当前位置:文档之家› 2020年水污染综合实验报告

2020年水污染综合实验报告

2020年水污染综合实验报告
2020年水污染综合实验报告

水污染综合实验报告

一、实验目的与要求

1.掌握测试不同废水的色度、浊度、COD、电导、pH等水质指标的分析方法。

2.增强对污染物综合分析能力。

3.根据废水水质选择所用的混凝剂、吸附剂类型;根据实验结果计算出所选混凝剂、吸附剂对废水的去除效率。

4.对废水的进一步治理提出可行性治理方案。

二、实验内容

1.根据高锰酸钾法测定废水的COD,利用pH酸度计,光电浊

度计,色带,色度计分别测定pH值、浊度、色度,并预习实验内容,进行实验准备。

2.按照自己所取锅炉排污水、洗衣废水或其他废水的水质特点,自己设计实验方案。

3.针对某一废水,实验比较后确定自己认为合适的处理流程。确定每种处理流程最佳投药量、pH值、搅拌速度及其他操作条件。

给出治理结果。

4.处理结果达不到排放标准或回用标准的提出进一步治理方案。

三、实验原理

由于胶粒带电,将极性水分子吸引到它的周围形成一层水化膜,水化膜同样能阻止胶粒间相互接触。因此胶体微粒不能相互聚结而长期保持稳定的分散状态。投加混凝剂能提供大量的正离子,可以压缩

双电层,降低ζ电位,静电斥力减少,水化作用减弱;混凝剂水解后形成的高分子物质或直接加入水中的高分子物质一般具有链状结构,在胶粒与胶粒之间起吸附架桥作用,也有沉淀网捕作用。这样投加了混凝剂之后,胶体颗粒脱稳后相互聚结,逐渐变成大的絮凝体后沉淀。

活性炭吸附就是利用活性炭的固体表面对水中一种或多种物质的吸附作用,以达到净化水质的目的。活性炭的吸附作用产生于两个方面,一是由于活性炭内部分子在各个方向都受着同等大小的力而在表面的分子则受到不平衡的力,这就是其他分子吸附于其表面上,此为物理吸附;另一个是由于活性炭与被吸附物质之间的化学作用,此为化学吸附。活性炭的吸附是上述两种吸附综合作用的结果。

离子交换或臭氧氧化属于深度净化,可以有效降低废水中的含盐量、COD、色度等。强酸H交换器失效后,必须用强酸进行再生,可以用HCl,也可以用H2SO4。相对来说,由于HCl再生时不会有沉淀物析出,所以操作比较简单。再生浓度一般为2%~4%,再生流速一般为5m/h左右。强碱OH交换树脂再生液浓度一般为1%~3%,流速≤5m/h。GB12145—1999水汽质量标准规定一级复床出水水质为:电导率≤5?S/cm。混床出水残留的含盐量在1.0mg/L以下,电导率在

0.2S/cm以下,残留的SiO2在20?g/L以下,pH值接近中性。

四、实验仪器,设备及试剂

六联搅拌器,pH酸度计,光电浊度计,温度计1支,色度计1000ml 烧杯6个,1000ml量筒1个1ml、2ml、5ml、10ml移液管各一支200ml 烧杯一个,吸耳球、FeCl3、Al2(SO4)3、FeSO4、NaSiO310%的NAOH

溶液和10%HCl溶液500ml各1瓶振荡器,离子交换拄,臭氧发生器,水浴锅,活性炭电厂污水或工业废水水样

五、实验装置及方法

1)高锰酸钾法测定废水COD

1、实验原理

高锰酸钾指数是指在一定条件下,以高锰酸钾为氧化剂,处理水样时所消耗的氧量,以氧的mg/L来表示。水中部分有机物及还原性无机物均可消耗高锰酸钾。因此,高锰酸钾指数常作为水体受有机物污染程度的综合指标。

水样加入硫酸使呈酸性后,加入一定量的高锰酸钾溶液,并在沸水浴中加热反应一定的时间。剩余的高锰酸钾加入过量草酸钠溶液还原,再用高锰酸钾溶液回滴过量的草酸钠,通过计算求出高锰酸盐指数。

2、仪器

水浴装置250mL锥形瓶50mL酸式滴定管

3、试剂

1.高锰酸钾溶液(C(1/5KMnO4)=0.1mol/L):称取3.2g高锰酸钾溶于1.2L水中,加热煮沸,使体积减少到约1L,放置过夜,用G -3玻璃砂芯漏斗过滤后,滤液储于棕色瓶中保存。

2.高锰酸钾溶液(C(1/5KMnO4)=0.01mol/L):吸取25mL上述高锰酸钾溶液,?用水稀释至250mL,储于棕色瓶中。使用前进行标定,并调节至0.01mol/L准确浓度。

3.1+3硫酸

4.草酸钠标准溶液(C(1/2Na2C2O4)=0.1000mol/L)?:称取0.6705g在105-110℃烘干一小时并冷却的草酸钠溶于水,移于100mL 容量瓶中,用水稀释至标线。

5.草酸钠标准溶液(C(1/2Na2C2O4)=0.0100mol/L)?:吸取10.00mL上述草酸钠溶液移入100mL容量瓶中,用水稀释至标线。

4、实验步骤

1.取100mL混匀水样(如高锰酸盐指数高于5mg/L,则酌量少取,并用水稀释至100mL)于250mL锥形瓶中。

2.加入5mL(1+3)硫酸,摇匀。

3.加入10.00mL0.01mol/L高锰酸钾溶液,摇匀,立即放入沸水浴中加热30分钟(从水浴重新沸腾起计时)。沸水浴液面要高于反应溶液的液面。

4.取下锥形瓶,趁热加入10.00mL0.0100mol/L草酸钠标准溶液,摇匀,?立即用0.01mol/L高锰酸钾溶液滴定至显微红色,记录高锰酸钾溶液消耗量。

5.高锰酸钾溶液浓度的标定:将上述已滴定完毕的溶液加热至70℃,?准确加入10.00mL草酸钠标准溶液(0.0100mol/L)再用0.01mol/L高锰酸钾溶液滴定至显微红色。记录高锰酸钾溶液的消耗量,按照下式求得高锰酸钾溶液的校正系数(K):

K=10.00V

式中:V—高锰酸钾溶液消耗量(mL)。若水样经稀释时,?应同时另取100mL水,同水样操作步骤进行空白实验。

2)混凝沉淀实验

1.试验机理:根据研究,胶体微粒都带有电荷。天然水中的粘土类胶体微粒以及污水中的胶态蛋白质和淀粉微粒等都带有负电荷。微粒一般由胶核、固定层和扩散层组成。胶核和固定层一般称为胶粒,胶粒与扩散层之间有一个电位差,此电位称为ζ电位。胶粒在水中受几方面的影响:

①带相同电荷的胶粒之间产生的静电斥力;

②胶粒在水中作的不规则运动,即“布朗运动”;

③胶粒之间的范德华引力;

④水化作用,由于胶粒带电,将极性水分子吸引到它的周围形成一层水化膜,水化膜同样能阻止胶粒间相互接触。

因此胶体微粒不能相互聚结而长期保持稳定的分散状态。投加混凝剂能提供大量的正离子,可以压缩双电层,降低ζ电位,静电斥力减少,水化作用减弱;混凝剂水解后形成的高分子物质或直接加入水中的高分子物质一般具有链状结构,在胶粒与胶粒之间起吸附架桥作用,也有沉淀网捕作用。这样投加了混凝剂之后,胶体颗粒脱稳后相互聚结,逐渐变成大的絮凝体后沉淀。

2.试验器材:六联搅拌器或磁力搅拌器1台pH酸度计1台或pH 试纸光电浊度计1台温度计1支200ml烧杯4个1000ml烧杯1个1ml、

2ml、5ml、10ml移液管各一支10%的FeCl3、Al2(SO4)3、NaSiO3溶液各1瓶500ml的NaOH溶液和的HCl溶液各1瓶。

3.试验步骤:

最佳投药量实验步骤

1、测定原水温度、浊度及pH值。

2、分别取200ml水样于250ml烧杯中,每组4个水样,将4个水样置于搅拌器上,分

别加入数滴浓度为10%的Al2(SO4)3药液于各烧杯中。

3、投药后迅速启动搅拌机,使搅拌机快速运转,同时开始记时,快速搅拌30S,快速搅拌完成后,迅速将转速转制慢速搅拌阶段,时间15分钟。

4、搅拌过程中观察记录矾花形成的过程、矾花外观、大小、密实程度(记录于表1中)。

5、搅拌完成后停机,将水样杯取出置一旁静沉,并观察矾花形成及沉淀的情况,待沉淀20分钟后,取烧杯中清液分别测定其pH值、浊度,同时记录于表1中。

6、确定最佳投药量。

最佳pH值实验步骤

1、在4个250ml烧杯分别放入200ml原水样,置于实验搅拌器的平台上。

2、确定原水特征(包括原水浊度、pH值、温度)。

3、向各烧杯中加入相同量的混凝剂。(投加剂量按照最佳投药量实验中得出的最佳投药量而确定)。

4、用HCl或NaOH调整至各杯水样的pH至分别为6、7、8、9,记录所用酸碱的投加量(表2)。

5、启动搅拌器,快速搅拌30秒;然后同(一)。

6、关闭搅拌机,将水样取出置一旁静沉并观察矾花形成及沉淀的情况,20分钟后,取烧杯的上清液,分别测定其浊度,记录于表2中。

7、确定最佳pH.。

完成第一组水样后,按同样步骤,用第二种混凝剂做第二组实验。

六、实验数据及数据处理结果

表二最佳投药量结果记录

原水温度10C浊度31.3pH6混凝剂的种类、浓度FeCl310%

表三最佳pH试验结果记录

原水温度10C浊度31.3pH6使用混凝剂的种类、浓度FeCl310% 1.高锰酸钾溶液的校正系数(K):

K=

已知:V=18.2ml-10.4ml=7.8ml得:K=1.282.水样不经稀释

高锰酸钾指数(O2,mg/L)=10.00V

[(1V1)K10]M81000

100

已知:V1=7.80mlK=1.28M=0.01mol/L得;高锰酸钾指数

(O2,mg/L)=10.233.水样经稀释

高锰酸钾指数(O2,mg/L)=

{[(10V1)K10][(10V0)K10]C}M81000V2

已知:V1=7.80mlK=1.28M=0.01mol/LV0=mlC=0.5V2=100ml得:高锰酸钾指数(O2,mg/L)=4.58

六.实验结果讨论

由以上数据及处理结果可知水样高锰酸钾指数

(O2,mg/L)=10.23,PH=6;当混凝剂滴入0.4ml时混凝效果最好,PH

为9时混凝效果最好。

七.思考题

1、为什么最大投药量时,混凝效果不一定好?

投入的药量应根据胶体浓度及无机金属盐水解产物的分子形态、荷电性质和荷电量等而确定。当高分子混凝剂投药量最大时,会产生“胶体保护”作用。胶体保护可理解为:当全部胶粒的吸附面均被高分子覆盖以后,两胶粒接近时,就受到高分子的阻碍而不能聚集,这种阻碍高分子之间的相互排斥。排斥力可能“胶粒-胶粒”之间高分子受到压缩变形而具有排斥势能,也可能由于高分子之间的电斥力(对带电高分子而言)或水化膜。而且投药量大也容易出现产生大量含水率很高的污泥的问题。这种污泥难于脱水,会给污泥处置带来很大困难。所以投药量最大时,混凝效果不一定是好的,应该根据具体

过程控制实验报告

过程控制实验 实验报告 班级:自动化1202 姓名:杨益伟 学号:120900321 2015年10月 信息科学与技术学院 实验一过程控制系统建模 作业题目一: 常见得工业过程动态特性得类型有哪几种?通常得模型都有哪些?在Simulink中建立相应模型,并求单位阶跃响应曲线、 答:常见得工业过程动态特性得类型有:无自平衡能力得单容对象特性、有自平衡能力得单容对象特性、有相互影响得多容对象得动态特性、无相互影响得多容对象得动态特性等。通常得模型有一阶惯性模型,二阶模型等、 单容过程模型 1、无自衡单容过程得阶跃响应实例 已知两个无自衡单容过程得模型分别为与,试在Simulink中建立模型,并求单位阶跃响应曲线。 Simulink中建立模型如图所示: 得到得单位阶跃响应曲线如图所示:

2、自衡单容过程得阶跃响应实例 已知两个自衡单容过程得模型分别为与,试在Simulink中建立模型,并求单位阶跃响应曲线。 Simulink中建立模型如图所示: 得到得单位阶跃响应曲线如图所示:

多容过程模型 3、有相互影响得多容过程得阶跃响应实例 已知有相互影响得多容过程得模型为,当参数, 时,试在Simulink中建立模型,并求单位阶跃响应曲线在Simulink中建立模型如图所示:得到得单位阶跃响应曲线如图所示:

4、无相互影响得多容过程得阶跃响应实例 已知两个无相互影响得多容过程得模型为(多容有自衡能力得对象)与(多容无自衡能力得对象),试在Simulink中建立模型,并求单位阶跃响应曲线。 在Simulink中建立模型如图所示: 得到得单位阶跃响应曲线如图所示:

2017X射线衍射及物相分析实验报告写法

请将以下内容手写或打印在中原工学院实验报告纸上。 实验报告内容:文中红体字部分请删除后补上自己写的内容班级学号姓名 综合实验X射线衍射仪的使用及物相分析 实验时间,地点 一、实验目的 1.了解x射线衍射仪的构造及使用方法; 2.熟悉x射线衍射仪对样品制备的要求; 3.学会对x射线衍射仪的衍射结果进行简单物相分析。 二、实验原理 (X射线衍射及物相分析原理分别见《材料现代分析方法》第一、二、三、五章。)三、实验设备 Ultima IV型变温全自动组合粉末多晶X射线衍射仪。 (以下为参考内容) X衍射仪由X射线发生器、测角仪、记录仪等几部分组成。

图1 热电子密封式X射线管的示意图 图1是目前常用的热电子密封式X射线管的示意图。阴极由钨丝绕成螺线形,工作时通电至白热状态。由于阴阳极间有几十千伏的电压,故热电子以高速撞击阳极靶面。为防止灯丝氧化并保证电子流稳定,管内抽成1.33×10-9~1.33×10-11的高真空。为使电子束集中,在灯丝外设有聚焦罩。阳极靶由熔点高、导热性好的铜制成,靶面上被一层纯金属。常用的金属材料有Cr,Fe,Co,Ni,Cu,Mo,W等。当高速电子撞击阳极靶面时,便有部分动能转化为X射线,但其中约有99%将转变为热。为了保护阳极靶面,管子工作时需强制冷却。为了使用流水冷却和操作者的安全,应使X射线管的阳极接地,而阴极则由高压电缆加上负高压。x射线管有相当厚的金属管套,使X射线只能从窗口射出。窗口由吸收系数较低的Be片制成。结构分析用X射线管通常有四个对称的窗口,靶面上被电子袭击的范围称为焦点,它是发射X射线的源泉。用螺线形灯丝时,焦点的形状为长方形(面积常为1mm×10mm),此称为实际焦点。窗口位置的设计,使得射出的X射线与靶面成60角(图2),从长方形的短边上的窗口所看到的焦点为1mm2正方形,称点焦点,在长边方向看则得到线焦点。一般的照相多采用点焦点,而线焦点则多用在衍射仪上。 图2 在与靶面成60角的方向上接收X射线束的示意图 自动化衍射仪采用微计算机进行程序的自动控制。图3为日本生产的Ultima IV型变温全自动组合粉末多晶X射线衍射仪工作原理方框图。入射X射线经狭缝照射到多晶试样上,衍射线的单色化可借助于滤波片或单色器。衍射线被探测器所接收,电脉冲经放大后进人脉冲高度分析器。信号脉冲可送至计数率仪,并在记录仪上画出衍射图。脉冲亦可送至计数器(以往称为定标器),经徽处理机进行寻峰、计算峰积分强度或宽度、扣除背底等处理,并在屏幕上显示或通过打印机将所需的图形或数据输出。控制衍射仪的专用微机可通过带编码器的步进电机控制试样(θ)及探测器(2θ)进行连续扫描、阶梯扫描,连动或分别动作等等。目前,衍射仪都配备计算机数据处理系统,使衍射仪的功能进一步扩展,自动化水平更加提高。衍射仪目前已具有采集衍射资料,处理图形数据,查找管理文件以及自动进行物相定性分析等功能。 物相定性分析是X射线衍射分析中最常用的一项测试,衍射仪可自动完成这一过程。首先,仪器按所给定的条件进行衍射数据自动采集,接着进行寻峰处理并自动启动程序。

过程控制系统实验报告材料(最新版)

实验一、单容水箱特性的测试 一、实验目的 1. 掌握单容水箱的阶跃响应的测试方法,并记录相应液位的响应曲线。 2. 根据实验得到的液位阶跃响应曲线,用相关的方法确定被测对象的特征参数T和传递函数。 二、实验设备 1. THJ-2型高级过程控制系统实验装置 2. 计算机及相关软件 3. 万用电表一只 三、实验原理 图2-1单容水箱特性测试结构图由图2-1可知,对象的被控制量为水箱的液位H,控制量(输入量)是流入水箱中的流量Q1,手动阀V1和V2的开度都为定值,Q2为水箱中流出的流量。根据物料平衡关系,在平衡状态时 Q1-Q2=0 (1)

动态时,则有 Q1-Q2=dv/dt (2) 式中 V 为水箱的贮水容积,dV/dt为水贮存量的变化率,它与 H 的关系为 dV=Adh ,即dV/dt=Adh/dt (3) A 为水箱的底面积。把式(3)代入式(2)得 Q1-Q2=Adh/dt (4) 基于Q2=h/RS,RS为阀V2的液阻,则上式可改写为 Q1-h/RS=Adh/dt 即 ARsdh/dt+h=KQ1 或写作 H(s)K/Q1(s)=K/(TS+1) (5) 式中T=ARs,它与水箱的底积A和V2的Rs有关:K=Rs。 式(5)就是单容水箱的传递函数。 对上式取拉氏反变换得 (6) 当t—>∞时,h(∞)=KR0 ,因而有K=h(∞)/R0=输出稳态值/阶跃输入当 t=T 时,则有 h(T)=KR0(1-e-1)=0.632KR0=0.632h(∞)

式(6)表示一阶惯性环节的响应曲线是一单调上升的指数函数,如图 2-2 所示。当由实验求得图2-2所示的阶跃响应曲线后,该曲线上升到稳态值的63%所对应的时间,就是水箱的时间常数T。该时间常数 T也可以通过坐标原点对响应曲线作切线,切线与稳态值交点所对应的时间就是时间常数T,由响应曲线求得K和T后,就能求得单容水箱的传递函数。如果对象的阶跃响应曲线为图2-3,则在此曲线的拐点D处作一切线,它与时间轴交于B点,与响应稳态值的渐近线交于A点。图中OB即为对象的滞后时间τ,BC为对象的时间常数T,所得 的传递函数为: 四、实验内容与步骤 1.按图2-1接好实验线路,并把阀V1和V2开至某一开度,且使V1的开度大于V2的开度。 2.接通总电源和相关的仪表电源,并启动磁力驱动泵。

水污染控制工程下册重点知识点

水污染控制工程下册重点知识点 第九章污水水质和污水出路 1、污水类型:生活污水、工业废水、初期雨水、城镇污水 2、物理指标:温度、色度、嗅和味(异臭:S和N化合物、挥发性有机物、氯气、总固体(溶解性固体DS、悬浮固体SS)固体残渣根据挥发性能可分为挥发性固体VS、固定性固体FS 3、有机物指标:BOD、COD、TOC、TOD (燃烧化学氧化反应) 4、无机物指标:PH (6-9)、植物营养元素、重金属、无机性非金属有害物(总砷、含硫化合物、氰化物) 5、生物指标:细菌总数、大肠菌数、病毒 6、自净作用:物理、化学、生物 7、混合过程:竖向混合阶段、横向混合阶段、断面充分混合后阶段(POP 下降) 8、根据BOD5与DO曲线,可以把该河划分为清洁水区、污染恶化区、恢复区、清洁水区 9、污水排放标准:浓度标准、总量控制标准、国家排放标准、行业排放标准、地方排放标准 10、一级处理:主要去除SS 、COD 、BOD 11、二级处理:去除有机物(90%) 12、三级处理:去除N 、P ,色度 第十章污水的物理处理

1、污水的物理处理法去除对象主要是污水中的漂浮物和悬浮物,采用的主要方法有:筛滤截留法、重力分离法、离心分离法 2、格栅作用:截留污水中较粗大漂浮物和悬浮物 3、格栅设计的主要参数:确定栅条间隙宽度 4、按格栅形状,可分为平面格栅、曲面格栅 5、曲面格栅:固定曲面格栅、旋转鼓式格栅 6、清渣方式:人工清渣(过水面积不小于灌渠有效面积的2倍)机械清渣(1.2倍) 7、工业废水根据水质确定是否有沉砂池 8、水流适当流速:0.4-0.9 污水通过格栅:0.6-1 最大 1.2-1.4 9、在典型的污水处理厂中沉淀法可用于下列几个方面:污水处理系统的预处理、污水的初级处理、生物处理后的固液分离、污泥处理阶段的污泥浓缩 10、沉淀类型:自由沉淀(水中悬浮固体浓度不高) 、絮凝沉淀(悬浮颗粒浓度不高(活性污泥二沉池中间)、区域沉淀(悬浮颗粒浓度高,二沉池下部、重力浓缩开始) 、压缩沉淀(高浓度悬浮颗粒,污泥浓缩、重力浓缩) 11、斯托克斯公式 u=(P 固 -P gd2/18μ 12、水温上升,黏度减小、沉速增大 13、理想沉淀池:进口区、沉淀区、出口区、缓冲区、污泥区 14、沉淀池工作原理:利用水中悬浮颗粒可沉降性能,在重力作用下产生下沉作用

计算机过程控制实验报告

计算机过程控制实验报告

实验1 单容水箱液位数学模型的测定实验 1、试验方案: 水流入量Qi 由调节阀u 控制,流出量Qo 则由用户通过负载阀R 来改变。被调量为水位H 。分析水位在调节阀开度扰动下的动态特性。 直接在调节阀上加定值电流,从而使得调节阀具有固定的开度。(可以通过智能调节仪手动给定,或者AO 模块直接输出电流。) 调整水箱出口到一定的开度。 突然加大调节阀上所加的定值电流观察液位随时间的变化,从而可以获得液位数学模型。 通过物料平衡推导出的公式: μμk Q H k Q i O ==, 那么 )(1 H k k F dt dH -=μμ, 其中,F 是水槽横截面积。在一定液位下,考虑稳态起算点,公式可以转换成 μμR k H dt dH RC =+。 公式等价于一个RC 电路的响应函数,C=F 就是水容,k H R 0 2= 就是水阻。 如果通过对纯延迟惯性系统进行分析,则单容水箱液位数学模型可以使用以下S 函数表示: ) 1()(0 += TS S KR S G 。 相关理论计算可以参考清华大学出版社1993年出版的《过程控制》,金以慧编著。 2、实验步骤: 1) 在现场系统A3000-FS 上,将手动调节阀JV201、JV206完全打开,使下水箱闸板具有 一定开度,其余阀门关闭。 2) 在控制系统A3000-CS 上,将下水箱液位(LT103)连到内给定调节仪输入端,调节仪 输出端连到电动调节阀(FV101)控制信号端。 3) 打开A3000-CS 电源,调节阀通电。打开A3000-FS 电源。 4) 在A3000-FS 上,启动右边水泵(即P102),给下水箱(V104)注水。 给定值 图1 单容水箱液位数学模型的测定实验

水污染控制工程下册重点

1、生化需氧BOD:量表示水中有机物被好氧微生物分解时所需的氧气量称生化需氧量(以mg/L为单位) 2、化学需氧量(COD),是在一定的条件下,用化学氧化剂氧化水中有机污染物时所消耗的氧化剂量(以mg/L为单位)。 3、水体自净作用:经过水体的物理、化学与生物的作用,使污水中污染物的浓度得以降低,经过一段时间后,水体往往能恢复到受污染前的状态,并在微生物的作用下进行分解,从而使水体由不洁恢复为清洁,这一过程称为水体的自净过程。 水体自净过程包括:物理净化、化学净化、生物净化。 物理净化:稀释、扩散、沉淀 化学净化:氧化、还原、分解 生物净化:水中微生物对有机物的氧化分解作用 氧垂曲线:表示水体受到污染后,水中溶解氧含量沿河道的分布呈下垂状曲线。在排污口下游河水中,溶解氧含量因有机物生物氧化的脱氧作用而显著下降,又由于下游大气复氧和生物光合作用等而使溶解氧含量增加。下垂曲线的临界点(氧垂点),其溶解氧含量最小。 4、格栅、筛网的主要作用是什么?各使用于什么场合? 在排水工程中,格栅倾斜安装在进水的渠道内,或进水泵站集水井的进口处,用来去除可能堵塞水泵机组及管道阀门的较粗大悬浮物,以保证后续处理设施的正常运行。 筛网可有效去除和回收废水中夹带的纤维状杂质,如:羊毛、化纤、纸浆等。可作为预处理,也可作为重复利用水的深度处理。 5、沉淀是利用水中悬浮颗粒和水的密度差,在重力作用下产生下沉作用,以达到固液分离的一种过程。沉淀类型:自由沉淀、絮凝沉淀、区域沉淀、压缩沉淀 (1)自由沉淀:悬浮颗粒浓度不高;沉淀过程中悬浮固体之间互不干扰,颗粒各自单独进行沉淀, 颗粒沉淀轨迹呈直线。沉淀过程中,颗粒的物理性质不变。发生在沉砂池中。(2)絮凝沉淀:悬浮颗粒浓度不高;沉淀过程中悬浮颗粒之间有互相絮凝作用,颗粒因相互聚集增大而加快沉降,沉淀轨迹呈曲线。沉淀过程中,颗粒的质量、形状、沉速是变化的。化学絮凝沉淀属于这种类型。 (3)区域沉淀或成层沉淀:悬浮颗粒浓度较高(5000mg/L以上);颗粒的沉降受到周围其他颗粒的影响,颗粒间相对位置保持不变,形成一个整体共同下沉,与澄清水之间有清晰的泥水界面。二次沉淀池与污泥浓缩池中发生。 (4)压缩沉淀:悬浮颗粒浓度很高;颗粒相互之间已挤压成团状结构,互相接触,互相支撑,下层颗粒间的水在上层颗粒的重力作用下被挤出,使污泥得到浓缩。二沉池污泥斗中及浓缩池中污泥的浓缩过程存在压缩沉淀。 6、理想沉淀池划为四个区域:进口区域、沉淀区域、出口区域及污泥区域,并作下述假定:(1)沉淀区过水断面上各点的水流速度均相同,水平流速为v (2)悬浮颗粒在沉淀区等速下沉,下沉速度为u (3)在沉淀池的进口区域,水流中的悬浮颗粒均匀分布在整个过水断面上 (4)颗粒一经沉到池底,即认为已被去除 8、u一定时,增加表面积A时,去除率E提高,所以对容积一定的沉淀池,池深越浅时,表面积A越大,即去除率E越大。 9、加压溶气浮上法处理废水的基本原理是什么? 在一定压力作用下,将空气溶于水中,并达到指定压力下的饱和状态,然后将过饱和液突然降至常压,溶解在水中的空气即以非常细小的气泡释放出来。这些数量众多的气泡与水中的悬浮颗粒产生粘附作用,使这些夹带了无数小气泡的颗粒的密度小于水而产生上浮作用。

过程控制系统实验报告

实验一过程控制系统的组成认识实验 过程控制及检测装置硬件结构组成认识,控制方案的组成及控制系统连接 一、过程控制实验装置简介 过程控制是指自动控制系统中被控量为温度、压力、流量、液位等变量在工业生产过程中的自动化控制。本系统设计本着培养工程化、参数化、现代化、开放性、综合性人才为出发点。实验对象采用当今工业现场常用的对象,如水箱、锅炉等。仪表采用具有人工智能算法及通讯接口的智能调节仪,上位机监控软件采用MCGS工控组态软件。对象系统还留有扩展连接口,扩展信号接口便于控制系统二次开发,如PLC控制、DCS控制开发等。学生通过对该系统的了解和使用,进入企业后能很快地适应环境并进入角色。同时该系统也为教师和研究生提供一个高水平的学习和研究开发的平台。 二、过程控制实验装置组成 本实验装置由过程控制实验对象、智能仪表控制台及上位机PC三部分组成。 1、被控对象 由上、下二个有机玻璃水箱和不锈钢储水箱串接,4.5千瓦电加热锅炉(由不锈钢锅炉内胆加温筒和封闭外循环不锈钢锅炉夹套构成),压力容器组成。 水箱:包括上、下水箱和储水箱。上、下水箱采用透明长方体有机玻璃,坚实耐用,透明度高,有利于学生直接观察液位的变化和记录结果。水箱结构新颖,内有三个槽,分别是缓冲槽、工作槽、出水槽,还设有溢流口。二个水箱可以组成一阶、二阶单回路液位控制实验和双闭环液位定值控制等实验。 模拟锅炉:锅炉采用不锈钢精致而成,由两层组成:加热层(内胆)和冷却层(夹套)。做温度定值实验时,可用冷却循环水帮助散热。加热层和冷却层都有温度传感器检测其温度,可做温度串级控制、前馈-反馈控制、比值控制、解耦控制等实验。 压力容器:采用不锈钢做成,一大一小两个连通的容器,可以组成一阶、二阶单回路压力控制实验和双闭环串级定值控制等实验。 管道:整个系统管道采用不锈钢管连接而成,彻底避免了管道生锈的可能性。为了提高实验装置的使用年限,储水箱换水可用箱底的出水阀进行。 2、检测装置 (液位)差压变送器:检测上、下二个水箱的液位。其型号:FB0803BAEIR,测量范围:0~1.6KPa,精度:0.5。输出信号:4~20mA DC。 涡轮流量传感器:测量电动调节阀支路的水流量。其型号:LWGY-6A,公称压力:6.3MPa,精度:1.0%,输出信号:4~20mA DC 温度传感器:本装置采用了两个铜电阻温度传感器,分别测量锅炉内胆、锅炉夹套的温度。经过温度传感器,可将温度信号转换为4~20mA DC电流信号。 (气体)扩散硅压力变送器:用来检测压力容器内气体的压力大小。其型号:DBYG-4000A/ST2X1,测量范围:0.6~3.5Mpa连续可调,精度:0.2,输出信号为4~20mA DC。 3、执行机构 电气转换器:型号为QZD-1000,输入信号为4~20mA DC,输出信号:20~100Ka气压信号,输出用来驱动气动调节阀。 气动薄膜小流量调节阀:用来控制压力回路流量的调节。型号为ZMAP-100,输入信号为4~20mA DC或0~5V DC,反馈信号为4~20mA DC。气源信号 压力:20~100Kpa,流通能力:0.0032。阀门控制精度:0.1%~0.3%,环境温度:-4~+200℃。 SCR移相调压模块:采用可控硅移相触发装置,输入控制信号0~5V DC或4~20mA DC 或10K电位器,输出电压变化范围:0~220V AC,用来控制电加热管加热。 水泵:型号为UPA90,流量为30升/分,扬程为8米,功率为180W。

XRD物相分析实验报告范本(完整版)

报告编号:YT-FS-1775-17 XRD物相分析实验报告范 本(完整版) After Completing The T ask According To The Original Plan, A Report Will Be Formed T o Reflect The Basic Situation Encountered, Reveal The Existing Problems And Put Forward Future Ideas. 互惠互利共同繁荣 Mutual Benefit And Common Prosperity

XRD物相分析实验报告范本(完整版) 备注:该报告书文本主要按照原定计划完成任务后形成报告,并反映遇到的基本情况、实际取得的成功和过程中取得的经验教训、揭露存在的问题以及提出今后设想。文档可根据实际情况进行修改和使用。 一、实验目的 1.掌握X 射线衍射仪的使用及进行定性相分析 的基本原理。 2.学会用PDF软件索引对多相物质进行相分析的 方法和步骤。 二、实验原理 布拉格方程:2dsinn X 射线衍射仪是按着晶体对X 射线衍射的几何 原理设计制造的衍射实验仪器。在测试过程,由X 射 线管发射出来的 X 射线照射到试样上产生衍射效应, 满足布拉格方程的2dsinn,和不消光条件的衍射光用 辐射探测器,经测量电路放大处理后,在显示或记录 装置上给出精确的衍射峰位置、强度和线形等衍射信

息,这些衍射信息可作为各种应用问题的原始数据。X 射线衍射仪的基本组成包括;X 射线发生器、衍射测角仪、辐射探测器、测量电路和控制操作、运行软件的电子计算机系统。在衍射测量时,试样绕测角仪中心轴转动,不断地改变入射线与试样表面的夹角,射测量时,试样绕测角仪中心轴转动,不断地改变入射线与试样表面的夹角,与此同时计数器沿测角仪圆运动,接收各衍射角所对应的衍射强度。任何一种结晶物质都具有特定的晶体结构。在一定波长的X 射线照射下,每种晶体物质都产生自己特有的衍射花样。每一种物质与它的衍射花样都是一一对应的,不可能有两种物质给出完全相同的衍射花样。如果试样中存在两种以上不同结构的物质时,每种物质所特有的衍射花样不变,多相试样的 衍射花样只是由它所含各物质的衍射花样机械叠加而成。在进行相分析时,只要和标准的PDF衍射图谱比较就可以确定所检测试样里面的所存在的相。 三、实验仪器,试样

过程控制实验报告

东南大学自动化学院 实验报告 课程名称:过程控制实验 实验名称:水箱液位控制系统 院(系):自动化专业:自动化姓名:学号: 实验室:实验组别: 同组人员: 实验时间: 评定成绩:审阅教师:

目录 一、系统概论 (3) 二、对象的认识 (4) 三、执行机构 (14) 四、单回路调节系统 (15) 五、串级调节系统Ⅰ (18) 六、串级调节系统Ⅱ (19) 七、前馈控制 (21) 八、软件平台的开发 (21)

一、系统概论 1.1实验设备 图1.1 实验设备正面图图1.2 实验设备背面图 本实验设备包含水箱、加热器、变频器、泵、电动阀、电磁阀、进水阀、出水阀、增压器、流量计、压力传感器、温度传感器、操作面板等。 1.1.2 铭牌 ·加热控制器: 功率1500w,电源220V(单相输入) ·泵: Q40-150L/min,H2.5-7m,Hmax2.5m,380V,VL450V, IP44,50Hz,2550rpm,1.1kw,HP1.5,In2.8A,ICL B ·全自动微型家用增压器: 型号15WZ-10,单相电容运转马达 最高扬程10m,最大流量20L/min,级数2,转速2800rmp,电压220V, 电流0.36A,频率50Hz,电容3.5μF,功率80w,绝缘等级 E ·LWY-C型涡轮流量计: 口径4-200mm,介质温度-20—+100℃,环境温度-20—+45℃,供电电源+24V, 标准信号输出4-20mA,负载0-750Ω,精确度±0.5%Fs ±1.0%Fs,外壳防护等级 IP65 ·压力传感器 YMC303P-1-A-3 RANGE 0-6kPa,OUT 4-20mADC,SUPPLY 24VDC,IP67,RED SUP+,BLUE OUT+/V- ·SBWZ温度传感器 PT100 量程0-100℃,精度0.5%Fs,输出4-20mADC,电源24VDC

XRD物相分析实验报告

XRD物相分析 一、实验目的 1.掌握X 射线衍射仪的使用及进行定性相分析的基本原理。 2.学会用PDF软件索引对多相物质进行相分析的方法和步骤。 二、实验原理 布拉格方程:2dsinθ=nλ X 射线衍射仪是按着晶体对 X 射线衍射的几何原理设计制造的衍射实验仪器。在测试过程,由X 射线管发射出来的 X 射线照射到试样上产生衍射效应,满足布拉格方程的2dsinθ=nλ,和不消光条件的衍射光用辐射探测器,经测量电路放大处理后,在显示或记录装置上给出精确的衍射峰位置、强度和线形等衍射信息,这些衍射信息可作为各种应用问题的原始数据。X 射线衍射仪的基本组成包括;X 射线发生器、衍射测角仪、辐射探测器、测量电路和控制操作、运行软件的电子计算机系统。在衍射测量时,试样绕测角仪中心轴转动,不断地改变入射线与试样表面的夹角θ,射测量时,试样绕测角仪中心轴转动,不断地改变入射线与试样表面的夹角θ,与此同时计数器沿测角仪圆运动,接收各衍射角2θ所对应的衍射强度。任何一种结晶物质都具有特定的晶体结构。 在一定波长的X 射线照射下,每种晶体物质都产生自己特有的衍射花样。每一种物质与它的衍射花样都是一一对应的,不可能有两种物质给出完全相同的衍射花样。如果试样中存在两种以上不同结构的物质时,每种物质所特有的衍射花样不变,多相试样的

衍射花样只是由它所含各物质的衍射花样机械叠加而成。在进行相分析时,只要和标准的PDF衍射图谱比较就可以确定所检测试样里面的所存在的相。 三、实验仪器,试样 XRD仪器为:Philip X’Pert diffractometer with Cu-Ka radiation source (λ=1.54056?) at 40Kv。 实验试样:Ti98Co2基的合金 四、实验条件 2θ=20-80o step size:0.05o/S 五、实验步骤 1.开总电源 2.开电脑,开循环水 3.安装试样,设置参数,并运行Xray衍射仪。 4.Xray衍射在电脑上生成数据,保存数据。 5.利用orgin软件生成Xray衍射图谱。并依次找出峰值的2θ,并 与PDF中的标准图谱相比较,比对三强线的2θ,确定试样中存在的相。 六、实验结果及分析 含Ti98Co2基试样在2θ=20-80o,step size:0.05o/S实验条件下的Xray衍射图的标定如下图:

水污染控制工程(下册)课后题答案

第九章、污水水质和污水出路(总论) 1.简述水质指标在水体污染控制、污水处理工程设计中的作用。答:水质污染指标是评价水质污染程度、进行污水处理工程设计、反映污水处理厂处理效果、开展水污染控制的基本依据。污水的水质污染指标一般可分为物理指标、化学指标、生物指标。物理指标包括:(1)水温(2)色度(3)臭味(4)固体含量, 化学指标包括:有机指标包括:(1)B0D:在水温为20度的条件下,水中有机物被好养微生物分解时所需的氧量。(2) COD用化学氧化剂氧化水中有机污染物时所消耗的氧化剂量。(3) TOD由于有机物的主要元素是C、H、0、N、S等。被氧化后,分别产生C02 H2O N02和S02,所消耗的氧量称为总需氧量。(4) T0C表示有机物浓度的综合指标。水样中所有有机物的含碳量。 (5)油类污染物(6)酚类污染物(7)表面活性剂(8)有机酸碱(9)有机农药(10)苯类化合物无机物及其指标包括(1)酸碱度(2)氮、磷(3)重金属(4)无机性非金属有害毒物生物指标包括:(1 )细菌总数(2)大肠菌群(3)病毒 2.分析总固体、溶解性固体、悬浮性固体及挥发性固体指标之间的相互联系,画出这些指标的关系图。答:水中所有残渣的总和称为总固体(TS,总固体包括溶解性固体(DS)和悬浮性固体(SS。水样经过滤后,滤液蒸干所得的固体即为溶解性固体(DS),滤渣脱水烘干后即是悬浮固体(SS。固体残渣根据挥发性能可分为挥发性固体(VS和固定性固体(FS)。将固体在600C的温度下灼烧,挥发掉的即市是挥发性固体(VS,灼烧残渣则是固定性固体(FS。溶解性固体一般表示盐类的含量,悬浮固体表示水中不溶解的固态物质含量,挥发性固体反映固体的有机成分含量。 关系图:总固体=溶解性固体+悬浮固体=挥发性固体+固定性固体3.生化需氧量、化学需氧量、总有机碳和总需氧量指标的含义是分析这些指标之间的联系与区别。 答:生化需氧量(B0D):水中有机污染物被好氧微生物分解时所需的氧量称为生化需氧量。 化学需氧量(C0D):在酸性条件下,用强氧化剂将有机物氧化为C02 H20所消耗的氧量。 总有机碳(T0C :水样中所有有机污染物的含碳量。 总需氧量(T0D):有机物除碳外,还含有氢、氮、硫等元素,当有机物全都被氧化时,碳被氧化为二氧化碳,氢、氮及硫则被氧化为水、一氧化氮、二氧化硫等,此时需氧量称为总需氧量。这些指标都是用来评价水样中有机污染物的参数。生化需氧量间接反映了水中可生物降解的有机物量。化学需氧量不能表示可被微生物氧化的有机物量,此外废水中的还原性无机物也能消耗部分氧。总有机碳和总需氧量的测定都是燃烧化学法,前者测定以碳表示,后者以氧表示。T0C T0D的耗氧过程与B0D 的耗氧过程有本质不同,而且由于各种水样中有机物质的成分不同,生化过程差别也大。各种水质之间T0C或T0D与B0D不存在固定关系。在水质条件基本相同的条件下,B0D与T0D或T0C之间存在一定 的相关关系。 它们之间的相互关系为:T0D > C0D >B0D20>B0D5>0C 生物化学需氧量或生化需氧量(B0D)反映出微生物氧化有机物、直接地从卫生学角度阐明被污染的程度。化学需氧量C0D的优点是比较精确地表示污水中有机物的含量,测定时间仅仅需要数小时,并且不受水质的影响。而化学需氧量C0D则不能象B0D反映出微生物氧化有机物、直接地从卫生学角度阐明被污染的程度。此外,污水中存在的还原性无机物(如硫化物)被氧化也需要消耗氧,以C0D表示也存 在一定的误差。 两者的差值大致等于难生物降解的有机物量。差值越大,难生物降解的有机物含量越多,越不宜采用生物处理法。两者的比值可作为该污水是否适宜于采用生物处理判别标准,比值越大,越容易被生物处理。4.水体自净有哪几种类型氧垂曲线的特点和使用范围是什么 答:污染物随污水排入水体后,经过物理的、化学的与生物化学的作用,使污染的浓度降低或总量减少, 受污染的水体部分地或完全地恢复原状,这种现象称为水体自净或水体净化。包括物理净化、化学净化和生物净化。物理净化指污染物质由于稀释、扩散、沉淀或挥发等作用使河水污染物质浓度降低的过程。化学净化指污染物质由于氧化、还原、分解等作用使河水污染物质浓度降低的过程。生物净化指由于水中生物活动,尤其是水中微生物对有机物的氧化分解作用而引起的污染物质浓度降低的过程。有机物排入河流后,经微生物降解而大量消耗水中的溶解氧,使河水亏氧;另一方面,空气中的氧通过河流水面不断地溶入水中,使溶解氧逐步得到恢复。耗氧与亏氧是同时存在的,D0曲线呈悬索状下垂,称为氧垂直曲线。适用于一维河流和不考虑扩散的情况下。 5.试论排放标准、水环境质量指标、环境容量之间的联系。答:环境容量是水环境质量标准指定的基本依据,而水环境质量标准则是排放标准指定的依据。 排放标准是指最高允许的排放浓度,污水的排放标准分为一,二,三级标准,而水环境质量标准是用来评估水体

浙工大过程控制实验报告

浙工大过程控制实验报告 202103120423徐天宇过程控制系统实验报告 实验一:系统认识及对象特性测试 一实验目的 1了解实验装置结构和组成及组态软件的组成使用。 2 熟悉智能仪表的使用及实验装置和软件的操作。 3熟悉单容液位过程的数学模型及阶跃响应曲线的实验方法。 4学会有实际测的得单容液位过程的阶跃响应曲线,用相关的方法分别确定它们的参数,辨识过程的数学模型。二实验内容 1 熟悉用MCGS组态的智能仪表过程控制系统。 2 用阶跃响应曲线测定单容液位过程的数学模型。三实验设备 1 AE2000B型过程控制实验装置。 2 计算机,万用表各一台。 3 RS232-485转换器1只,串口线1根,实验连接线若干。四实验原理 如图1-1所示,设水箱的进水量为Q1,出水量为Q2,水箱的液面高度为h,出水阀V2固定于某一开度值。根据物料动态平衡的关系,求得: 在零初始条件下,对上式求拉氏变换,得:

式中,T为水箱的时间常数(注意:阀V2的开度大小会影响到水箱的时间常数),T=R2*C,K=R2为单容对象的放大倍数, R1、R2分别为V1、V2阀的液阻,C 为水箱的容量系数。 阶跃响应曲线法是指通过调节过程的调节阀,使过程的控制输入产生一个阶跃变化,将被控量随时间变化的阶跃响应曲线记录下来,再根据测试记录的响应曲线求取输入输出之间的数学模型。本实验中输入为电动调节阀的开度给定值OP,通过改变电动调节阀的开度给定单容过程以阶跃变化的信号,输出为上水箱的液位高度h。电动调节阀的开度op通过组态软件界面有计算机传给智能仪表,有智能仪表输出范围为:0~100%。水箱液位高度有由传感变送器检测转换为4~20mA的标准信号,在经过智能仪表将该信号上传到计算机的组态中,由组态直接换算成高度值,在计算机窗口中显示。因此,单容液位被控对象的传递函数,是包含了由执行结构到检测装置的所有液位单回路物理关系模型有上述机理建模可知,单容液位过程是带有时滞性的一阶惯性环节,电动调节阀的开度op,近似看成与流量Q1成正比,当电动调节阀的开度op为一常量作为阶跃信号时,该单容液位过程的阶跃响应为 需要说明的是表达式(2-3)是初始量为零的情况,如果是在一个稳定的过程下进行的阶跃响应,即输入量是在原来的基础上叠加上op的变化,则输出表达式是对应原来输出值得基础上的增

常微分方程的求解与定性分析实验报告

常微分方程的求解与定 性分析实验报告 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

常微分方程的求解与定性分析实验报告 一、实验综述 1、实验目的及要求 ●归纳和学习求解常微分方程(组)的基本原理和方法; ●掌握解析、数值解法,并学会用图形观察解的形态和进行解的定性分析; ●熟悉MATLAB软件关于微分方程求解的各种命令; ●通过范例学习建立微分方程方面的数学模型以及求解全过程; ●通过该实验的学习,使学生掌握微分方程(组)求解方法(解析法、欧拉法、 梯度法、改进欧拉法等),对常微分方程的数值解法有一个初步了解,同时学会使用MATLAB软件求解微分方程的基本命令,学会建立微分方程方面的数学模型。这对于学生深入理解微分、积分的数学概念,掌握数学的分析思维方法,熟悉处理大量的工程计算问题的方法是十分必要的。 2、实验仪器、设备或软件 电脑、 二、实验过程(实验步骤、记录、数据、分析) 实验内容: 根据实验内容和步骤,完成以下实验,要求写出实验报告(实验目的→问题→数学模型→算法与编程→计算结果→分析、检验和结论) 1.求微分方程的解析解,并画出它们的图形。 y '= y + 2 x, y (0) = 1, 0< x <1; m=dsolve('Dy=y+2*x','y(0)=1','x') ezplot(m,[0 1]) m = 3*exp(x) - 2*x – 2

1.求微分方程?? ???====-+]100[0)0(;0)0(01.03t u u u u u 的数值解,要求编写求解程序。 function dy=vdp1000(t,y) dy=zeros(2,1); dy(1)=y(2); dy(2)=-y(1)+*y(1)^3; [T,Y]=ode15s('vdp1000',[0 10],[0 0]); plot(T,Y(:,1),'-') 3.Rossler 微分方程组: 当固定参数b =2,c =4时,试讨论随参数a 由小到大变化(如 a ∈(0,)而方程解的变化情况,并且画出空间曲线图形,观察空间曲线是否形成混沌状 function r=rossler(t,x) global a; global b; global c; r=[-x(2)-x(3);x(1)+a*x(2);b+x(3)*(x(1)-c)]; global a; global b; global c; b=2; c=4; t0=[0,200]; for a=0:: [t,x]=ode45('rossler',t0,[0,0,0]); subplot(1,2,1); plot(t,x(:,1),'r',t,x(:,2),'g',t,x(:,3),'b'); title('x(红色),y(绿色),z(蓝色)随t 的变化情况');xlabel('t'); subplot(1,2,2); plot3(x(:,1),x(:,2),x(:,3)) title('相图');xlabel('x');ylabel('y');zlabel('z'); pause end 结果显示: a=0: a=: a=: a=: a=:

过程控制系统实验报告

《过程控制系统实验报告》 院-系: 专业: 年级: 学生姓名: 学号: 指导教师: 2015 年6 月

过程控制系统实验报告 部门:工学院电气工程实验教学中心实验日期:年月日 姓名学号班级成绩 实验名称实验一单容水箱液位定值控制实验学时 课程名称过程控制系统实验及课程设计教材过程控制系统 一、实验仪器与设备 A3000现场系统,任何一个控制系统,万用表 二、实验要求 1、使用比例控制进行单溶液位进行控制,要求能够得到稳定曲线,以及震荡曲线。 2、使用比例积分控制进行流量控制,能够得到稳定曲线。设定不同的积分参数,进行 比较。 3、使用比例积分微分控制进行流量控制,要求能够得到稳定曲线。设定不同的积分参数,进行比较。 三、实验原理 (1)控制系统结构 单容水箱液位定值(随动)控制实验,定性分析P, PI,PD控制器特性。 水流入量Qi由调节阀u控制,流出量Qo则由用户通过负载阀R来改变。被调量为水位H。使用P,PI , PID控制,看控制效果,进行比较。 控制策略使用PI、PD、PID调节。 (2)控制系统接线表 使用ADAM端口测量或控制量测量或控制量标号使用PLC端 口 锅炉液位LT101 AI0 AI0 调节阀FV101 AO0 AO0 四、实验内容与步骤 1、编写控制器算法程序,下装调试;编写测试组态工程,连接控制器,进行联合调试。这些步骤不详细介绍。

2、在现场系统上,打开手阀QV-115、QV-106,电磁阀XV101(直接加24V到DOCOM,GND到XV102控制端),调节QV-116闸板开度(可以稍微大一些),其余阀门关闭。 3、在控制系统上,将液位变送器LT-103输出连接到AI0,AO0输出连到变频器U-101控制端上。 注意:具体哪个通道连接指定的传感器和执行器依赖于控制器编程。对于全连好线的系统,例如DCS,则必须安装已经接线的通道来编程。 4、打开设备电源。包括变频器电源,设置变频器4-20mA的工作模式,变频器直接驱动水泵P101。 5、连接好控制系统和监控计算机之间的通讯电缆,启动控制系统。 6、启动计算机,启动组态软件,进入测试项目界面。启动调节器,设置各项参数,将调节器的手动控制切换到自动控制。 7、设置PID控制器参数,可以使用各种经验法来整定参数。这里不限制使用的方法。 五、实验结果记录及处理 六、实验心得体会: 比例控制特性:能较快克服扰动的影响,使系统稳定下来,但有余差。 比例积分特性:能消除余差,它能适用于控制通道时滞较小、负荷变化不大、被控量不允许由余差的场合。 比例微分特性:对于改善系统的动态性能指标,有显著的效果。

水污染控制工程第四版(下册)试题及答案.

水污染控制工程第四版(下册)试题及答案 一、名词解释题(每题3分): 1.水的社会循环:人类社会从各种天然水体中取用大量 水,使用后成为生活污水和工业废水,它们最终流入 天然水体,这样,水在人类社会中构成了一个循环体 系,称为~。 2.生化需氧量:表示在有氧的情况下,由于微生物的活 动,可降解的有机物稳定化所需的氧量 3.化学需氧量:表示利用化学氧化剂氧化有机物所需的 氧量。 4.沉淀::是固液分离或液液分离的过程,在重力作用 下,依靠悬浮颗粒或液滴与水的密度差进行分离。5.沉降比:用量筒从接触凝聚区取100mL水样,静置 5min,沉下的矾花所占mL数用百分比表示,称为沉 降比。 6.滤速调节器:是在过滤周期内维持滤速不变的装置。 7.接触凝聚区:在澄清池中,将沉到池底的污泥提升起 来,并使这处于均匀分布的悬浮状态,在池中形成稳 定的泥渣悬浮层,此层中所含悬浮物的浓度约在3~ 10g/L,称为~。 8.化学沉淀法:是往水中投加某种化学药剂,使与水中 的溶解物质发生互换反应,生成难溶于水的盐类,形 成沉渣,从而降低水中溶解物质的含量。 9.分级沉淀:若溶液中有数种离子能与同一种离子生成 沉淀,则可通过溶度积原理来判断生成沉淀的顺序,这叫做分级沉淀。 10.总硬度:水中Ca2+、Mg2+含量的总和,称为总硬度。 11.电解法:是应用电解的基本原理,使废水中有害物质, 通过电解过程,在阳、阴极上分别发生氧化和还原反 应转化成为无害物质以实现废水净化的方法。 12.滑动面:胶粒在运动时,扩散层中的反离子会脱开 胶粒,这个脱开的界面称为滑动面,一般指吸附层边 界。 13.氧化还原能力:指某种物质失去或取得电子的难易程 度,可以统一用氧化还原电位作为指标。 14.吸附:是一种物质附着在另一种物质表面上的过程, 它可发生在气-液、气-固、液-固两相之间。15.物理吸附:是吸附质与吸附剂之间的分子引力产生的 吸附。 16.化学吸附:是吸附质与吸附剂之间由于化学键力发生 了化学作用,使得化学性质改变。 17.平衡浓度:当吸附质在吸附剂表面达到动态平衡时, 即吸附速度与解吸速度相同,吸附质在吸附剂及溶液 中的浓度都不再改变,此时吸附质在溶液中的浓度就 称为~。 18.半透膜:在溶液中凡是一种或几种成分不能透过,而 其它成分能透过的膜,都叫做半透膜。19.膜分离法:是把一种特殊的半透膜将溶液隔开,使溶 液中的某种溶质或者溶剂渗透出来,从而达到分离溶质的目的。 20.电渗析:是在直流电场的作用下,利用阴。阳离子交 换膜对溶液中阴阳离子的选择透过性,而使溶液中的溶质与水分离的一种物理化学过程。 21.生物处理:是主利用微生物能很强的分解氧化有机物 的功能,并采取一定的人工措施,创造一种可控制的环境,使微生物大量生长、繁殖,以提高其分解有机物效率的一种废水处理方法。 22.生物呼吸线:表示耗氧随时间累积的曲线。 23.污泥龄:是指每日新增的污泥平均停留在曝气池中的 天数,也就是曝气池全部活性污泥平均更新一次所需的时间,或工作着的活性污泥总量同每日排放的剩余污泥量的比值。 24.氧化沟:是一个具有封闭沟渠的活性污泥曝气池。 25.总充氧量:稳定条件下,单位时间内转移到曝气池的 总氧量。 26.悬浮生长:在活性污泥法中,微生物形成絮状,悬浮 在混合液中不停地与废水混合和接触。 27.生物膜反应器:利用生物膜净化废水的装置。 28.面积负荷率法:即单位面积每日能去除废水中的有机 物等量。 29.自然生物处理法:是利用天然的水体和土壤中的微生 物来净化废水的方法。 30.活性污泥法:是以活性污泥来净化废水的生物处理方 法。 31.活性污泥:充满微生物的絮状泥粒。 32.污泥负荷率:指的是单位活性污泥(微生物)量在单 位时间内所能承受的有机物量。 33.污泥浓度:指曝气池中单位体积混合液所含悬浮固体 的重量,常用MLSS表示。 34.污泥沉降比:指曝气池中混合液沉淀30min后,沉淀 污泥体积占混合液总体积的百分数。 35.污泥体积指数:简称污泥指数,是曝气池混合液经 30min沉淀后1g干污泥所占的湿污泥体积(以mL 计)。 36.土地处理系统:是利用土壤及其中微生物和植物对污 染物的综合净化能力来处理城市和某些工业废水,同时利用废水中的水和来合促进农作物、牧草或树木的生长,并使其增产的一种工程设施。 37.两级生物滤池:当废水处理程度要求高时,一级高负 荷生物滤池不能满足要求时,可以将两个高负荷滤池串联起来,称为~。 38.生物接触氧化法:是一个介于活性污泥法和生物滤池 之间的处理方法,它兼具有这两种方法的优点。39.厌氧流化床:当床内载体的膨胀率达到40~50%以 上,载体处于流化状态。

过程控制控实验报告

实验一 单容自衡水箱特性的测试 一、实验目的 1. a 根据实验得到的液位阶跃响应曲线,用相应的方法确定被测对象的特征参数K 、T 和传递函数。 二、实验设备 1. A3000高级过程控制实验系统 2. 计算机及相关软件 三、实验原理 由图2.1可知,对象的被控制量为水箱的液位h ,控制量(输入量)是流入水箱中的流量Q 1,Q 2为流出水箱的流量。手动阀QV105和闸板QV116的开度(5~10毫米)都为定值。根据物料平衡关系,在平衡状态时: 0Q Q 2010=- (1) 动态时则有: dt dV Q Q 21=- (2) 式中V 为水箱的贮水容积,dt dV 为水贮存量的变化率,它与h 的关系为Adh dV =,即: dt dh A dt dV = (3) A 为水箱的底面积。把式(3)代入式(2)得: QV116 V104 V103 h ?h QV105 QV102 P102 LT103 LICA 103 FV101 M Q 1 Q 2 图2.1单容水箱特性测试结构图

图2.2 单容水箱的单调上升指数曲线 dt dh A =-21Q Q (4) 基于S 2R h Q =,R S 为闸板QV116的液阻,则上式可改写为dt dh A R h Q S =-1,即: 或写作: 1 )()(1+=TS K s Q s H (5) 式中T=AR S ,它与水箱的底积A 和V 2的R S 有关;K=R S 。式(5)就是单容水箱的传递函数。 若令S R s Q 01)(=,R 0=常数,则式(5)可改为: T S KR S R K S R T S T K s H 0011/)(0+-=?+= 对上式取拉氏反变换得: )e -(1KR h(t)t/T 0-= (6) 当∞→t 时0KR )h(=∞,因而有=∞=0R )h(K 阶跃输入 输出稳态值。当t=T 时,则)h(KR )e -(1KR h(T) 001∞===-0.6320.632。式(6)表示一阶惯性环节的响应曲线是一单调上升的指数函数,如图2.2所示。 当由实验求得图2.2所示的阶跃响应曲线后,该曲线上升到稳态值的63%所对应的时间,就是水箱的时间常数T 。该时间常数T 也可以通过坐标原点对响应曲线作切线,切线与稳态值交点所对应的时间就是时间常数T ,由响应曲线求得K 和T 后,就能求得单容水箱的传递函数。 1KQ h dt dh AR S =+

相关主题
文本预览
相关文档 最新文档