正交试验法及实例分析
- 格式:ppt
- 大小:2.20 MB
- 文档页数:29
测试用例设计方法--正交试验法详解正交试验法介绍正交试验法是研究多因素、多水平的一种试验法,它是利用正交表来对试验进行设计,通过少数的试验替代全面试验,根据正交表的正交性从全面试验中挑选适量的、有代表性的点进行试验,这些有代表性的点具备了“均匀分散,整齐可比”的特点。
正交表是一种特制的表格,一般用L n (m k)表示,L 代表是正交表,n 代表试验次数或正交表的行数,k 代表最多可安排影响指标因素的个数或正交表的列数,m 表示每个因素水平数,且有n=k*(m-1)+1。
正交表的特点正交表具有以下两个特点。
正交表必须满足这两个特点,有一条不满足,就不是正交表。
每列中不同数字出现的次数相等。
这一特点表明每个因素的每个水平与其它因素的每个水平参与试验的几率是完全相同的,从而保证了在各个水平中最大限度地排除了其它因素水平的干扰,能有效地比较试验结果并找出最优的试验条件。
在任意2列其横向组成的数字对中,每种数字对出现的次数相等。
这个特点保证了试验点均匀地分散在因素与水平的完全组合之中,因此具有很强的代表性。
使用正交试验法的原因对于单因素或两因素试验,因其因素少,试验的设计、实施与分析都比较简单。
但在实际工作中,常常需要同时考察3个或3个以上的试验因素,若进行全面试验,试验的规模很大,由于时间和成本的限制我们不可能进行全面试验,但是具体挑其中的哪些测试用例进行测试我们心里拿不准,总担心不做不挑选的那些测试用例会遗漏一些严重缺陷。
为了有效的、合理地减少测试的工时与费用,我们利用正交试验法来设计测试用例。
正交试验法就是安排多因素试验、寻求最优水平组合的一种高效率的试验设计方法。
我们用测试实例来进行说明使用正交试验法设计测试用例的好处。
测试需求:某所大学通信系共2个班级,刚考完某一门课程,想通过“性别”、“班级”和“成绩”这三个查询条件对通信系这门课程的成绩分布,男女比例或班级比例进行人员查询: 根据“性别”=“男,女”进行查询 根据“班级”=“1班,2班”查询 根据“成绩”=“及格,不及格”查询按照传统设计——全部测试分析上述测试需求,有3个被测元素,被测元素我们称为因素,每个因素有两个取值,我们称之为水平值,所以全部测试用例个数是2*2*2=8,参见下表利用正交表设计测试用例,我们得到的测试用例个数是n=3*(2-1)+1=4,对于三因素两水平的刚好有L4(23)的正交表可以套用,于是用正交表试验法得出4个测试用例如下:根据实际需要可以在用正交试验法设计用例的基础上补充一些测试用例。
三种外加剂正交试验设计及分析介绍在工业生产过程中,为了提高产品的品质并满足客户需求,工程师往往需要使用外加剂来改善产品的各种性能。
外加剂是指特定的化学物质,添加到原材料或产品中,以改变其性能。
外加剂可用于增强产品的性能、延长使用寿命、提高产品的稳定性和可靠性等。
外加剂的使用过程中,需要实施正交试验设计。
正交试验设计是将多个因素组合起来,通过设计实验研究它们的影响,以确定它们在不同条件下的效果。
正交试验设计可以帮助工程师找到最佳的外加剂用量和配方,从而提高产品的质量和生产效率。
本文将介绍三种正交试验设计方法,并探讨它们在外加剂改良产品性能中的应用。
一、L9 正交设计试验L9 正交设计试验是一种经典的3 水平正交设计试验方法,它通常用于研究三个因素对产品性能的影响。
L9 正交设计试验的设计方案如下:表1 L9 正交设计试验设计方案因素A B C水平1 2 3 1 2 3 1 2 31 - - + - + - + -2 - + - + - - + + -3 + - - + + - - - +L9 正交设计试验的目的是确定三个因素A、B 和C 对产品性能的影响。
每个因素有3 个不同的水平,每一组实验有9 个试样。
实验过程中,每个因素的三个水平都被测试,记录每个水平下的样本性能,以便确定哪种因素水平对性能影响最大。
例如,当应用L9 正交设计试验确定添加剂A、B 和C 对聚酯树脂性能的影响时,可以将每种外加剂的三个不同浓度水平标记为1、2 和3。
然后确定每个试验中使用的三种外加剂的水平组合,并记录每个水平下的样本性能,以确定哪种水平的每个因素对产品性能产生最大影响。
二、L16 正交设计试验L16 正交设计试验是一种4 水平正交设计试验方法,它通常用于研究四个因素对产品性能的影响。
L16 正交设计试验的设计方案如下:表2 L16 正交设计试验设计方案因素A B C D水平1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 41- - + + - - + + - - - + + - - +2- + - + + - - + - + - + - + - +3 + - - + + - - - + + - - - + + -4 + + + - + + + - - - + + + - - -L16 正交设计试验的目的是确定四个因素A、B、C 和D 对产品性能的影响。
第七章-正交试验设计法第七章:正交试验设计法正交试验设计法是一种实验设计方法,旨在有效地确定多个因素对结果的影响,并找到最佳的组合条件。
正交设计法是一种统计方法,通过在试验设计中使用正交矩阵来实现对各个因素的全面考虑和分析。
本章将详细介绍正交试验设计法的原理、应用和优势。
7.1 正交试验设计法的原理正交试验设计法的原理基于一个关键观点:在多因素实验设计中,通过设计合理的试验矩阵,能够避免因素之间的相互干扰,从而有效地确定各个因素对结果的影响。
正交试验设计法通过使用正交矩阵,将各个因素进行组合,确保在限定的试验条件下,各个因素之间的相互影响最小化。
这样,通过对正交试验设计法进行数据分析,可以准确地确定各个因素对结果的主导程度。
7.2 正交试验设计法的应用正交试验设计法在许多领域中得到广泛应用,特别是在工程、医学、化学和农业等实验研究中。
正交试验设计法可以帮助研究人员从多个因素中确定影响结果的主要因素,并找到最佳的操作条件。
例如,在工程领域中,正交试验设计法可以用于确定材料的最佳组合,以提高产品质量和性能。
在医学研究中,正交试验设计法可用于确定药物的最佳剂量和治疗方案。
在农业研究中,正交试验设计法可以用于确定最佳的种植条件和施肥方法。
总之,正交试验设计法可以帮助研究人员快速、准确地找到最佳的解决方案。
7.3 正交试验设计法的优势正交试验设计法相比传统的试验设计方法有以下几个优势:1. 高效性:正交试验设计法可以通过使用正交矩阵,将多个因素进行有效组合,从而减少试验次数,提高试验效率。
2. 统计可靠性:正交试验设计法通过使用正交矩阵,可以有效地避免因素之间的相互干扰,确保实验结果的统计可靠性。
3. 实用性:正交试验设计法不仅可以用于确定各个因素对结果的影响程度,还可以用于优化因素的组合以达到最佳效果。
4. 灵活性:正交试验设计法可以应用于不同的实验设计要求,可灵活调整试验因素和水平,以满足具体的研究需求。
正交实验设计及结果分析报告(二)引言概述:正交实验设计是一种重要的统计方法,用于系统地研究多个因素对实验结果的影响。
本报告旨在继续探讨正交实验设计,并通过对结果的分析来进一步验证实验设计的有效性和可行性。
本报告将分为五个大点进行阐述,包括实验设计的优势、正交设计的基本原理、正交设计中的参数设定、模型建立与分析、以及结果的解释与验证。
正文内容:1.实验设计的优势1.1提高实验效率:正交实验设计可以将多个因素同时考虑,并将因素的组合设计为试验方案,从而减少试验次数,提高实验效率。
1.2确定关键因素:正交实验设计通过系统地考虑多个因素及其组合方式,可以帮助研究人员确定对实验结果最为关键的因素。
1.3提高可靠性:正交实验设计具有统计学严谨的基础,能够提高实验结果的可靠性和可重复性。
2.正交设计的基本原理2.1正交表的构造:正交表是正交实验设计的基础工具,通过构造正交表,可以实现各个因素水平的均衡分布,从而减少误差的影响。
2.2剔除交互作用:正交设计通过设置正交表中的交互作用项为0,将多个因素的相互作用剔除,使得试验结果更加直接和可解释。
2.3方差分析原理:正交设计采用方差分析方法对结果进行分析,通过检验因素的显著性和误差的可接受程度,得出结果是否具有统计学意义。
3.正交设计中的参数设定3.1因素的选择:根据实验目的和已知因素,选择对结果影响较大的因素作为试验因素,并确定其水平个数。
3.2正交表的选择:根据因素的个数和水平个数,选择合适的正交表进行试验设计,确保每个水平均匀分布。
3.3重复次数的确定:根据实验结果的稳定性和误差容忍度,确定试验的重复次数,以提高结果的可靠性。
4.模型建立与分析4.1建立线性模型:根据试验数据,建立线性回归模型,将各个因素的水平值与结果进行关联,用于后续的参数估计和显著性检验。
4.2参数估计与显著性检验:通过最小二乘法估计模型参数,并进行显著性检验,判断因素是否对结果产生显著影响。
正交试验设计对于单因素或两因素试验,因其因素少,试验的设计、实施与分析都比较简单。
但在实际工作中,常常需要同时考察3个或3个以上的试验因素,若进行全面试验,则试验的规模将很大,往往因试验条件的限制而难于实施。
正交试验设计就是安排多因素试验、寻求最优水平组合的一种高效率试验设计方法。
1正交试验设计的概念及原理1.1正交试验设计的基本概念正交试验设计是利用正交表来安排与分析多因素试验的一种设计方法。
它是由试验因素的全部水平组合中,挑选部分有代表性的水平组合进行试验的,通过对这部分试验结果的分析了解全面试验的情况,找岀最优的水平组合。
例如:设计一个三因素、3水平的试验A因素,设A、A?> As3个水平;B因素,设B、B2、Bs3个水平;C因素,设G、G、G 3个水平,各因素的水平之间全部可能组合有27种。
全面试验:可以分析各因素的效应,交互作用,也可选岀最优水平组合。
但全面试验包含的水平组合数较多(图示的27个节点),工作量大,在有些情况下无法完成。
若试验的主要目的是寻求最优水平组合,则可利用正交表来设计安排试验。
全面试验法示意图三因素、三水平全面试验方案卫具e8G正交试验设计的基本特点是:用部分试验来代替全面试验,通过对部分试验结果的分析,了解全面试验的情况。
正因为正交试验是用部分试验来代替全面试验的,它不可能像全面试验那样对各因素效应、交互作用一一分析;当交互作用存在时,有可能岀现交互作用的混杂。
虽然正交试验设计有上述不足,但它能通过部分试验找到最优水平组合,因而很受实际工作者青睐。
如对于上述3因素3水平试验,若不考虑交互作用,可利用正交表1_9(34)安排,试验方案仅包含9个水平组合,就能反映试验方案包含27个水平组合的全面试验的情况,找出最佳的生产条件1.2正交试验设计的基本原理正交设计就是从选优区全面试验点(水平组合)中挑选出有代表性的部分试验点(水平组合)来进行试验。
上图中标有试验号的九个“(・)”就是利用正交表L(34)从27个试验点中挑选出来的9个试验点。
正交试验设计法一、定义:正交试验设计法就是利用正交表来合理安排多因素试验的一种方法。
二、常用术语1、指标:指标就是试验要考察的效果。
常用X、Y、Z……来表示。
▼定量指标:能够用数量来表示的试验指标,如重量、尺寸、温度。
▼定性指标:不能用数量来表示的试验指标,如颜色、味道、外观。
●定性指标量化:可用打分法、分等法。
2、因素:因素是指对试验指标可能产生影响的原因。
因素是在试验中应当加以考察的重点内容。
一般用大写字母A、B、C……来表示。
3、水平(位级):位级是指因素在试验中所处的状态或条件。
常用阿拉伯数字1、2、3……来表示。
如: A1、A2、A3、B1、B2、B3。
三、正交表 (已设计好的标准化表格,是进行正试验法的基本工具)1、日本型正交表:由日本质量管理专家田口玄一博士创立。
该正交试验设计法,除需试验的因素外,还要研究分析因素与因素之间的交互作用,一起上列,对试验结果的分析用方差分析等方法,过程较复杂。
2、中国型正交表是由以我国张千里教授为首的中国专家所创立。
它不考虑因素之间的交互作用,而将其交互作用融于试验之中,对试验结果的分析采用极差分析法,简单的用“看一看”与“算一算”相结合的分析、简单、易行、同样能得到满意的结论,是一种实用的试验方法,很适合现场应用。
四、正交表的特点:1、均衡分散性:每一列中各种字码出现的次数相同,保证试验条件均衡地分散在配合完全的位级组合之中,因而代表性强,容易出现好条件。
2、整齐可比性:任意两列中全部有序数字对出现次数都是相同的。
保证了在各个位级的效果之中,最大限度地排除了其他因素的干扰,能最有效地进行比较,作出展望。
五、用中国型正交表安排试验的步骤 1、明确试验目的 2、确定考察指标 3、挑因素、选位级,制定因素位级表 ①挑因素的原则: ▼分析影响指标的各种因素,排除: 不可控因素 对指标影响不大的因素 已掌握得好的因素(让其固定在适当位置上) ▼选对指标可能影响大,又无把握的因素。
正交实验设计案例分析45120611戴杰摘要:正交实验设计法在工业生产中具有广阔的应用领域,但由于推广不够,在实践少有应用,除了观念上的影响外,对操作方法的疑惑和不熟悉,也是重要因素。
我们小组选取了两个典型案例,对正交实验设计法的操作方法和步骤进行了介绍。
正交实验设计法在工业生产中具有广阔的应用领域。
作为一种科学的实验方法,它以投资少、易操作见效快的特点而为人们所关注,在已经试点过的单位都不同程度地取得了明显效果,受到企业的普遍欢迎。
正交实验设计法虽然已经取得了骄人的业绩,但它的推广并不普遍。
原因主要是许多企业科学意识差,对正交法缺乏正确认识,不懂操作程序,甚至怕麻烦。
鉴于此,我们选择了两个典型案例,对正交法的应用程序和方法做出了说明。
一、双氰胺生产工艺的优化研究1.1 立项背景山西省双氰胺厂。
1989年引进技术,设计能力为年产双氰胺500t,1990年投产,1991年全年生产双氰胺300t。
虽然当时双氰胺出厂价为15000元/t,市场供不应求,但由于该企业产量达不到设计能力,成本很高,年亏损30多万元,企业处于非常困难的境地。
1.2 经诊断发现的问题(1)双氰胺的主要原材料质量差,有效含氮量低。
调查结果:石灰氮最好是一级品占一半,其余为二级品以下。
石灰氮产品的行业标准(有效含氮量)是:优级品>=20%,一级品>18%,二级品>17%,次品<17%。
经过对比,该厂石灰氮有效含氮量低,是双氰胺消耗高、成本高、产量低的主要原因。
(2)石灰窑CO2气体浓度太低且很不稳定,是制约双氰胺生产的关键因素。
经调查发现,CO2气体浓度一般在17%以下,有时12%左右,致使双氰胺车间第一道工序(即水解工序)脱钙速度慢、时间长,是制约双氰胺产量的关键。
(3)双氰胺的生产工艺影响因素多,优化潜力大。
经分析认为:水解投料量、水解pH 值、聚合工序的聚合温度、聚合pH值、结晶温度等因素,均对产品质量和消耗有影响。