第63讲 含电容器电路的动态分析(解析版)
- 格式:docx
- 大小:216.83 KB
- 文档页数:10
电容器的动态变化分析电容器是一种能够存储电荷的电子元件,它由两个导体板之间夹着电介质组成。
在外加电压作用下,电容器会聚集正负电荷并储存电能。
电容器的动态变化分析主要参考其充放电过程,包括充电、放电和衰减三个阶段。
首先,我们来看电容器的充电过程。
当电压源连接到电容器上时,电压源会将正电荷送入一个导体板,同时从另一个导体板吸取相同数量的负电荷。
这样,电容器内的电荷就开始聚积,并且越来越多的电荷被储存在电容器中。
充电过程中,电容器的电压逐渐增加,直到达到电压源的电压,此时电容器被充满,不再接受更多的电荷。
接下来,我们来看电容器的放电过程。
当电容器上的电压源断开,即电压源不再提供电荷时,电容器中的电荷开始流向外部电路。
这是因为导体板上的正负电荷会吸引彼此,并且通过外部电路的导线流动。
在放电过程中,电容器的电荷越来越少,导致电容器的电压也逐渐降低,直到电容器完全放电为止。
最后,我们来看电容器的衰减过程。
当电容器被充满或放空后,电容器中的电荷不会立即消失。
相反,电容器内的电荷会因为一些因素的影响而逐渐减少。
其中最主要的因素是电容器内部的电阻和电介质的损耗。
电容器的电阻会导致电荷的漏失,而电介质的损耗会导致电荷的耗散。
因此,电容器的电荷衰减过程是一个逐渐减少的过程,电容器的电压也会随之减小。
在电容器的动态变化分析中,我们需要考虑电容器的电压-电荷关系。
根据电容器的定义,电容器的电压和电荷量之间存在线性关系,即Q=CV,其中Q为电容器的电荷,C为电容器的电容量,V为电容器的电压。
根据这个关系,我们可以通过测量电容器的电压和电荷量来确定电容器的特性。
总结起来,电容器的动态变化分析主要涉及充电、放电和衰减三个阶段。
在充电过程中,电压源将电荷送入电容器,使其电压逐渐增加;在放电过程中,电容器中的电荷通过外部电路流向导线,使电容器的电压逐渐降低;在衰减过程中,电容器内部的电阻和电介质的损耗导致电荷逐渐减少,使电容器的电压减小。
电容器的动态分析,15分钟全部搞懂!
理科
电容器,顾名思义,是“装电的容器”,是一种容纳电荷的器件。
电容器是电子设备中大量使用的电子元件之一,广泛应用于电路中的隔直通交,耦合,滤波,调谐回路,能量转换,控制等方面。
具体分析呢,看下面。
电容器的动态分析
1、电容器的两种情况
电容器始终与电源相连时,电容器两极板电势差U保持不变;
电容器充电后与电源断开时,电容器所带电荷量Q保持不变.
2、平行板电容器动态问题的分析思路
3、关于平行板电容器的一个常用结论
电容器充电后断开电源,在电容器所带电荷量保持不变的情况下,电场强度与极板间的距离无关.
4、分析电容器问题时常用到平行板电容器的三个公式
典例
1、将平行板电容器两极板之间的距离、电压、电场强度大小和极板所带的电荷量分别用d、U、E和Q表示.下列说法正确的是( ) A.保持U不变,将d变为原来的两倍,则E变为原来的一半
B.保持E不变,将d变为原来的一半,则U变为原来的两倍
C.保持d不变,将Q变为原来的两倍,则U变为原来的一半
D.保持d不变,将Q变为原来的一半,则E变为原来的一半
2、如图所示是某示波管的示意图,如果在水平放置的偏转电极上加一个电压,则电子束将被偏转。
每单位电压引起的偏转距离叫示波管的灵敏度,下面这些措施中对提高示波管的灵敏度有用的是()
A. 尽可能把偏转极板L做得长一点
B. 尽可能把偏转极板L做得短一点
C. 尽可能把偏转极板间的距离d做得小一点
D. 将电子枪的加速电压提高
答案:AC。
含容电路动态分析一、技巧1.含电容器的电路的分析和计算,要抓住电路稳定时电容器相当于断路.分析稳定状态的含容电路时可先把含有电容器的支路拆除,画出剩下电路等效电路图,之后把电容器接在相应位置。
2.如果变化前后极板带电的电性相同,那么通过每根引线的电荷量等于始末状态电容器电荷量的差;如果变化前后极板带电的电性改变,那么通过每根引线的电荷量等于始末状态电容器电荷量之和。
二、例题[例题1] 如下图所示,U=10V,电阻R1=3Ω,R2=2Ω,R3=5Ω,电容器的电容C1=4μF,C2=1μF,求:(1)若电路稳定后,C1、C2的带电量?(2)S断开以后通过R2的电量及R2中电流的方向?例题2:如图所示电路中,电源电动势E=10v,内电阻不计,电阻R1=14Ω,R2=6.0Ω,R3=2.0Ω,R4=8.0Ω,R5=10Ω,电容器的电容C=2μF,求:(1)电容器所带的电荷量Q。
并说明电容器哪个极板带正电.(2)若R2突然断路,将有多少电荷量ΔQ通过R5?例题3.如图所示的电路中,在A、B两点间接一电动势为4V,内电阻为1Ω的直流电源,电阻R1=R2=R=4Ω,电容器C的电容为30μF,电流表的内阻不计,求:三、习题1.如图所示,电源电动势E=10 V,内阻r=1 Ω,R1=3 Ω,R2=6 Ω,C=30 μF.,当闭合开关S,求(1)稳定后电容器所带的电量Q=?(2)开关S断开后通过R1的电荷量ΔQ=?2.在如图所示的电路中,电源电动势E=9V, R1=11Ω,r=1Ω,R2=R3=6Ω,当开关S闭合且电路稳定时,电容器C的带电荷量为Q1;当开关S断开且电路稳定时,电容器C的带电量为Q2,求Q1,Q2为多少库伦?开关S由闭合到断开后通过R1的电荷量ΔQ=?3.如图所示,已知电源电动势E=12V,内电阻r=1Ω,R1=3 Ω,R2=2Ω,R3=5Ω,C1=4µF, C2 =1µF ,求:(1)电键S闭合后,C1,C2所带电量?(2)电键S断开后通R2过的电量为多少?4.如图所示的电路中,已知电容C1=C2,电阻R1﹥R2,电源内阻可忽略不计,当开关S接通时,以下说法中正确的有()A.C1的电量增多,C2的电量减少B.C1的电量减少,C2的电量增多C.C1、C2的电量都减少D.C1、C2的电量都增多5.如图所示的电路中,E=10 V,R1=4 Ω,R2=6 Ω,电池内阻不计,C1=C2=30 μF.先闭合开关S,待电路稳定后再断开S,求断开S后通过电阻R1的电荷量.6.如图所示电路中R1=R2=R3=8Ω,电容器电容C=5 F,电源电动势E=6V,内阻不计,求电键S由稳定的闭合状态断开后流过R3的电荷量.7.如图所示电路,电源电动势E=12V,内阻r=1Ω。
《电容器的动态分析》说课稿尊敬的各位评委、老师:大家好!今天我说课的题目是“电容器的动态分析”。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。
一、教材分析“电容器的动态分析”是高中物理选修3-1 中非常重要的一个知识点,它既是对电容器概念和性质的深入理解,也是为后续学习电路知识打下基础。
在教材中,这部分内容通常通过实验和理论推导相结合的方式呈现,旨在引导学生掌握电容器的电容与哪些因素有关,以及在电路中电容器的电荷量、电压、电容等物理量如何随着外界条件的变化而变化。
二、学情分析学生在学习这部分内容之前,已经对电容器的基本概念有了一定的了解,知道电容器是储存电荷的装置,并且对电容的定义式有了初步的认识。
但是,对于电容器在电路中的动态变化过程,学生往往感到抽象和难以理解。
此外,学生在分析问题时,可能会缺乏系统性和逻辑性,容易忽略一些关键的条件和因素。
因此,在教学过程中,需要通过具体的实例和形象的演示,帮助学生建立清晰的物理模型,培养学生的分析和解决问题的能力。
三、教学目标1、知识与技能目标(1)理解电容器电容的概念,知道影响电容器电容的因素。
(2)掌握电容器在电路中的动态分析方法,能够熟练分析电荷量、电压、电容等物理量的变化情况。
2、过程与方法目标(1)通过实验观察和数据分析,培养学生的观察能力和数据处理能力。
(2)通过理论推导和逻辑分析,培养学生的思维能力和推理能力。
3、情感态度与价值观目标(1)激发学生对物理学科的兴趣,培养学生的探索精神和创新意识。
(2)让学生体会物理知识与实际生活的紧密联系,提高学生学以致用的能力。
四、教学重难点1、教学重点(1)电容器电容的概念及其影响因素。
(2)电容器在电路中的动态分析方法。
2、教学难点(1)电容器极板间电场强度的变化分析。
(2)含电容器电路的综合分析。
五、教法与学法1、教法(1)实验演示法:通过演示电容器的充电和放电实验,让学生直观地观察电容器的工作过程和物理量的变化。
闭合电路的动态分析与含电容器电路问题一、电路动态分析电路的动态分析问题是指由于断开或闭合开关、滑动变阻器滑片的滑动等造成电路结构发生了变化,某处电路变化又引起其他电路的一系列变化.直流电路的动态变化分析是电学的常考点之一,几乎每年都有该类试题出现.该类试题能考查考生对闭合电路欧姆定律的理解,电路的结构分析及对电路中并联特点的应用能力,兼顾考查学生的逻辑推训能力.1. 判定总电阻变化情况的规律(1)当外电路的任何一个电阻增大(或减小)时,电路的总电阻一定增大(或减小)。
(2)若开关的通、断使串联的用电器增多时,电路的总电阻增大;若开关的通、断使并联的支路增多时,电路的总电阻减小。
(3)在如图所示分压电路中,滑动变阻器可视为由两段电阻构成,其中一段R 并与用电器并联,另一段R串与并联部分串联。
A 、B 两端的总电阻与R 串的变化趋势一致。
2.程序法:遵循“局部-整体-部分”的思路,按以下步骤分析:3.“串反并同”结论法(1)所谓“串反”,即某一电阻增大时,与它串联或间接串联的电阻中的电流、两端电压、消耗的电功率都将减小,反之则增大。
(2)所谓“并同”,即某一电阻增大时,与它并联或间接并联的电阻中的电流、两端电压、消耗的电功率都将增大,反之则减小。
即:⎭⎪⎫U 串↓I 串↓P 串↓←R ↑→⎩⎪⎨⎪⎧U 并↑I 并↑P 并↑4.极限法因滑动变阻器滑片滑动引起电路变化的问题,可将滑动变阻器的滑片分别滑至两个极端,让电阻最大或电阻为零进行讨论。
【典例1】在如图所示的电路中,E 为电源电动势,r 为电源内阻,1R 和3R 均为定值电阻,2R 为滑动变阻器。
当2R 的滑动触点在a 端时合上开关S ,此时三个电表1A 、2A 和V 的示数分别为1I 、2I 和U 。
现将2R 的滑动触点向b 端移动,则三个电表示数的变化情况是( )A .1I 增大,2I 不变,U 增大B .1I 减小,2I 增大,U 减小C .1I 增大,2I 减小,U 增大D .1I 减小,2I 不变,U 减小 【答案】B【典例2】如图,电路中定值电阻阻值R 大于电源内阻阻值r 。
第63讲 含电容器电路的动态分析1.(2019•北京)电容器作为储能器件,在生产生活中有广泛的应用。
对给定电容值为C 的电容器充电,无论采用何种充电方式,其两极间的电势差u 随电荷量q 的变化图象都相同。
(1)请在图1中画出上述u ﹣q 图象。
类比直线运动中由v ﹣t 图象求位移的方法,求两极间电压为U 时电容器所储存的电能E p 。
(2)在如图2所示的充电电路中,R 表示电阻,E 表示电源(忽略内阻)。
通过改变电路中元件的参数对同一电容器进行两次充电,对应的q ﹣t 曲线如图3中①②所示。
a .①②两条曲线不同是 R (选填E 或R )的改变造成的;b .电容器有时需要快速充电,有时需要均匀充电。
依据a 中的结论,说明实现这两种充电方式的途径。
(3)设想使用理想的“恒流源”替换(2)中电源对电容器充电,可实现电容器电荷量随时间均匀增加。
请思考使用“恒流源”和(2)中电源对电容器的充电过程,填写下表(选填“增大”、“减小”或“不变”)。
“恒流源”(2)中电源 电源两端电压增大 不变 通过电源的电流 不变减小 【解答】解:(1)根据电容的定义Q =UC 可知,U =q C ,故电压U 与电量为正比例关系,故图象如图所示;根据图象的性质可知,图象与q 轴所围成的面积表示电能,故有:E P =12qU =12CU 2;(2)a 、电源电阻不计,当电容器充满电后,电容器两端电压等于电源电动势。
由图可知,充电时间不同,而最大电量相等,故说明图象不同的原因是电阻R 的改变造成的; b 、由图象可知,当R 越小,充电时间越短;R越大,电荷量随时间变化趋向均匀,故需要快速充电时,R 越小越好;而需要均匀充电时,R 越大越好;(3)由于电容充电后两板间的电势差增大,因此需要恒流源的电压增大才能保证电量随时间均匀增加;而(2)中电源电动势不变,而内阻忽略不计,故两端电压不变;所以使用恒流源时,电流不变,而使用(2)中电源时电流减小。
故答案为:(1)如图所示;12CU 2;(2)a 、R ;b 、快速充电时,R 越小越好;而需要均匀充电时,R 越大越好;(3)增大;不变;不变;减小。
一.知识回顾1.电容器的简化处理:电路稳定后,简化电路时可以把电容器所处电路作为断路,简化电路时可以将该断路去掉,求电荷量时在相应位置再补上。
2.电阻的简化处理:电路稳定后,与电容器同支路的电阻相当于导线。
3.电荷变化量的计算:电路中电流、电压的变化可能会引起电容器的充、放电。
若电容器两端电压升高,电容器将充电;若电容器两端电压降低,电容器将通过与它连接的电路放电。
(1)由ΔQ=CΔU 计算电容器上电荷量的变化。
(2)如果变化前后极板带电的电性相同,那么通过所连导线的电荷量等于初、末状态电容器所带电荷量之差即|Q 1-Q 2|。
(3)如果变化前后极板带电的电性相反,那么通过所连导线的电荷量等于初、末状态电容器所带电荷量之和即Q 1+Q 2。
4. 分析电容器所带电荷量的变化要注意以下两点(1)把电容器当成断路简化电路图,按照电路动态分析的基本方法来分析各部分电路电压与电流的变化。
(2)电路稳定时,找到与电容器并联的电阻,而电容器两极板的电压等于与之并联的电阻两端的电压。
二.例题精析例1.如图所示的电路中,R1、R2、R3为阻值相同的电阻,C为电容器,电源的电动势为E,内阻为r。
先将电键S闭合,电路稳定后,流过电源的电流为I1,电源的效率为η1,电容器的带电量为Q1;再将S断开,电路稳定后,流过电源的电流为I2,电源的效率为η2,电容器的带电量为Q2,则下列说法正确的是()A.I1<I2B.η1>η2C.Q1>Q2D.S断开后,通过电阻R3的电荷量为Q1+Q2【解答】解:AB、电键S闭合时,R1、R2串联后与R3并联,总电阻小于R1+R2+r,S断开电路稳定时,R1、R2串联,总阻值等于R+R+r,根据闭合电路欧姆定律I=ER+r知I1>I2,根据效率η=RR+r×100%知η1<η2,故AB错误;C、根据前面分析的电阻关系知,路端电压U的关系为:闭合S路端电压U1<U2(断开S时路端电压)电容器所加电压闭合S时U C1=U12<U22=U C2(断开S时路端电压),电容器电量Q=CU,所以Q1>Q2,故C错误;D、电键S闭合时,电容器下极板为正,S断开电路稳定后,下极板为负,故S断开后,通过电阻R3的电荷量为Q1+Q2,故D正确。
故选:D。
例2.如图所示,R1、R2为定值电阻,C为电容器。
闭合开关S,在滑动变阻器R的滑片向上滑动过程中()A.电阻R2中有向下的电流B.通过电阻R1电流增大C.滑动变阻器R两端的电压变小D.电容器C极板所带电荷量变小【解答】解:B、闭合开关S,在滑动变阻器R的滑片向上滑动过程中,滑动变阻器接入电路的阻值增大,则电路总电流减小,即通过电阻R1的电流减小,故B错误;ACD、根据串联分压规律可知滑动变阻器R两端的电压变大,所以电容器C两端电压增大,根据Q=CU可知电容器极板所带电荷量增大,即电容器充电,根据电路连接方式可知电容器上极板带正电,所以电阻R2中有向下的电流,故A正确,CD错误;故选:A。
三.举一反三,巩固练习1.如图所示,电路中D为二极管,R0为滑动变阻器,R'为磁敏电阻,磁敏电阻的阻值随所处空间磁场的增强而增大,随所处空间磁场的减弱而减小,置于真空中的平行板电容器水平放条形磁铁置,上板接地,极板间的P点固定有带电量很小的负电荷,下列说法正确的是()A.仅将R0的滑片向下移动,电容器极板间的电压减小B.仅将条形磁铁向左移动靠近磁敏电阻,P点处的电场强度不变C.仅将电容器的上板稍向左移,电容器极板间的电压减小D.仅将电容器的上板稍向下移,P点处负电荷的电势能增大【解答】解:A、仅将滑动变阻器的滑片向下移动时,其连入电路的电阻减小,根据串联电路的分压规律可知,滑动变阻器两端的电压减小,则电容器的电压减小,电容器要放电,但由于二极管的单向导电性,电容器不能放电,电容器的带电量不变,其电压不变,故A错误;B、仅将条形磁铁向左移动靠近磁敏电阻时,磁敏电阻R′的阻值增大,电路中电流减小,滑动变阻器R0上分得的电压减小,电容器的电压减小,电容器要放电,但由于二极管的单向导电性,电容器不能放电,电容器的带电量不变,其电压不变,所以电场强度不变,故B正确;C、将电容器的上板稍向左移,仅减小平行板电容器两个极板的正对面积时,电容减小,电容器的电压不变,由Q=CU知电容器要放电,但二极管的单向导电性,电容器不能放电,故电容器所带电荷量不变,由E=Ud=Q Cd=Qɛr S4πkd⋅d=4πkQɛr S,知电容器板间的电场强度增大,电压增大,故C错误;D、仅将电容器的上板稍向下移,仅减小平行板电容器两个极板的距离时,电容增大,电容器的电压不变,由Q=CU知电容器要充电,由E=Ud知电容器板间的电场强度增大,P点处负电荷的电势能减小,故D错误。
故选:B。
2.道路压线测速系统,不仅可以测速,也可以测量是否超载,其结构原理电路可以理解为如图甲所示由一个电源,一个灵敏电流计与传感器连接,一个电容和一个保护电阻R组成,感应线连接电容器的其中一块极板上,如果车轮压在感应线上会改变电容器两板间的距离,并会使灵敏电流计中产生瞬间电流,压力越大,则电流峰值也会越大,如果汽车的前、后轮先后经过感应线,回路中产生两脉冲电流,如图乙所示,电子眼就会拍照。
如果以顺时针方向为电流正方向,则()A.汽车压线时,电容器板间距离变小B.车轮经过感应线过程中电容器先充电后放电C.增大电阻R值,可以使电容器稳定时的带电量减小D.如果车轮间距是2.5m,则可估算车速约为7.7m/s【解答】解:A、汽车压线时,由图乙可知电流方向沿顺时针方向,而电容器上极板带负电,下极板带正电,说明此时电容器在放电,电容器电荷量减小。
由于电容器电压等于电源电压不变,则由Q=CU知电容器的电容减小。
根据电容的决定式C=ɛr S4πkd可知,汽车压线时,电容器板间距离d变大,故A错误;B、由图乙可知电流先沿顺时针方向后沿逆时针方向,则电容器先放电后充电,故B错误;C、电阻R的作用是为了保护电路,防止电流过大而损坏灵敏电流计,阻值大小对电容器的电容大小没有影响,从而对电容器稳定时的带电量没有影响,故C错误D、由图乙可知,前后轮经过传感器的时间间隔为t=0.325s,则汽车是速度为v=L t =2.50.325m/s≈7.7m/s,故D正确。
故选:D。
3.如图所示,D为理想二极管,R为滑动变阻器,C1、C2为电容器,且电容相等,P、Q为带电粒子,开关S闭合后,P、Q均处于静止状态,下列说法正确的是()A.C1、C2所带的电荷量不相等B.保持开关S闭合,将滑动变阻器的滑片下滑,P加速向上运动,Q仍静止C.保持开关S闭合,将滑动变阻器的滑片上滑,P加速向下运动,Q仍静止D.保持开关S闭合,将滑动变阻器的滑片上滑,P加速向下运动,Q也加速向下运动【解答】解:A、在电路中,C1、C2都与R3并联,即它们的电压是相等的,又其电容相等,故C1、C2所带电荷量相等,故A错误B、将滑动变阻器滑片下滑使滑动变阻器接入电路阻值变大,故R上的电压变大,又R与R2,R3串联的整体并联,故R3上的电压也变大。
由于电压增大,故电流可以通过二极管D.即C1、C2电压均增大,P、Q都加速向上运动。
故B错误。
CD、将滑动变阻器滑片上滑使滑动变阻器接入电路阻值变小,故R上的电压变小,又R 与R2,R3串联的整体并联,故R3上的电压也变小。
由于电压变小,故电流不可通过二极管D.故C1电压变小,C2电压不变。
P加速向下运动,Q静止。
故C正确,D错误。
故选:C。
4.如图所示,M、N是平行板电容器的两个极板,R为滑动变阻器。
用绝缘细线将一带负电的小球悬于电容器内部。
闭合电键S,给电容器充电后,悬线偏离竖直方向的夹角为θ。
下列说法正确的是()A.保持S闭合,将滑动变阻器的滑片向a端滑动,则θ增大B.保持S闭合,将N板向M板靠近,则θ不变C.断开S,将N板向M板靠近,则θ增大D.断开S,将N板向下移动少许,则θ增大【解答】解:A.保持S闭合,电容器两极板间的电势差等于电源的电动势,不变,将滑动变阻器的滑片向a端滑动,则θ不会变,故A错误B.保持S闭合,电容器两极板间的电势差等于电源的电动势,不变,根据公式E=Ud可知,将N板向M板靠近时,电场强度变大,电场力变大,故θ增大,故B错误C.断开S,电容器带电量不变,根据电容器定义式C=QU,平行板电容器的公式C=εr S4kπd以及电压与电场强度公式U=Ed,联立可得E=4kπdεr S,故电场强度与两极板距离d无关,断开S,将N板向M板靠近,电场强度不变,电场力不变,故θ不变,故C错误;D.断开S,电容器带电量不变,根据电容器定义式C=QU,平行板电容器的公式C=εr S4kπd,电压与电场强度公式U=Ed可得E=4kπdεr S,故断开S,将N板向下移动少许,电场强度增大,电场力增大,则θ增大,故D正确。