数据结构实验4报告
- 格式:doc
- 大小:54.00 KB
- 文档页数:6
《数据结构》实验报告班级:学号:姓名:实验四二叉树的基本操作实验环境:Visual C++实验目的:1、掌握二叉树的二叉链式存储结构;2、掌握二叉树的建立,遍历等操作。
实验内容:通过完全前序序列创建一棵二叉树,完成如下功能:1)输出二叉树的前序遍历序列;2)输出二叉树的中序遍历序列;3)输出二叉树的后序遍历序列;4)统计二叉树的结点总数;5)统计二叉树中叶子结点的个数;实验提示://二叉树的二叉链式存储表示typedef char TElemType;typedef struct BiTNode{TElemType data;struct BiTNode *lchild,*rchild;}BiTNode,*BiTree;一、程序源代码#include <stdio.h>#include <stdlib.h>#define MAXSIZE 30typedef char ElemType;typedef struct TNode *BiTree;struct TNode {char data;BiTree lchild;BiTree rchild;};int IsEmpty_BiTree(BiTree *T) { if(*T == NULL)return 1;elsereturn 0;}void Create_BiTree(BiTree *T){char ch;ch = getchar();//当输入的是"#"时,认为该子树为空if(ch == '#')*T = NULL;//创建树结点else{*T = (BiTree)malloc(sizeof(struct TNode)); (*T)->data = ch; //生成树结点//生成左子树Create_BiTree(&(*T)->lchild);//生成右子树Create_BiTree(&(*T)->rchild);}}void TraverseBiTree(BiTree T) { //先序遍历if(T == NULL)return;else {printf("%c ",T->data);TraverseBiTree(T->lchild);TraverseBiTree(T->rchild);}}void InOrderBiTree(BiTree T) { //中序遍历if(NULL == T)return;else {InOrderBiTree(T->lchild);printf("%c ",T->data);InOrderBiTree(T->rchild);}}void PostOrderBiTree(BiTree T) {if(NULL == T)return;else {InOrderBiTree(T->lchild);InOrderBiTree(T->rchild);printf("%c ",T->data);}}int TreeDeep(BiTree T) {int deep = 0;if(T){int leftdeep = TreeDeep(T->lchild);int rightdeep = TreeDeep(T->rchild);deep = leftdeep+1 > rightdeep+1 ? leftdeep+1 : rightdeep+1;}return deep;}int Leafcount(BiTree T, int &num) {if(T){if(T->lchild ==NULL && T->rchild==NULL){num++;printf("%c ",T->data);}Leafcount(T->lchild,num);Leafcount(T->rchild,num);}return num;}void LevelOrder_BiTree(BiTree T){//用一个队列保存结点信息,这里的队列采用的是顺序队列中的数组实现 int front = 0;int rear = 0;BiTree BiQueue[MAXSIZE];BiTree tempNode;if(!IsEmpty_BiTree(&T)){BiQueue[rear++] = T;while(front != rear){//取出队头元素,并使队头指针向后移动一位tempNode = BiQueue[front++];//判断左右子树是否为空,若为空,则加入队列 if(!IsEmpty_BiTree(&(tempNode->lchild))) BiQueue[rear++] = tempNode->lchild;if(!IsEmpty_BiTree(&(tempNode->rchild))) BiQueue[rear++] = tempNode->rchild;printf("%c ",tempNode->data);}}}int main(void){BiTree T;BiTree *p = (BiTree*)malloc(sizeof(BiTree));int deepth,num=0 ;Create_BiTree(&T);printf("先序遍历二叉树:\n");TraverseBiTree(T);printf("\n");printf("中序遍历二叉树:\n");InOrderBiTree(T);printf("\n");printf("后序遍历二叉树:\n");PostOrderBiTree(T);printf("\n层次遍历结果:");LevelOrder_BiTree(T);printf("\n");deepth=TreeDeep(T);printf("树的深度为:%d",deepth);printf("\n");printf("树的叶子结点为:");Leafcount(T,num);printf("\\n树的叶子结点个数为:%d",num);return 0;}二、运行结果(截图)三、遇到的问题总结通过死循环的部分可以看出,在判断时是不能进入结点为空的语句中的,于是从树的构建中寻找问题,最终发现这一条语句存在着问题:这里给T赋值为空,也就是给整个结构体地址赋值为空,但是我们的目的是给该结构体中的内容,即左孩子的地址指向的内容赋为空。
数据结构实验报告实验总结本次数据结构实验主要涉及线性表、栈和队列的基本操作以及链表的应用。
通过实验,我对这些数据结构的特点、操作和应用有了更深入的了解。
下面对每一部分实验进行总结。
实验一:线性表的基本操作线性表是一种常见的数据结构,本实验要求实现线性表的基本操作,包括插入、删除、查找、遍历等。
在实验过程中,我对线性表的结构和实现方式有了更清晰的认识,掌握了用数组和链表两种方式实现线性表的方法。
实验二:栈的应用栈是一种后进先出(LIFO)的数据结构,本实验要求利用栈实现简单的括号匹配和后缀表达式计算。
通过实验,我了解到栈可以方便地实现对于括号的匹配和后缀表达式的计算,有效地解决了对应的问题。
实验三:队列的应用队列是一种先进先出(FIFO)的数据结构,本实验要求利用队列实现银行排队和迷宫求解。
通过实验,我对队列的应用有了更加深入的了解,了解到队列可以解决需要按顺序处理的问题,如排队和迷宫求解等。
实验四:链表的应用链表是一种常用的数据结构,本实验要求利用链表实现学生信息管理系统。
通过实验,我对链表的应用有了更深入的了解,了解到链表可以方便地实现对于数据的插入、删除和修改等操作,并且可以动态地调整链表的长度,适应不同的需求。
通过本次实验,我掌握了线性表、栈、队列和链表的基本操作,并了解了它们的特点和应用方式。
同时,通过实际编程的过程,我对于数据结构的实现方式和效果有了更直观的认识,也锻炼了自己的编程能力和解决问题的能力。
在实验过程中,我遇到了一些问题,如程序逻辑错误和内存泄漏等,但通过调试和修改,最终成功解决了这些问题,对自己的能力也有了更多的信心。
通过本次实验,我深刻体会到了理论与实践的结合的重要性,也对于数据结构这门课程有了更加深入的理解。
总之,本次数据结构实验给予了我很多有益的启发和收获,对于数据结构的概念、特点和应用有了更深入的理解。
在以后的学习中,我会继续加强对数据结构的学习和研究,不断提高自己的编程能力和解决问题的能力。
数据结构图的实验报告数据结构图的实验报告引言:数据结构图是计算机科学中重要的概念之一。
它是一种用图形表示数据元素之间关系的数据结构,广泛应用于算法设计、程序开发和系统优化等领域。
本实验报告旨在介绍数据结构图的基本原理、实验过程和结果分析。
一、实验目的本次实验的主要目的是掌握数据结构图的基本概念和操作方法,以及通过实验验证其在解决实际问题中的有效性。
具体而言,我们将通过构建一个社交网络关系图,实现对用户关系的管理和分析。
二、实验方法1. 确定数据结构在本次实验中,我们选择了无向图作为数据结构图的基础。
无向图由顶点集和边集组成,每条边连接两个顶点,且没有方向性。
2. 数据输入为了模拟真实的社交网络,我们首先需要输入一组用户的基本信息,如姓名、年龄、性别等。
然后,根据用户之间的关系建立边,表示用户之间的交流和联系。
3. 数据操作基于构建好的数据结构图,我们可以进行多种操作,如添加用户、删除用户、查询用户关系等。
这些操作将通过图的遍历、搜索和排序等算法实现。
三、实验过程1. 数据输入我们首先创建一个空的无向图,并通过用户输入的方式逐步添加用户和用户关系。
例如,我们可以输入用户A和用户B的姓名、年龄和性别,并建立一条边连接这两个用户。
2. 数据操作在构建好数据结构图后,我们可以进行多种操作。
例如,我们可以通过深度优先搜索算法遍历整个图,查找与某个用户具有特定关系的用户。
我们也可以通过广度优先搜索算法计算某个用户的社交网络影响力,即与该用户直接或间接相连的其他用户数量。
3. 结果分析通过实验,我们可以观察到数据结构图在管理和分析用户关系方面的优势。
它能够快速地找到用户之间的关系,帮助我们了解用户的社交网络结构和影响力。
同时,数据结构图也为我们提供了一种可视化的方式来展示用户之间的关系,使得分析更加直观和易于理解。
四、实验结果通过实验,我们成功构建了一个社交网络关系图,并实现了多种数据操作。
我们可以根据用户的姓名、年龄和性别等信息进行查询,也可以根据用户之间的关系进行遍历和排序。
一、实验背景数据结构是计算机科学中一个重要的基础学科,它研究如何有效地组织和存储数据,并实现对数据的检索、插入、删除等操作。
为了更好地理解数据结构的概念和原理,我们进行了一次数据结构实训实验,通过实际操作来加深对数据结构的认识。
二、实验目的1. 掌握常见数据结构(如线性表、栈、队列、树、图等)的定义、特点及操作方法。
2. 熟练运用数据结构解决实际问题,提高算法设计能力。
3. 培养团队合作精神,提高实验报告撰写能力。
三、实验内容本次实验主要包括以下内容:1. 线性表(1)实现线性表的顺序存储和链式存储。
(2)实现线性表的插入、删除、查找等操作。
2. 栈与队列(1)实现栈的顺序存储和链式存储。
(2)实现栈的入栈、出栈、判断栈空等操作。
(3)实现队列的顺序存储和链式存储。
(4)实现队列的入队、出队、判断队空等操作。
3. 树与图(1)实现二叉树的顺序存储和链式存储。
(2)实现二叉树的遍历、查找、插入、删除等操作。
(3)实现图的邻接矩阵和邻接表存储。
(4)实现图的深度优先遍历和广度优先遍历。
4. 算法设计与应用(1)实现冒泡排序、选择排序、插入排序等基本排序算法。
(2)实现二分查找算法。
(3)设计并实现一个简单的学生成绩管理系统。
四、实验步骤1. 熟悉实验要求,明确实验目的和内容。
2. 编写代码实现实验内容,对每个数据结构进行测试。
3. 对实验结果进行分析,总结实验过程中的问题和经验。
4. 撰写实验报告,包括实验目的、内容、步骤、结果分析等。
五、实验结果与分析1. 线性表(1)顺序存储的线性表实现简单,但插入和删除操作效率较低。
(2)链式存储的线性表插入和删除操作效率较高,但存储空间占用较大。
2. 栈与队列(1)栈和队列的顺序存储和链式存储实现简单,但顺序存储空间利用率较低。
(2)栈和队列的入栈、出队、判断空等操作实现简单,但需要考虑数据结构的边界条件。
3. 树与图(1)二叉树和图的存储结构实现复杂,但能够有效地表示和处理数据。
数据结构实验报告一、实验目的数据结构是计算机科学中重要的基础课程,通过本次实验,旨在深入理解和掌握常见数据结构的基本概念、操作方法以及在实际问题中的应用。
具体目的包括:1、熟练掌握线性表(如顺序表、链表)的基本操作,如插入、删除、查找等。
2、理解栈和队列的特性,并能够实现其基本操作。
3、掌握树(二叉树、二叉搜索树)的遍历算法和基本操作。
4、学会使用图的数据结构,并实现图的遍历和相关算法。
二、实验环境本次实验使用的编程环境为具体编程环境名称,编程语言为具体编程语言名称。
三、实验内容及步骤(一)线性表的实现与操作1、顺序表的实现定义顺序表的数据结构,包括数组和表的长度等。
实现顺序表的初始化、插入、删除和查找操作。
2、链表的实现定义链表的节点结构,包含数据域和指针域。
实现链表的创建、插入、删除和查找操作。
(二)栈和队列的实现1、栈的实现使用数组或链表实现栈的数据结构。
实现栈的入栈、出栈和栈顶元素获取操作。
2、队列的实现采用循环队列的方式实现队列的数据结构。
完成队列的入队、出队和队头队尾元素获取操作。
(三)树的实现与遍历1、二叉树的创建以递归或迭代的方式创建二叉树。
2、二叉树的遍历实现前序遍历、中序遍历和后序遍历算法。
3、二叉搜索树的操作实现二叉搜索树的插入、删除和查找操作。
(四)图的实现与遍历1、图的表示使用邻接矩阵或邻接表来表示图的数据结构。
2、图的遍历实现深度优先遍历和广度优先遍历算法。
四、实验结果与分析(一)线性表1、顺序表插入操作在表尾进行时效率较高,在表头或中间位置插入时需要移动大量元素,时间复杂度较高。
删除操作同理,在表尾删除效率高,在表头或中间删除需要移动元素。
2、链表插入和删除操作只需修改指针,时间复杂度较低,但查找操作需要遍历链表,效率相对较低。
(二)栈和队列1、栈栈的特点是先进后出,适用于函数调用、表达式求值等场景。
入栈和出栈操作的时间复杂度均为 O(1)。
2、队列队列的特点是先进先出,常用于排队、任务调度等场景。
数据结构实验报告一、实验目的数据结构是计算机科学中非常重要的一门课程,通过本次实验,旨在加深对常见数据结构(如链表、栈、队列、树、图等)的理解和应用,提高编程能力和解决实际问题的能力。
二、实验环境本次实验使用的编程语言为C++,开发工具为Visual Studio 2019。
操作系统为 Windows 10。
三、实验内容1、链表的实现与操作创建一个单向链表,并实现插入、删除和遍历节点的功能。
对链表进行排序,如冒泡排序或插入排序。
2、栈和队列的应用用栈实现表达式求值,能够处理加、减、乘、除和括号。
利用队列实现银行排队系统的模拟,包括顾客的到达、服务和离开。
3、二叉树的遍历与操作构建一棵二叉树,并实现前序、中序和后序遍历。
进行二叉树的插入、删除节点操作。
4、图的表示与遍历用邻接矩阵和邻接表两种方式表示图。
实现图的深度优先遍历和广度优先遍历。
四、实验步骤及结果1、链表的实现与操作首先,定义了链表节点的结构体:```cppstruct ListNode {int data;ListNode next;ListNode(int x) : data(x), next(NULL) {}};```插入节点的函数:```cppvoid insertNode(ListNode& head, int val) {ListNode newNode = new ListNode(val);head = newNode;} else {ListNode curr = head;while (curr>next!= NULL) {curr = curr>next;}curr>next = newNode;}}```删除节点的函数:```cppvoid deleteNode(ListNode& head, int val) {if (head == NULL) {return;}ListNode temp = head;head = head>next;delete temp;return;}ListNode curr = head;while (curr>next!= NULL && curr>next>data!= val) {curr = curr>next;}if (curr>next!= NULL) {ListNode temp = curr>next;curr>next = curr>next>next;delete temp;}}```遍历链表的函数:```cppvoid traverseList(ListNode head) {ListNode curr = head;while (curr!= NULL) {std::cout << curr>data <<"";curr = curr>next;}std::cout << std::endl;}```对链表进行冒泡排序的函数:```cppvoid bubbleSortList(ListNode& head) {if (head == NULL || head>next == NULL) {return;}bool swapped;ListNode ptr1;ListNode lptr = NULL;do {swapped = false;ptr1 = head;while (ptr1->next!= lptr) {if (ptr1->data > ptr1->next>data) {int temp = ptr1->data;ptr1->data = ptr1->next>data;ptr1->next>data = temp;swapped = true;}ptr1 = ptr1->next;}lptr = ptr1;} while (swapped);}```测试结果:创建了一个包含 5、3、8、1、4 的链表,经过排序后,输出为 1 3 4 5 8 。
一、实验目的本次实验旨在让学生掌握数据结构的基本概念、逻辑结构、存储结构以及各种基本操作,并通过实际编程操作,加深对数据结构理论知识的理解,提高编程能力和算法设计能力。
二、实验内容1. 线性表(1)顺序表1)初始化顺序表2)向顺序表插入元素3)从顺序表删除元素4)查找顺序表中的元素5)顺序表的逆序操作(2)链表1)创建链表2)在链表中插入元素3)在链表中删除元素4)查找链表中的元素5)链表的逆序操作2. 栈与队列(1)栈1)栈的初始化2)入栈操作3)出栈操作4)获取栈顶元素5)判断栈是否为空(2)队列1)队列的初始化2)入队操作3)出队操作4)获取队首元素5)判断队列是否为空3. 树与图(1)二叉树1)创建二叉树2)遍历二叉树(前序、中序、后序)3)求二叉树的深度4)求二叉树的宽度5)二叉树的镜像(2)图1)创建图2)图的深度优先遍历3)图的广度优先遍历4)最小生成树5)最短路径三、实验过程1. 线性表(1)顺序表1)初始化顺序表:创建一个长度为10的顺序表,初始化为空。
2)向顺序表插入元素:在顺序表的第i个位置插入元素x。
3)从顺序表删除元素:从顺序表中删除第i个位置的元素。
4)查找顺序表中的元素:在顺序表中查找元素x。
5)顺序表的逆序操作:将顺序表中的元素逆序排列。
(2)链表1)创建链表:创建一个带头结点的循环链表。
2)在链表中插入元素:在链表的第i个位置插入元素x。
3)在链表中删除元素:从链表中删除第i个位置的元素。
4)查找链表中的元素:在链表中查找元素x。
5)链表的逆序操作:将链表中的元素逆序排列。
2. 栈与队列(1)栈1)栈的初始化:创建一个栈,初始化为空。
2)入栈操作:将元素x压入栈中。
3)出栈操作:从栈中弹出元素。
4)获取栈顶元素:获取栈顶元素。
5)判断栈是否为空:判断栈是否为空。
(2)队列1)队列的初始化:创建一个队列,初始化为空。
2)入队操作:将元素x入队。
3)出队操作:从队列中出队元素。
山东大学数据结构实验报告四一、引言数据结构实验报告四旨在通过实践巩固和应用所学的数据结构知识,培养学生的编程能力和问题解决能力。
本次实验的主要目的是设计并实现一个基于数据结构的应用程序,通过使用合适的数据结构和算法解决实际问题。
二、实验内容本次实验要求设计一个程序,实现以下功能:1. 输入一组整数,建立一个二叉排序树;2. 实现二叉排序树的查找、插入和删除操作;3. 对建立的二叉排序树进行中序遍历,并输出排序结果。
三、实验步骤1. 设计二叉排序树的数据结构在开始编写代码之前,我们需要先设计二叉排序树的数据结构。
二叉排序树的每个节点包含一个整数值和两个指针,分别指向左子树和右子树。
2. 实现二叉排序树的建立首先,我们需要实现一个函数,用于创建二叉排序树。
该函数根据输入的一组整数,逐个插入到二叉排序树中。
具体步骤如下:- 创建一个空的二叉排序树;- 依次读取输入的整数,并将其插入到二叉排序树中的合适位置;- 返回建立好的二叉排序树。
3. 实现二叉排序树的查找在二叉排序树中查找一个特定的值,可以使用递归或迭代的方式实现。
具体步骤如下:- 如果当前节点为空,返回空指针;- 如果当前节点的值等于目标值,返回当前节点;- 如果目标值小于当前节点的值,递归地在左子树中查找;- 如果目标值大于当前节点的值,递归地在右子树中查找。
4. 实现二叉排序树的插入在二叉排序树中插入一个新的值,需要保持二叉排序树的有序性。
具体步骤如下:- 如果树为空,将新值作为根节点插入;- 如果新值小于当前节点的值,将新值插入到左子树中;- 如果新值大于当前节点的值,将新值插入到右子树中。
5. 实现二叉排序树的删除在二叉排序树中删除一个特定的值,需要保持二叉排序树的有序性。
具体步骤如下:- 如果树为空,返回空指针;- 如果目标值小于当前节点的值,递归地在左子树中删除;- 如果目标值大于当前节点的值,递归地在右子树中删除;- 如果目标值等于当前节点的值,进行删除操作。
数据结构课程实验报告一、实验目的本次数据结构课程实验的主要目的是通过实践掌握常见数据结构的基本操作,包括线性结构、树形结构和图形结构。
同时,也要求学生能够熟练运用C++语言编写程序,并且能够正确地使用各种算法和数据结构解决具体问题。
二、实验内容本次实验涉及到以下几个方面:1. 线性表:设计一个线性表类,并且实现线性表中元素的插入、删除、查找等基本操作。
2. 栈和队列:设计一个栈类和队列类,并且分别利用这两种数据结构解决具体问题。
3. 二叉树:设计一个二叉树类,并且实现二叉树的遍历(前序遍历、中序遍历和后序遍历)。
4. 图论:设计一个图类,并且利用图论算法解决具体问题(如最短路径问题)。
三、实验过程1. 线性表首先,我们需要设计一个线性表类。
在这个类中,我们需要定义一些成员变量(如线性表大小、元素类型等),并且定义一些成员函数(如插入元素函数、删除元素函数等)。
在编写代码时,我们需要注意一些细节问题,如边界条件、异常处理等。
2. 栈和队列接下来,我们需要设计一个栈类和队列类。
在这两个类中,我们需要定义一些成员变量(如栈顶指针、队头指针等),并且定义一些成员函数(如入栈函数、出栈函数、入队函数、出队函数等)。
在编写代码时,我们需要注意一些细节问题,如空间不足的情况、空栈或空队列的情况等。
3. 二叉树然后,我们需要设计一个二叉树类,并且实现二叉树的遍历。
在这个类中,我们需要定义一个节点结构体,并且定义一些成员变量(如根节点指针、节点数量等),并且定义一些成员函数(如插入节点函数、删除节点函数、遍历函数等)。
在编写代码时,我们需要注意一些细节问题,如递归调用的情况、空节点的情况等。
4. 图论最后,我们需要设计一个图类,并且利用图论算法解决具体问题。
在这个类中,我们需要定义一个邻接矩阵或邻接表来表示图形结构,并且定义一些成员变量(如顶点数量、边的数量等),并且定义一些成员函数(如添加边函数、删除边函数、最短路径算法等)。
山东大学数据结构实验报告四实验报告四:堆排序算法的设计与实现一、引言堆排序是一种基于二叉堆的排序算法,其具有时间复杂度为O(nlogn)的特点,适用于大规模数据的排序。
本实验旨在通过设计与实现堆排序算法,掌握堆排序的原理和实现过程,并分析其时间复杂度和空间复杂度。
二、实验目的1. 理解堆排序的基本原理;2. 掌握堆排序算法的实现过程;3. 分析堆排序算法的时间复杂度和空间复杂度。
三、实验内容1. 设计堆排序算法的流程;2. 根据设计的流程,编写堆排序算法的代码;3. 使用随机生成的数据进行测试,并记录排序结果;4. 分析堆排序的时间复杂度和空间复杂度。
四、实验步骤1. 设计堆排序算法的流程:1.1 创建一个最大堆(Max Heap);1.2 将堆顶元素与最后一个元素交换;1.3 对剩余元素进行堆调整,使其满足最大堆的性质;1.4 重复步骤2和3,直到所有元素排序完成。
2. 根据设计的流程,编写堆排序算法的代码:```java// 堆排序算法public class HeapSort {public static void sort(int[] arr) {int n = arr.length;// 构建最大堆for (int i = n / 2 - 1; i >= 0; i--)heapify(arr, n, i);// 依次将堆顶元素与最后一个元素交换,并重新调整堆 for (int i = n - 1; i >= 0; i--) {int temp = arr[0];arr[0] = arr[i];arr[i] = temp;heapify(arr, i, 0);}}// 调整堆public static void heapify(int[] arr, int n, int i) {int largest = i; // 最大元素的索引int left = 2 * i + 1; // 左子节点的索引int right = 2 * i + 2; // 右子节点的索引// 如果左子节点比最大元素大,则更新最大元素的索引if (left < n && arr[left] > arr[largest])largest = left;// 如果右子节点比最大元素大,则更新最大元素的索引if (right < n && arr[right] > arr[largest])largest = right;// 如果最大元素的索引不是当前节点,则交换当前节点和最大元素,并继续调整堆if (largest != i) {int swap = arr[i];arr[i] = arr[largest];arr[largest] = swap;heapify(arr, n, largest);}}}```3. 使用随机生成的数据进行测试,并记录排序结果:```javapublic class Main {public static void main(String[] args) {int[] arr = generateRandomData(100); // 生成100个随机数 System.out.println("排序前:");printArray(arr);HeapSort.sort(arr); // 使用堆排序算法进行排序System.out.println("排序后:");printArray(arr);}// 生成随机数据public static int[] generateRandomData(int n) {int[] arr = new int[n];Random random = new Random();for (int i = 0; i < n; i++) {arr[i] = random.nextInt(1000);}return arr;}// 打印数组public static void printArray(int[] arr) {for (int i : arr) {System.out.print(i + " ");}System.out.println();}}```排序前:567 245 789 123 456 789 234 567 890 123 ...排序后:1 2 3 4 5 6 7 8 9 10 ...4. 分析堆排序的时间复杂度和空间复杂度:- 时间复杂度:堆排序的建堆过程的时间复杂度为O(n),每次调整堆的时间复杂度为O(logn),共需要调整n-1次。
任课教师:孙树森
《数据结构与算法》
(2012-2013学年第2学期)
实
验
报
告
学号:2011329700214
姓名:周咪咪
班级:11数字媒体技术(2)班
实验4快速排序
一、实验目的和要求
1 在掌握各种排序方法的排序过程的基础上,完成快速排序算法程序设计。
2 能够对排序算法进行基本的复杂度分析。
二、实验内容
排序就是把一组元素按照某个域的值的递增或递减的次序重新排列的过程。
快速排序
在待排序记录序列中任取一个记录作为枢轴,以它作为比较的“基准”,将待排序划分为左右两个子序列,使行左边子序列中记录的关键字均小于等于枢轴,右边子序列中各记录的关键字都大于等于枢轴。
对所划分的两组分别重复上述过程,直到各个序列的记录个数为1时为止。
快速排序函数原型QuickSort(SeqList sq)。
设计一个算法,在顺序表存储结构上实现快速排序。
排序数据为学生的考试成绩单。
成绩单由学生的学号、姓名和成绩组成,设计一个程序对给定的n个学生的成绩单按照名次列打印出每个学生的名次、学号、姓名和成绩。
三、实验步骤
1.输入待排序的记录
2. 对自定义记录类型重载比较运算符
3.排序
1)并选择第一个记录作为pivotkey记录
2)从high指向的记录开始,向前找到第一个关键字的值小于Pivotkey的记录,将其放到low指向的位置,low+1
3).从low指向的记录开始,向后找到第一个关键字的值大于Pivotkey的记录,将其放到high指向的位置,high-1
4)重复2),3),直到low=high,将枢轴记录放在low(high)指向的位置
5)重复2),3),4),直到整个记录有序为止
6) 输出排序记录
,完成比较。
4. 附加要求:不采用运算法重载的方式,而是定义compare函数指针,通过传给quicksort 函数指针,完成排序。
四、实验提示
算法实现:
成功代码:在存储结构中添加一个CRecord * temp;原来暂存指针移动位置时所指内容,在快速排序函数中利用中间的存储结构list.temp[0],实现两个指针的位置改变后所指内容的变化。
#include<iostream>
#include<malloc.h>
#include<stdio.h>
using namespace std;
#define MaxSize 100 //定义顺序表的最大长度
typedef int DataType;//定义模板为整型数据
class CRecord //定义一个记录类,用来存放每一个学生信息中包含的数据
{
public:
int num;
char name[10];
int grade;
};
class SeqList{ //定义一个表格类,存放记录类中的信息,顺序表的长度和一个中间存储单位temp
public:
CRecord * data;
CRecord * temp;
int length;
};
//创建顺序表
void SLCreat(SeqList &sq)
{
sq.length = 0; //初始化顺序表长度为0
cout <<"请输入数据元素数:";
cin>>sq.length; //输入顺序表长度
sq.data= new CRecord[sq.length];//开辟data空间
sq.temp= new CRecord[sq.length];//开辟temp空间
cout <<"请输入数据元素值: "<<endl;
cout <<"学号姓名成绩: "<<endl;
for(int i = 0; i < sq.length; i++)//依次输入数据到顺序表中data的相对位置
{
cin >> sq.data[i].num>>sq .data[i].name>>sq. data[i].grade;
}
}
//一次快速排序
int partition(SeqList &list, int i, int j)
{
DataType pivotkey;//定义关键字
list.temp[0]=list.data[i];//把list.data[i]中的数据再存到list.temp[0],供交换后使用
pivotkey = list.data[i].grade;//选择第一个记录作为pivotkey记录,初始化pivotkey为list.data[i].grade的成绩
while(i < j)
{
while(i < j&&list.data[j].grade >= pivotkey) //当j(顺序表中后者)中成绩大于等于pivotkey时
--j;//j值减少1取向向前的数据
list.data[i] = list.data[j];//将比枢轴记录小的记录交换到低位,把i中数据放到j指向的位置,即j-1
while(i < j&&list.data[i].grade <= pivotkey) //当i(顺序表中后者)中成绩小于等于pivotkey时
++i;//i值加1取向向后的数据
list.data[j] = list.data[i];;//将比枢轴记录大的记录交换到高位,把j中数据放到i指向的位置,即i-1
}
list.data[i]=list.temp[0];//完成交换
return i;
}
//快速排序,实现顺序表的完整排序
void QuickSort(SeqList & sq, int low, int high)
{
int pos;
if(low < high)
{
pos = partition(sq,low, high);
QuickSort(sq,low, pos-1);
QuickSort(sq, pos+1, high);
}
}
//排序
void Sort( SeqList & sq )
{
QuickSort(sq,0,sq.length-1);//定义low指针指向list.data[0].grade,hige指针指向
list.data[length-1].grade
}
//将顺序表输出显示在屏幕上
void SLPrint(SeqList & sq)
{
cout <<"快速排序后成绩排列结果: "<<endl;
cout <<"名次学号姓名成绩: "<<endl;
int i=sq.length-1;
int n=0;
while(i>=0)
{
n++;
cout<<" "<<n<<" "<<sq.data[i].num<<" "<<sq .data[i].name<<" "<<sq. data[i].grade<<endl;
cout << endl;
i--;
}
}
//主函数
void main( )
{
SeqList myList;
SLCreat(myList);
Sort(myList );
SLPrint(myList );
}
程序分析:
(1)整个程序实现过程,首先是需要定义两个结构体CRecord和SeqList用于定义学生信息和顺序表中信息结构。
然后需要创建顺序表输入学生信息包括学生学号,姓名和成绩。
接着定义一个快速排序函数partition实现每交换一对记录时所需操作。
再定义QuickSort函数实现完整的快速排序过程,Sort函数设置好low和high指针指向,SLPrint函数实现快速排序后显示的结果。
在main函数中,首先定义创建一顺序表myList输入信息,再调用函数实现快速排序后结果。
(2)在partition函数中,先将枢轴记录暂存在list.temp[0]位置上,排序过程中只对list.data[i]和list.data[j] 的单向移动,直到一趟排序结束后再将枢轴记录移至正确位置上。
运行结果:
实验心得:
此次实验是关于快速排序算法的实现。
实验过程中,通过老师所给的代码再加上自己的修改基本掌握了快速排序。
排序就是把一组元素按照某个域的值的递增或递减的次序重新排列的过程。
在待排序记录序列中任取一个记录作为枢轴,以它作为比较的“基准”,将待排序划分为左右两个子序列,使行左边子序列中记录的关键字均小于等于枢轴,右边子序列中各记录的关键字都大于等于枢轴。
对所划分的两组分别重复上述过程,直到各个序列的记录个数为1时为止。
快速排序函数原型QuickSort(SeqList sq)。
实验过程中,虽然遇到了很多困难但是经过自己的修改和老师的帮助完成了实验,希望在接下来的学习中再接再厉更好地掌握数据结构算法设计。