基本放大电路工作波形的Multisim仿真
- 格式:pdf
- 大小:470.15 KB
- 文档页数:3
单管放大器multisim 仿真
电路图如图1,电路由Multisim 11.0 软件制作,本文档中图片均为从中截图, 11.0与10.0的元件有部分不同(电阻外形不同, Vcc 不同)。
接下来是静态工作点的调整,改变电位器的阻值,使IcQ
=1m ( U R
C
=2.599V )(由
于电位器调节公差的限制,此时 I CQ
最接近1mA ,达到合适的工作点,此时
u CE =2.429V 。
-SR * q 上4,"、
1-Dk-D
100^0 Key-A
^2静态工作点的调
RS
R7
2JKQ
mtt-A
BJTNPN VIRTUAL
厂、10
Or
T
T
lOmVrmt 1kHz
C2
* 1DpF
10fjF
ma
IGkn
经过放大后的波形与输入波形如图3,从图上可以看出出单管放大器的放大功能,以及倒相功能。
A通道为输入信号,B通道为输出信号。
由于A通道为
50mV/Div , B通道为500mV/Div,因此实际(同一量程下)的波形与图示差距更大。
符合图4算出的32.5的放大倍数。
由图4,可算出放大倍数A u =32.5
JOWl
I—■
图q篩人与输出电圧肓敎值
vcc
伽
VrtfH
ci
)1
iap
F
B
L~」—
Ltfl -
-Rfi
2 口
口
k
7
7
R
2
r
t
u
l x>w I IDmVnns
2 7KQ。
仿真1。
1.1 共射极基本放大电路按图7。
1-1搭建共射极基本放大电路,选择电路菜单电路图选项(Circuit/Schematic Option )中的显示/隐藏(Show/Hide)按钮,设置并显示元件的标号与数值等。
1.静态工作点分析选择分析菜单中的直流工作点分析选项(Analysis/DC Operating Point)(当然,也可以使用仪器库中的数字多用表直接测量)分析结果表明晶体管Q1工作在放大状态。
2.动态分析用仪器库的函数发生器为电路提供正弦输入信号Vi(幅值为5mV,频率为10kH),用示波器观察到输入,输出波形。
由波形图可观察到电路的输入,输出电压信号反相位关系。
再一种直接测量电压放大倍数的简便方法是用仪器库中的数字多用表直接测得。
3。
参数扫描分析在图7。
1-1所示的共射极基本放大电路中,偏置电阻R1的阻值大小直接决定了静态电流IC的大小,保持输入信号不变,改变R1的阻值,可以观察到输出电压波形的失真情况。
选择分析菜单中的参数扫描选项(Analysis/Parameter Sweep Analysis),在参数扫描设置对话框中将扫描元件设为R1,参数为电阻,扫描起始值为100K,终值为900K,扫描方式为线性,步长增量为400K,输出节点5,扫描用于暂态分析。
4。
频率响应分析选择分析菜单中的交流频率分析项(Analysis/AC Frequency Analysis)在交流频率分析参数设置对话框中设定:扫描起始频率为1Hz,终止频率为1GHz,扫描形式为十进制,纵向刻度为线性,节点5做输出节点。
由图分析可得:当共射极基本放大电路输入信号电压VI为幅值5mV的变频电压时,电路输出中频电压幅值约为0.5V,中频电压放大倍数约为-100倍,下限频率(X1)为14.22Hz,上限频率(X2)为25.12MHz,放大器的通频带约为25。
12MHz.由理论分析可得,上述共射极基本放大电路的输入电阻由晶体管的输入电阻rbe限定,输出电阻由集电极电阻R3限定。
Multisim模拟电路仿真实验1.Multisim用户界面与根本操作1.1Multisim用户界面在众多的EDA仿真软件中,Multisim软件界面友好、功能强大、易学易用,受到电类设计开发人员的青睐。
Multisim用软件方法虚拟电子元器件与仪器仪表,将元器件和仪器集合为一体,是原理图设计、电路测试的虚拟仿真软件。
Multisim来源于加拿大图像交互技术公司〔Interactive Image Technologies,简称IIT公司〕推出的以Windows为根底的仿真工具,原名EWB。
IIT公司于1988年推出一个用于电子电路仿真和设计的EDA工具软件Electronics Work Bench〔电子工作台,简称EWB〕,以界面形象直观、操作方便、分析功能强大、易学易用而得到迅速推广使用。
1996年IIT推出了EWB5.0版本,在EWB5.x版本之后,从EWB6.0版本开始,IIT对EWB 进展了较大变动,名称改为Multisim〔多功能仿真软件〕。
IIT后被美国国家仪器〔NI,National Instruments〕公司收购,软件更名为NI Multisim,Multisim经历了多个版本的升级,已经有Multisim2001、Multisim7、Multisim8、Multisim9 、Multisim10等版本,9版本之后增加了单片机和LabVIEW虚拟仪器的仿真和应用。
下面以Multisim10为例介绍其根本操作。
图1-1是Multisim10的用户界面,包括菜单栏、标准工具栏、主工具栏、虚拟仪器工具栏、元器件工具栏、仿真按钮、状态栏、电路图编辑区等组成局部。
图1-1 Multisim10用户界面菜单栏与Windows应用程序相似,如图1-2所示。
图1-2 Multisim菜单栏其中,Options菜单下的Global Preferences和Sheet Properties可进展个性化界面设置,Multisim10提供两套电气元器件符号标准:ANSI:美国国家标准学会,美国标准,默认为该标准,本章采用默认设置;DIN:德国国家标准学会,欧洲标准,与中国符号标准一致。
双极型放大电路Multisim仿真结果及分析1. 引言双极型放大电路是一种常见的电子电路,在电子设备中广泛应用。
本文将通过Multisim软件对双极型放大电路进行仿真,并对仿真结果进行分析。
2. 简介双极型放大电路由NPN或PNP型晶体管构成,常用于放大电压、电流和功率。
它由输入端、输出端和供电端构成。
输入信号通过输入端进入电路,经过放大后,输出到输出端,实现信号放大的功能。
3. 仿真设置在Multisim软件中,我们使用电感耦合输入的双极型放大电路进行仿真。
具体的仿真设置如下:- NPN型晶体管- 输入信号为正弦波,幅值为1V,频率为1kHz- 电源电压为12V4. 仿真结果经过仿真,我们得到了双极型放大电路的输出波形。
图1展示了输出波形及输入波形的对比。
从图中可以看出,输入信号经过放大后,输出信号的幅值明显增大。
图1:双极型放大电路输出波形5. 结果分析通过对仿真结果的观察和分析,我们可以得出以下结论:5.1 增益在双极型放大电路中,放大器的增益是一个重要指标。
从图1可以看出,输出信号的幅值相对于输入信号的幅值有明显的增大,表明双极型放大电路具有较高的增益。
5.2 非线性失真在实际电路中,双极型放大电路可能会产生非线性失真。
通过观察输出波形,我们可以看到输出波形的顶部和底部存在一定的畸变,即波形变成了非完全正弦波。
这是由于双极型晶体管的非线性特性导致的。
5.3 偏置电压在双极型放大电路中,偏置电压的设置对电路的工作状态和放大效果有重要影响。
通过模拟实验,我们可以调整偏置电压,观察输出波形的变化,进一步优化电路的工作效果。
6. 结论通过Multisim仿真,我们成功分析了双极型放大电路的输出结果。
我们观察到了信号放大效果、非线性失真和偏置电压的影响。
这些结果对于设计和优化双极型放大电路具有指导意义,有助于提高电路的性能。
基本放大电路仿真实验
1.使用Multisim软件仿真电路在空载和负载状态下的最大输出U o波形图,计算出放大倍数Au,分析Uo和U i相位关系图。
能否改变电路参数后在波形不失真时所得到的Au是你自己的序号。
如果可以请画出波形图并写出Au,如果不可以请说明原因。
断开负载电阻使放大电路空载,在输出端接交流电表,运行仿真,结果如下表所示。
V1(MV) V2(MV) V3(MV) A1(MA)
9.9 4.22 88.4 2.14
AVS=VO/VS=V3/V1=88.4/9.9=8.9
AV=V0/VI=V3/V2=88.4/4.2=20.9
示波器的输出输入波形
不能,改变参数后若得到我自己的序号,是会失真的
2.利用Multisim仿真出改变工作点后的波形截止失真图和饱和失真图。
并测出此时的Uce。
截止失真图
此时静态工作点为Ib=947.55nA 、Ic=208.40uA 、Uce=10.84V 饱和失真图
此时静态工作点为Ib=4.96uA 、Ic=1.07mA、Uce=6.07V。
两级放大电路
M u l t i s i m仿真试验报
告
Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT
两级放大电路M u l t i s i m仿真试验报告
一、实验目的
1、掌握多级放大电路静态工作点的调整与测试方法
2、学会放大器频率特性的测量方法
3、了解放大器的失真及消除方法
4、掌握两级放大电路放大倍数的测量方法和计算方法
5、进一步掌握两级放大电路的工作原理
二、实验仪器
1、示波器
2、数字万用表
3、函数信号发生器
4、直流电源
三、预习报告
1、电路连接如图
2、静态工作点的调节
先调节第一级放大电路的静态工作点,再调节第二级,过程如下:
第一级的失真波形
第一级最大不失真输出波形
第二级的失真波形
第一级与二级最大不失真输出波形
静态工作点数据记录
电压放大倍数
Au1≈3 Au2≈100 Au=Au1*Au2=300两级放大器幅频特性测试数据
f(Hz)501002505001000250050001000
02000 0
Uo(m V)RL=
∞
2314307669259831001100410041003
RL=3
K
142265508640693711713714713。
电子工程基础实验
——基本的集成运算放大器Multisim仿真
实验目的:
1.研究集成运算放大器在比例放大、相加以及积分电路中的工作原理及功能;
2.掌握集成运算放大器构成基本的模拟信号运算电路。
实验原理:
集成运算放大器是一种高性能的多级直接耦合放大电路,只要在输入、输出端之间加接不同的电路或网络,即可实现不同的功能。
1.理想运算放大器
满足下列条件的运算放大器称为理想运算放大器:开环电压增益Au、输入电阻Ri、共模抑制比均为∞;输出电阻Ro、输入电流、失调与漂温均为零等。
运算放大器工作在线性区时,输出电压接近于正、负电源电压。
2.基本运算电路
(1)比例放大器
(2)加减法器
(3)积分与微分器
实验内容:
(1)反相比例放大器
(2)同相比例放大器
(3)电压跟随器
(1)加法器
(2)减法器
(1)积分器
(2)微分器
设计实验
运用运放,设计一个电路,使其输出如下图所示的波形(y=6+4sin1000t)。
BJT放大电路的MULTISIM模拟实验者:施佳俊(组长),周华,郑志鹏摘要:运用MULTISIM软件对BJT基本放大电路进行仿真,在用模拟电路的理论方法计算出BJT电路的理论参数。
通过对仿真数据以及理论数值的对比来反映实际电路与理论的差别。
实验内容;1.用MULTISIM软件仿真的电路:电路参数:三极管型号2N2222A隔直电容10uF旁路电容100uF输出回路电容10uFR1 100K R2 20K RC 2.4K RE 1K直流偏置VCC 12V输出电阻 2.4K输入信号Vpp=5mV 1KHz得到的电路输入·输出波形幅频特性曲线:如果用模拟电路分析的方法计算:F(s)低频=65HzF(s)高频=90MHz而用仿真做成的:F(s)低频=120HzF(s)高频=104MH z可得到结论:用传统方法计算得到的幅频特性比真实值要偏高。
实验总结:1运用MULTISIM进行仿真可以有效的解决很多实际问题。
2.在平时学习的模拟电路虽然具备很完善的理论体系但与实际的运用还是有很大的偏差。
3.可以通过比对实际电路与理论的对比去发现问题,从而改善理论体系。
实验尚存在的一些问题:1.在对信号的输入进行改变时发现输入与输出的信号频率不一样。
当小信号输入为5V时出现:如果是输入太大顶多造成削顶失真,为何频率不一致?2.在产生频率特性曲线时有另外一个曲线不知道是什么曲线,如果曲线的前半部分断层上下翻一下就会和幅频特性曲线相一致。
3.输入的峰峰值明明是5mVZ但用晶体管毫伏表测得的输入输出却是uV量级的???。
multisim基本共射放大电路Multisim基本共射放大电路引言Multisim是一种电子电路仿真软件,可以帮助工程师和学生设计、分析和优化各种电路。
本文将介绍Multisim中的基本共射放大电路,包括其原理、特点和仿真实验结果。
一、基本共射放大电路的原理基本共射放大电路是一种常用的放大电路,通常由一个晶体管、输入电阻、输出电阻和耦合电容组成。
其原理是通过输入信号的变化,控制晶体管的工作状态,从而实现对输出信号的放大。
二、基本共射放大电路的特点1. 增益高:基本共射放大电路具有高增益的特点,可以将输入信号放大数倍,使得输出信号更强。
2. 输入电阻低:基本共射放大电路的输入电阻较低,可以有效地接收输入信号,提高电路的灵敏度。
3. 输出电阻高:基本共射放大电路的输出电阻较高,可以使得电路输出信号与负载之间的耦合更好,减少能量损耗。
4. 频率响应广:基本共射放大电路具有较宽的频率响应范围,可以放大不同频率的信号。
三、Multisim中的基本共射放大电路仿真实验在Multisim中,可以通过搭建电路原理图来模拟基本共射放大电路的工作。
首先,需要选择合适的晶体管和其他元件,并连接它们以形成基本共射放大电路。
然后,设置输入信号的幅值和频率,并运行仿真实验。
在仿真实验中,可以观察到输入信号和输出信号的波形变化,并通过测量电压值来计算电路的增益。
通过不断调整电路参数和输入信号的幅值和频率,可以得到最佳的放大效果。
四、实验结果分析经过多次仿真实验,我们可以得到一系列的实验结果。
通过分析结果,可以发现基本共射放大电路的增益与输入信号的幅值和频率有关,当输入信号幅值较小或频率较高时,增益较大;当输入信号幅值较大或频率较低时,增益较小。
此外,输入信号的波形也会对输出信号的波形产生影响,不同的波形可能导致输出信号失真或畸变。
五、基本共射放大电路的应用基本共射放大电路广泛应用于各种电子设备中,如音频放大器、射频放大器等。
基于Multisim的三极管放大电路仿真分析来源:大比特半导体器件网引言放大电路是构成各种功能模拟电路的基本电路,能实现对模拟信号最基本的处理--放大,因此掌握基本的放大电路的分析对电子电路的学习起着至关重要的作用。
三极管放大电路是含有半导体器件三极管的放大电路,是构成各种实用放大电路的基础电路,是《模拟电子技术》课程中的重点内容。
在课程学习中,一再向学生强调,放大电路放大的对象是动态信号,但放大电路能进行放大的前提是必须设置合适的静态工作点,如果静态工作点不合适,输出的波形将会出现失真,这样的“放大”就毫无意义。
什么样的静态工作点是合适的静态工作点;电路中的参数对静态工作点及动态输出会产生怎样的影响;正常放大的输出波形与失真的输出波形有什么区别;这些问题单靠课堂上的推理及语言描述往往很难让学生有一个直观的认识。
在课堂教学中引入Multisim仿真技术,即时地以图形、数字或曲线的形式来显示那些难以通过语言、文字表达令人理解的现象及复杂的变化过程,有助于学生对电子电路中的各种现象形成直观的认识,加深学生对于电子电路本质的理解,提高课堂教学的效果。
实现在有限的课堂教学中,化简单抽象为具体形象,化枯燥乏味为生动有趣,充分调动学生的学习兴趣和自主性。
1 Multisim 10 简介Multisim 10 是美国国家仪器公司(NI公司)推出的功能强大的电子电路仿真设计软件,其集电路设计和功能测试于一体,为设计者提供了一个功能强大、仪器齐全的虚拟电子工作平台,设计者可以利用大量的虚拟电子元器件和仪器仪表,进行模拟电路、数字电路、单片机和射频电子线路的仿真和调试。
Multisim 10 的主窗口如同一个实际的电子实验台。
屏幕中央区域最大的窗口就是电路工作区,电路工作窗口两边是设计工具栏和仪器仪表栏。
设计工具栏存放着各种电子元器件,仪器仪表栏存放着各种测试仪器仪表,可从中方便地选择所需的各种电子元器件和测试仪器仪表在电路工作区连接成实验电路,并通过“仿真”菜单选择相应的仿真项目得到需要的仿真数据。