) ()()[()/()]()[()/()]()A q y tB q F q u t nkC qD q e t④输入误差模型:()()[()/()]()()=-+(9.12)A q y tB q F q u t nk e t⑤ 状态空间模型:(1)()()()()()()x t Ax t Bu t y t Cx t Du t v t +=+=++ (9.13)其中A,B,C,D 为状态空间模型的系数矩阵,v(t)为外界噪声信号。
matlab系统辨识(System Identification Tool)系统辨识工具箱早听说matlab博大精深,神通广大了,于是乎我确定肯定有更简单、直观、强大的工具来完成这小儿科把戏。
查资料琢磨之后,我做了个小实验,在simulink里验证了该种方法。
该方法的大原则是:在确定了系统的输入输出数据(两个列向量N×1形式,如果是1×N,会提示出错!)之后,设计好一定的辨识原则(比如说是2阶?3阶?,传递函数是零极点形式,还是带阻尼形式,等等),然后就交给强大的matlab,得到辨识结果。
Step by step,plz!Step1、建立模型获取系统输入输出数据图1图1系统的输入是阶跃信号,用Scope1监视,并输出到workspace (这步不会的自己百度哦),采样周期是0.1s,得到输入变量u(101×1的矩阵);本人在系统的阶跃响应上叠加了一白噪声,当然也可以不加噪声,加了噪声就是期望更真实的模拟实际情况,白噪声参数设置见图2图2同样在Scope2监视,也将结果输出到workspace,得到响应数据y(同样也是101×1的矩阵)Step 2、进入辨识工具箱&设置辨识规则直接在command window 输入ident,回车,进入辨识工具箱图3图3点击import下拉菜单,选时域数据time domain data,见图4图4在下图5红色圈区域输入之前得到的系统输入和输出数据,u和y图5在下图6绿色圈内输入数据的一些信息,因为之前模型中,阶跃起点我是放在0s处的,这里也设置0,如果前面模型仿真是1s,这里应该也是1s;采样时间是0.1s,根据实际情况设置统一哦图6设置完之后,点击import此时界面变成图7图7如果在下图8勾选红框这个选项,就会出现我们刚才设定输入输出数据的曲线,如图9所示,其他勾选项是频域的分析和显示,暂不用它。
图8图9看看与我们实际设置的输入输出是否符合,如果符合,那么我们离成功就不远咯,如果发现异常,那再好好检查一遍,直到确保数据导入没有问题!下面两段红色斜杠之间的内容,对于本实验,可以直接跳过,看一下对后续复杂模型的处理有好处哦,也算全面熟悉一下工具。