高温合金简述
- 格式:ppt
- 大小:1.63 MB
- 文档页数:14
1.1 高温合金1.1.1 高温合金及其发展概况高温合金是指以铁、钴、镍为基体,能在600℃以上温度,一定应力条件下适应不同环境短时或长时使用的金属材料。
具有较高的高温强度、塑性,良好的抗氧化、抗热腐蚀性能,良好的热疲劳性能,断裂韧性,良好的组织稳定性和使用可靠性。
高温合金为单一奥氏体组织,在各种温度下具有良好的组织稳定性和使用的可靠性,基于上述性能特点,且高温合金的合金化程度很高,故在英美称之为超合金(Superalloy)。
高温合金于20世纪40年代问世,最初就是为满足喷气发动机对材料的耐高温和高强度要求而研制的,高温合金的发展与航空发动机的进步密切相关,1939年英国Mond镍公司首先研究出Nimonic75,随后又研究出Nimonic80合金,并在1942年成功用作涡轮气发动机的叶片材料,此后该公司又在合金中加入硼、锆、钴、钼等合金元素,相继开发成功Nimonic80A、Nimonic90等合金,形成Nimonic合金系列。
如今先进航空发动机中高温合金用量已超过50%。
此外,在航天、核工程、能源动力、交通运输、石油化工、冶金等领域得到广泛的应用。
高温合金在满足不同使用条件中得到发展,形成各种系列的合金,除传统的高温合金外,还开发出一批高温耐磨、高温耐蚀的合金。
高温合金是航空发动机、火箭发动机、燃气轮机等高温热端部件的不可代替的材料,由于其用途的重要性,对材料的质量控制与检测非常严格。
高温合金的基本用途仍旧是飞行器的燃气轮发动机的高温部分,它要占先进的发动机重量的50%以上。
然而,这些材料在高温下极好的性能已使其用途远远超出了这一行业。
除了航空部件之外,规定将这些合金用于舰船、工业、陆地发电站以及汽车用途的涡轮发动机上。
具体的发动机部件包括涡轮盘、叶片、压缩机轮、轴、燃烧室、后燃烧部件以及发动机螺栓。
除了燃气发动机行业之外,高温合金还被选择用于火箭发动机、宇宙、石油化工、能源生产、内燃烧发动机、金属成形(热加工工模具)、热处理设备、核电反应堆和煤转换装置。
高温合金中常见元素及其作用高温合金中常见元素及其作用高温合金是航空、航天、能源等领域中广泛应用的一种材料,具有优良的耐高温、抗氧化和抗腐蚀性能。
这些合金中包含多种元素,这些元素的种类和比例会直接影响合金的性能。
本文将介绍一些常见的高温合金元素及其作用。
一、镍(Ni)镍是高温合金中的主要元素之一,通常含量在50%以上。
它能够提高合金的强度、韧性、抗氧化性和耐腐蚀性。
镍还可以降低合金的冷脆性,提高可塑性和可焊性。
在高温下,镍能够保持较好的抗蠕变性和持久性,因此常用于制造高温下承受应力的零件。
二、铬(Cr)铬是一种抗氧化性和耐腐蚀性很好的元素,它能够提高合金的硬度、耐磨性和耐热性。
同时,铬还可以改善合金的加工性能。
在高温下,铬能够减缓合金的氧化过程,并形成致密的氧化膜,保护合金表面免受进一步氧化。
三、铁(Fe)铁是高温合金中的基本元素之一,通常含量在20%以上。
它能够提高合金的强度和硬度。
铁还可以改善合金的切削加工性能。
在高温下,铁能够减缓合金的氧化过程,并形成致密的氧化膜,保护合金表面免受进一步氧化。
四、钨(W)钨是一种高密度、高熔点和良好的抗腐蚀性的元素,它能够提高合金的强度、硬度和耐热性。
在高温下,钨能够提高合金的抗蠕变性和持久性,常用于制造高温下承受应力的零件。
此外,钨还可以提高合金的抗高温氧化性能。
五、钼(Mo)钼是一种高强度、高熔点和良好的抗腐蚀性的元素,它能够提高合金的强度、硬度和耐热性。
在高温下,钼能够提高合金的抗蠕变性和持久性,常用于制造高温下承受应力的零件。
此外,钼还可以提高合金的抗高温氧化性能。
六、钛(Ti)钛是一种低密度、高强度和高熔点的元素,它能够提高合金的强度、韧性和耐腐蚀性。
在高温下,钛能够形成稳定的氧化膜,保护合金表面免受进一步氧化。
此外,钛还可以改善合金的加工性能和抗腐蚀性能。
七、铝(Al)铝是一种轻质、高强度和良好的抗腐蚀性的元素,它能够提高合金的强度、硬度和耐热性。
中文名称:铸造高温合金英文名称:cast superalloy定义:在铸造组织状态下具有良好性能并可直接铸成零件的高温合金。
具有比同成分的变形合金高的抗蠕变性能。
中文名称:变形高温合金英文名称:wrought superalloy定义:适宜进行塑性成形的高温合金。
所属学科:航空科技(一级学科);航空材料(二级学科)弥散强化弥散强化指一种通过在均匀材料中加入硬质颗粒的一种材料的强化手段。
是指用不溶于基体金属的超细第二相(强化相)强化的金属材料。
为了使第二相在基体金属中分布均匀,通常用粉末冶金方法制造。
第二相一般为高熔点的氧化物或碳化物、氮化物,其强化作用可保持到较高温度。
弥散强化是强化效果较大的一种强化合金的方法,很有发展前途。
沉淀强化合金通过相变得到的合金元素与基体元素的化合物会引起合金强化,为沉淀强化,弥散强化则是机械混掺于基体材料中的硬质颗粒引起的强化。
两者的区别是沉淀强化中沉淀相和基体有化学交互作用,而弥散强化沉淀相和基体无化学交互作用。
高温合金是指以铁、镍、钴为基,能在600℃以上的高温及一定应力作用下长期工作的一类金属材料;并具有较高的高温强度,良好的抗氧化和抗腐蚀性能,良好的疲劳性能、断裂韧性等综合性能。
高温合金为单一奥氏体组织,在各种温度下具有良好的组织稳定性和使用可靠性,高温合金产品图片融品科技提供基于上述性能特点,且高温合金的合金化程度较高,又被称为“超合金”,是广泛应用于航空、航天、石油、化工、舰船的一种重要材料。
按基体元素来分,高温合金又分为铁基、镍基、钴基等高温合金。
铁基高温合金使用温度一般只能达到750~780℃,对于在更高温度下使用的耐热部件,则采用镍基和难熔金属为基的合金。
镍基高温合金在整个高温合金领域占有特殊重要的地位,它广泛地用来制造航空喷气发动机、各种工业燃气轮机最热端部件。
若以150MPA-100H持久强度为标准,而目前镍合金所能承受的最高温度〉1100℃,而镍合金约为950℃,铁基的合金〈850℃,即镍基合金相应地高出150℃至250℃左右。
高温合金深度研究报告一、引言高温合金是一类能够在高温环境下保持优良力学性能和抗腐蚀能力的金属材料。
随着航空、能源、化工等领域的快速发展,高温合金的应用需求不断增加。
以下对高温合金进行深度研究,主要涉及高温合金的概述、合金元素分析、制备工艺研究、力学性能评价、抗腐蚀性能、发展趋势与挑战以及结论等方面。
二、高温合金概述高温合金是指在高温环境下具有优良力学性能和抗腐蚀能力的合金。
这类合金通常含有大量的铬、钴、镍等元素,以及少量的铝、钛、铌等元素。
高温合金具有较高的熔点、优良的抗蠕变性能、良好的抗氧化性和抗腐蚀性等特点,因此在航空发动机、燃气轮机、核工业等领域得到广泛应用。
三、合金元素分析高温合金的力学性能和抗腐蚀能力受到合金元素的影响较大。
常见的合金元素包括铬、钴、镍、铝、钛、铌等。
这些元素在合金中发挥着不同的作用,如提高熔点、增强抗氧化性和抗腐蚀能力等。
对于不同类型的高温合金,需要根据应用需求进行合理的元素配比,以获得最佳的性能表现。
四、制备工艺研究高温合金的制备工艺对其性能具有重要影响。
常见的制备工艺包括真空感应熔炼、真空电弧熔炼、电渣重熔等。
这些工艺能够控制合金的纯净度、成分均匀性等,从而影响其力学性能和抗腐蚀能力。
此外,热处理工艺也是关键的制备环节,通过控制加热温度、冷却速度等参数,可以调整合金的组织结构和力学性能。
五、力学性能评价高温合金的力学性能是其应用的重要指标之一。
常见的力学性能测试包括拉伸试验、弯曲试验、冲击试验等。
通过这些测试可以评价高温合金在不同温度和应力状态下的力学性能,如抗拉强度、屈服强度、延伸率等。
此外,高温疲劳性能也是评价高温合金力学性能的重要指标之一,对于发动机叶片等关键部件的可靠性具有重要意义。
六、抗腐蚀性能高温合金的抗腐蚀能力是其应用的重要指标之一。
在高温环境下,高温合金容易受到氧化和腐蚀的作用,导致其性能下降。
因此,高温合金需要具有良好的抗腐蚀能力,以保持其长期稳定的使用寿命。
高温合金材料的制备和性能测试高温合金材料是指能在高温环境下工作的金属材料。
由于高温环境的特殊性质,高温合金材料具有一系列独特的性质,例如抗氧化、耐热腐蚀、高强度、高温硬度等,因此广泛应用于航空、航天、汽车、核工业等行业。
本文将介绍高温合金材料的制备和性能测试。
一、高温合金材料的制备1. 熔铸法熔铸法是制备高温合金材料的主要方法之一。
该方法的基本原理是将各种金属和非金属元素按照一定的比例混合后,在高温下熔化,再逐步冷却形成所需的合金。
这种方法的优点是制备工艺简单,生产成本低,但是产品质量不容易控制,易产生内部缺陷和杂质。
2. 粉末冶金法粉末冶金法是制备高温合金材料的另一种常见方法。
该方法的基本原理是将金属和非金属粉末按照一定的比例混合,加工成粉末冶金件,然后在高温下进行烧结和变形加工,形成所需的合金。
这种方法的优点是产品的化学成分均匀,内部无缺陷,但是加工难度大,生产成本高。
3. 热处理法热处理法是制备高温合金材料的较为简单的方法之一。
该方法的基本原理是利用热处理的方法改变金属的结晶结构和物理性质,从而达到提高金属高温性能的目的。
这种方法适用于原料成分比较单一、不需要低温环节的高温合金材料制备。
二、高温合金材料的性能测试1. 抗氧化性能测试高温下的氧化是高温合金材料失效的主要原因之一。
因此,抗氧化性能的测试是高温合金材料性能测试中比较关键的一环。
通常采用高温氧化实验和动态载荷下的氧化实验来测试高温合金材料的氧化性能。
2. 耐热腐蚀性能测试高温下的腐蚀也是高温合金材料失效的原因之一。
耐热腐蚀性能的测试旨在了解高温合金材料在具体腐蚀环境下的长期性能。
常用的测试方法包括塔氏液腐蚀、硝酸腐蚀等。
3. 高强度性能测试高强度是高温合金材料具有的一种重要性能。
通过拉伸试验、冲击试验等方法,可以测试高温合金材料的高强度性能。
4. 高温硬度测试高温硬度是指高温下材料的抗压强度。
通常采用压痕硬度仪等设备来测试高温合金材料的高温硬度。
高温合金是在高温下具有较高力学性能、抗氧化和抗热腐蚀性能的合金。
高温合金按基体成分可分为镍基高温合金、铁镍基高温合金和钴基高温合金,其中镍基高温合金发展最快,使用也最广,铁镍基高温合金次之。
按强化方式分为固溶强化合金和析出强化合金(或称时效沉淀强化合金)等。
按成型方式和生产工艺分为变形合金、铸造合金、粉末冶金合金和机械合金化合金。
固溶强化高温合金的基体为面心立方点阵的固溶体,在其固溶度范围内通过添加铬、钴、钼、钨、铌等元素,提高原子间结合力,产生点阵畸变,降低堆垛层错能,阻止位错运动,提高再结晶温度来强化固溶体。
固溶强化的效果取决于合金化元素的原子尺寸及加入量。
原子半径较大、熔点较高的钼和钨具有较好固溶强化作用,两者总含量可达18%~20%。
铬可防止高温氧化和热腐蚀,但含量过高会降低γ’相的固溶度,使合金的热强性下降。
镍基固溶强化高温合金一般均具有优良的抗氧化、抗热腐蚀性能,塑性较高、焊接性能好,但热性相对较低。
铁镍基固溶强化高温合金,虽然与镍基固熔强化高温合金相比在热强性、抗氧化和抗热腐蚀等方面略差一些,但仍具有良好的力学性能、较好冷热加工工艺性能和焊接性能。
析出强化高温合金是在固溶强化高温合金的基础上,通过添加较多的铝、钛、铌等元素而发展的。
这些无元素除了强化固溶体外,通过时效处理,与镍结合形成共格稳定、成分复杂的Ni3(Al Ti)相(也就是γ’相,具有长程有序的面心立方结构)或Ni3(Nb AI Ti)相(也就是γ’’相,有序体心四方结构)金属间化合物,同时钨、钼、铬等元素与碳形成各种碳化物(如MC M6C M23C6等)由于γ’(γ’’)相和碳化物存在,使合金的热强性大大提高。
此外,这类合金中还可以加入微量的硼、锆和稀士元素、形成间隙相,强化晶界。
近年来发展的一些合金,往往采用固溶,析出和晶界多种方式强化,使合金具有优良的综合性能。
随着AI Ti Nb 等γ’(γ’’)相形成元素含量的提高,其强化效果也增大,热强性提高,但合金的冷热加工性能和焊接性能随之下降。