第七章 布朗运动
- 格式:ppt
- 大小:4.47 MB
- 文档页数:78
第七章分子动理论第2节分子的热运动一、扩散现象1.对扩散现象的认识(1)扩散现象:不同物质能够彼此进入对方的现象。
(2)产生原因:由物质分子的运动产生。
(3)发生环境:物质处于固态、液态和气态时,都能发生扩散现象。
(4)意义:证明了物质分子永不停息地做无规则运动。
(5)规律:温度越高,扩散现象越明显。
(6)应用:在高温条件下通过分子的扩散在纯净的半导体材料中掺入其他元素来生产半导体器件。
2.影响扩散现象明显程度的因素(1)物态①物质的扩散现象最快、最显著。
②物质的扩散现象最慢,短时间内非常不明显。
③物质的扩散现象的明显程度介于气态与固态之间。
(2)温度:在两种物质一定的前提下,扩散现象发生的明显程度与物质的温度有关,温度越高,扩散现象越显著。
(3)浓度差:两种物质的浓度差越大,扩散现象越显著3.分子运动的两个特点(1)永不停息:不分季节,也不分白天和黑夜,分子每时每刻都在运动。
(2)无规则:单个分子的运动无规则,但大量分子的运动又具有规律性,总体上分子由浓度大的地方向浓度小的地方运动。
二、布朗运动1.对布朗运动的认识(1)概念:悬浮在液体(或气体)中的微粒不停地做。
(2)产生的原因:大量液体(或气体)分子对悬浮微粒撞击的不平衡造成的。
(3)布朗运动的特点:永不停息、无规则。
(4)影响因素:微粒越小,布朗运动越,温度越高,布朗运动越。
(5)意义:布朗运动间接地反映了液体(气体)分子运动的无规则性。
2.影响因素(1)微粒越小,布朗运动越明显:悬浮微粒越小,某时刻与它相撞的分子数越少,来自各方向的冲击力越不易平衡;另外微粒越小,其质量也就越小,相同冲击力下产生的加速度越大。
因此,微粒越小,布朗运动越明显。
(2)温度越高,布朗运动越激烈:温度越高,液体分子的运动(平均)速率越大,对悬浮于其中的微粒的撞击作用也越大,产生的加速度也越大,因此温度越高,布朗运动越激烈。
3.实质布朗运动不是分子的运动,而是固体微粒的运动。
第七章分子动理论知识建构专题应用专题一分子动理论的理解与应用分子动理论的内容是:物体是由大量分子组成的,分子永不停息地做无规则运动,分子之间同时存在着引力和斥力。
布朗运动和扩散现象说明了分子永不停息地做无规则运动。
1.布朗运动:尽管布朗运动本身并不是分子运动,但由于它的形成原因是由于分子的撞击,所以它能反映分子的运动特征,这就是布朗运动的意义所在。
具体地讲:(1)布朗运动永不停息,说明分子的运动是永不停息的;(2)布朗运动路线的无规则,说明分子的运动是无规则的;(3)温度越高,颗粒越小,布朗运动越剧烈,说明分子无规则运动的剧烈程度还与温度有关。
在宏观上与温度有关的现象称为热现象。
布朗运动的种种特征充分表明:分子永不停息地做无规则运动——热运动。
2.扩散现象:(1)从浓度高处向浓度低处扩散;(2)扩散快慢除与此物质的状态有关外,还与温度有关;(3)从微观机理看,扩散现象说明了物体的分子都在不停地运动着。
【专题训练1】关于分子动理论,下列说法正确的是()。
A.分子间的引力和斥力不能同时存在B.组成物质的分子在永不停息地做无规则运动C.布朗运动与分子运动是不同的D.扩散现象和布朗运动都反映了分子永不停息地做无规则运动专题二分子力曲线与分子势能曲线分子力随分子间距离变化的图象与分子势能随分子间距离变化的图象非常相似(如图所示),但却有着本质的区别。
现比较如下:1.分子间同时存在着引力和斥力,它们都随分子间距离的增大(减小)而减小(增大),但斥力比引力变化得快。
对外表现的分子力F是分子间引力和斥力的合力。
2.在r<r0范围内分子力F、分子势能E p都随分子间距离r的减小而增大,但在r>r0的范围内,随着分子间距离r的增大,分子力F是先增大后减小,而分子势能E p一直增大。
3.当r=r0时分子处于平衡状态,此时分子间的引力、斥力同样存在,分子力F为零,分子势能E p最小。
【专题训练2】根据分子动理论,物体分子间距离为r0等于10-10 m,此时分子所受引力和斥力大小相等,以下说法中正确的是()。
第2节分子的热运动1.不同物质能够彼此进入对方的现象叫扩散现象。
2.布朗运动是指悬浮在液体中的固体微粒不停息的无规则运动,它是液体分子无规则运动的反映,但并非液体分子的运动。
3.悬浮微粒越小,液体温度越高,布朗运动越明显。
4.分子永不停息的无规则运动叫热运动,温度越高,热运动越激烈。
一、扩散现象1.定义不同物质能够彼此进入对方的现象。
2.产生原因物质分子的无规则运动。
3.意义反映分子在做永不停息的无规则运动。
4.应用生产半导体器件时,在高温条件下通过分子的扩散在纯净半导体材料中掺入其他元素。
二、布朗运动1.概念悬浮微粒在液体(或气体)中的无规则运动。
2.产生原因大量液体(或气体)分子对悬浮微粒撞击作用的不平衡性。
3.影响因素微粒越小、温度越高,布朗运动越激烈。
4.意义间接反映了液体(或气体)分子运动的无规则性。
三、分子的热运动1.定义分子永不停息的无规则运动。
2.宏观表现布朗运动和扩散现象。
3.特点(1)永不停息;(2)运动无规则;(3)温度越高,分子的热运动越激烈。
1.自主思考——判一判(1)扩散现象只能在气体中发生。
(×)(2)布朗运动就是液体分子的无规则运动。
(×)(3)悬浮微粒越大,布朗运动越明显。
(×)(4)布朗运动的剧烈程度与温度有关。
(√)(5)物体运动的速度越大,其内部分子热运动越激烈。
(×)(6)扩散现象和布朗运动都是分子的运动。
(×)2.合作探究——议一议(1)一碗小米倒入一碗大米中,小米进入大米的间隙之中是否属于扩散现象?提示:扩散现象是指由于分子的无规则运动,不同物质(分子)彼此进入对方的现象。
显然,上述现象不是分子运动的结果,而是两种物质的混合,所以不属于扩散现象。
(2)冬天里,一缕阳光射入教室内,我们看到的尘埃上下舞动是布朗运动吗?提示:不是。
布朗运动是用肉眼无法直接看到的。
(3)布朗运动的观察记录图是颗粒的运动轨迹吗?提示:该记录图是每隔某一相等时间记录的颗粒所在位置的连线,并不是颗粒运动的实际轨迹。
1、引言布朗运动的数学模型就是维纳过程。
布朗运动就是指悬浮粒子受到碰撞一直在做着不规则的运动。
我们现在用)(t W 来表示运动中一个微小粒子从时刻0=t 到时刻0>t 的位移的横坐标,并令0)0(=W 。
根据Einstein 的理论,我们可以知道微粒之所以做这种运动,是因为在每一瞬间,粒子都会受到其他粒子对它的冲撞,而每次冲撞时粒子所受到的瞬时冲力的大小和方向都不同,又粒子的冲撞是永不停息的,所以粒子一直在做着无规则的运动。
故粒子在时间段],(t s 上的位移,我们可把它看成是多个小位移的总和。
我们根据中心极限定理,假设位移)()(s W t W -服从正态分布,那么在不相重叠的时间段内,粒子碰撞时受到的冲力的方向和大小都可认为是互不影响的,这就说明位移)(t W 具有独立的增量。
此时微粒在某一个时段上位移的概率分布,我们便能认为其仅仅与这一时间段的区间长度有关,而与初始时刻没有关系,也就是说)(t W 具有平稳增量。
2.维纳过程2.1独立增量过程维纳过程是典型的随机过程,属于所谓的独立增量过程,在随机过程的理论和应用中起着很重要的作用。
现在我们就来介绍独立增量过程。
定义:}0),({≥t t X 是二阶矩过程, 那么我们就称t s s X t X <≤-0),()(为随机过程在区间],(t s 上的增量。
若对任意的n )(+∈N n 和任意的n t t t <<<≤Λ100,n 个增量)()(,),()(),()(11201----n n t X t X t X t X t X t X Λ是相互独立的,那么我们就称}0),({≥t t X 为独立增量过程。
我们可以证明出在0)0(=X 的条件下,独立增量过程的有限维分布函数族可由增量)0(),()(t s s X t X <≤-的分布所确定。
如果对R h ∈和)()(,0h s X h t X h t h s +-++<+≤与)()(s X t X -的分布是相同的,我们就称增量具有平稳性。